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The nonlinear dynamic behavior has an important impact on energy dissipation and vibra-
tion damping characteristics of bolted joints. Firstly, the development of tangential dynamic
models is summarized and analyzed. Secondly, a five-parameter Iwan model based on a trun-
cated power-law distribution is proposed. The backbone and hysteresis curves are obtained.
Thirdly, normalized and dimensionless analysis is performed. On the basis of the above,
a more concise four-parameter Iwan model with stiffness continuity is proposed. Finally,
the validity of the model is verified by comparing the energy dissipation vs excitation force
amplitude curve with the experimental data.
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1. Introduction

Mechanical joints have a significant effect on structural dynamics. Bolted joints cause local stiff-
ness and damping changes and are often the primary source of energy dissipation and damping
in assembled structures. In many such structures, the damping due to relative interfacial joint
motion accounts for as much as 90% of the total energy (Beards, 1992). The bolted joint has been
widely used in aerospace, weaponry, automobile manufacturing and other industrial fields with
the advantages of simple structures, with convenient assembly and disassembly, etc. However,
it causes complex friction and slip behaviour as shown in Fig. 1. Insufficient understanding and
failed design of bolted joints have resulted in serious aircraft engine failures and batch recalls
of automobiles. Bolt engineering has become one the most important and unresolved general
safety issues (Bickford, 2007).

Fig. 1. Tangential excitation on bolted joints

Generally, numerical simulation can be used to analyse the influence of bolted joints on dy-
namic characteristics of the overall structure, but it is only feasible for simple structure analysis.
When it comes to complex assemblies, the detailed bolt finite element model requires certain unit
element size of the overall structure, which brings great difficulties to the calculation. Therefore,
it is also important to study the nonlinear dynamic behaviour of bolted joints and reduce the
calculation scale of simulation (Segalman et al., 2009).

There are two types of approaches in this field. The first category includes fractal characteri-
zation and statistical summation methods based on geometric and physical parameter modelling.
The other category includes phenomenological models such as the Iwan model (Iwan, 1966) and
the Valanis model (Ferri, 1995) based on model assumptions and parameter identification (Cao
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et al., 2020). Although the research based on the physical mechanism can describe the nonlinear
dynamic behaviour from the mechanism, the phenomenological method of the simple model and
easy-to-identify parameters have higher engineering application. Due to systematic description
of the slip processing the Iwan model, it has been widely concerned and developed by many
scholars (Argatov and Butcher, 2011). Segalman proposed a four-parameter Iwan model based
on a truncated power-law spectrum, by summarizing the observation that the power of energy
dissipation and loading force amplitude is between 2.0 and 3.0 (Goodman, 1959; Mindlin, 1949,
1952). Song et al. (2004) paralleled the Iwan model with a linear spring to characterize the resid-
ual stiffness after macroslip, and applied it to the AIBE (adjusted Iwan beam element). Zhang et
al. (2012) derived a normalized calculation formula for periodic energy dissipation of the classic
Iwan model, and a justified Iwan model proposed was by Song. Li et al. (2015) introduced a
six-parameter Iwan model based on a double-pulse non-uniform density truncated power law
distribution, and verified its validity. Li and Xu (2017) studied the influence of a normal load
on the mechanical behaviour between interfaces. Wang and Fan (2019) studied the influence of
excitation amplitudes on the nonlinear dynamic behaviour, and derived an equation for the local
nonlinear connection. Based on the discrete Iwan model, Liu et al. (2020) verified the agreement
between the equivalent finite element model and the contact model.

2. Comparative analysis of typical Iwan models

The classic Iwan model is divided into a parallel-series model and a series-series model, among
which the parallel-series model has better applicability. The parallel-series Iwan model has two
assumptions. One is the parallel model of the Jenkins element composed of a spring and a friction
resistor in series, as shown in Fig. 2a. The other is that the yield force obeys the band-limited
distribution as shown in Fig. 2b, where ϕ(f∗) represents the distribution function of the yield
force f∗, fy is the center value of the band-limited distribution (the average yield force), and
∆f is the bandwidth.

Fig. 2. Two assumptions of the classic Iwan model: (a) parallel-series model, (b) distribution
function ϕ(f∗)

Mathematically, the discrete form of the backbone curve in the classic Iwan model is

f =
n
∑

i=1

f∗i
N
+
ku(N − n)

N
(2.1)
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where u is the imposed displacement in the initial loading, k is the total stiffness of all Jenkins
elements, n is the number of Jenkins elements that yield under the condition of displacement u.
The yield forces of Jenkins elements are arranged in order as f∗1 < f

∗

2 < · · · < f
∗

N .
When N tends to infinity, Eq. (2.1) can be written in the equivalent form

f =

ku
∫

0

f∗ϕ(f∗) df∗ + ku

∞
∫

ku

ϕ(f∗) df∗ (2.2)

The restoring force of the unloading process of the hysteretic curve is

←

f (u) =

k(A−u)
2
∫

0

−f∗ϕ(f∗) df∗ +

kA
∫

k(A−u)
2

[ku− (kA− f∗)]ϕ(f∗) df∗ + ku

∞
∫

kA

ϕ(f∗) df (2.3)

Through the Masing criterion, the restoring force-displacement relationship during the loading
process of the hysteretic curve can be obtained as

~f(u) = −
←

f (−u) (2.4)

When a monotonic load is applied, the stiffness of the backbone curve degrades to zero after
reaching the maximum yield strength of fy + ∆f/2, which is inconsistent with Gaul’s (1997)
experimental results. Song added a spring with stiffness ka to characterize the residual stiffness
after macroslip. The modified Iwan model is shown in Fig. 3, where kr = k − ka, and k is the
initial stiffness. Equations (2.1), (2.2) and (2.3) now become

fadjusted =
n
∑

i=1

f∗i
N
+
kru(N − n)

N
+ kau

fadjusted =

kru
∫

0

f∗ϕ(f∗) df∗ + kru

∞
∫

kru

ϕ(f∗) df∗ + kau

←

f adjusted (u) =

kr(A−u)
2
∫

0

−f∗ϕ(f∗) df∗ +

krA
∫

kr(A−u)
2

[kru− (krA− f
∗)]ϕ(f∗) df∗

+ kru

∞
∫

kA

ϕ(f∗) df + kau

(2.5)

Goodman (1959) pointed out that the energy dissipation caused by oscillatory lateral loads
imposed on two spheres pushed together yields a power-law slope of 3.0 in the regime of small
lateral loads. Segalman of Sandia National Laboratory proposed truncated power-law spectra,
as shown in Fig. 4.
Table 1 shows a comparison of the three models.
Scholars have also revised the model to address these problems. For example, Li et al. (2015)

proposed a six-parameter model through the modified double-pulse truncated power-law dis-
tribution. However, this model has many parameters to be identified and does not directly
consider the stiffness continuity. Therefore, this paper combines the linear spring to charac-
terize the residual stiffness and the truncated power-law distribution to represent the power
relationship between energy dissipation and the displacement amplitude. First, a five-parameter
model considering residual stiffness is proposed. On this basis, the residual stiffness is further
considered, and a concise adjusted four-parameter model is obtained.
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Fig. 3. Modified Iwan model

Fig. 4. Truncated power-law spectra

Table 1. Features and deficiencies of the three models

Model type Classic Iwan model Justified Iwan model
Four-parameter
Iwan model

Constitution Jenkins elements
Jenkins elements and

Jenkins elements
linear spring

Distribution Band-limited Band-limited Truncated power-law
function distribution distribution distribution

No residual stiffness, No stiffness continuity No residual stiffness
Deficiencies stiffness continuity and and power and stiffness

power law relation law relation continuity

3. Five-parameter model considering residual stiffness

In order to characterize the residual stiffness, this paper proposes to use a linear spring with
stiffness ka to characterize the residual stiffness and to modify the Jenkins element stiffness to
kr = KT − ka. Through the combination of spring stiffness modification and truncated power-
-law distribution, the goodness of the Segalman model can be retained in microslip, and the
disablility for residual stiffness can be eliminated. The core assumptions of the five-parameter
model are shown in Fig. 5, where KT is the initial stiffness, φ = f

∗/kr is the yield displacement
of Jenkins elements, and ρ(φ) = k2ϕ(f∗) is the distribution function of φ.
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Fig. 5. Five-parameter model

Referring to Eq. (2.5)2, the restoring force becomes

F (u) =

u
∫

0

φρ(φ) dφ+

∞
∫

u

uρ(φ) dφ+ kau (3.1)

The density function of the truncated power-law distribution is

ρ(φ) = k2ϕ(f∗) = Rφχ[H(φ)−H(φ− φmax)] + Sδ(φ − φmax) (3.2)

Substituting Eq. (3.2) into Eq. (3.1), we can get

F (u) =



















(Rφχ+1max
χ+ 1

+ S + ka
)

u−
Ruχ+2

(χ+ 1)(χ+ 2)
u < φmax

kau+ Sφmax +R
φχ+2max
χ+ 2

u ­ φmax

(3.3)

Deriving Eq. (3.3) with respect to u, the outcome is

K(u) =











R(φχ+1max − u
χ+1)

χ+ 1
+ S + ka u < φmax

ka u ­ φmax

(3.4)

It can be seen from Eq. (2.4) that the initial stiffness can be expressed as

KT =
Rφχ+1max
χ+ 1

+ S + ka (3.5)

The macroslip force is

Fs =

∞
∫

0

φρ(φ) dφ+ kaφmax = φmax
(Rφχ+1max
χ+ 1

)(χ+ 1

χ+ 2
+ β
)

(3.6)

where β = (S+ka)/[Rφ
χ+1
max/(χ+1)]. This model can be determined by five parameters: Fs, KT ,

ka, χ and β. The first three parameters have clear physical meanings and can be measured. The
rest two parameters can be identified by fitting with experimental data.
The parameters R, φmax, S can be expressed as

R =
Kχ+2T (χ+ 1)[(χ+ 1) + β(χ+ 2)]

χ+1

Fχ+1s (β + 1)χ+2(χ+ 2)χ+1

φmax =
Fs(β + 1)(χ + 2)

KT [(χ+ 1) + β(χ+ 2)]
S =

β

1 + β
KT − ka

(3.7)
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Let the following normalization parameters be F (u)/Fs = p, u/φmax = q. The normalized
backbone curve expression is shown in Eq. (3.8), where qmax is the amplitude of normalized
excitation. When qmax ­ 1, the residual stiffness is characterized due to stiffness of the linear
spring

p(q) =











(χ+ 2)(β + 1)q − qχ+2

χ+ 1 + β(χ+ 2)
qmax < 1

1 + ka(q − 1) qmax ­ 1
(3.8)

In order to analysis the influence of β, we have drawn three representative curves of three
different values of β with a constant value of the residual stiffness ka as shown in Fig. 6. As the
value of β increases, the initial stiffness decreases, but the stiffness of the microslip end increases.
β = 0 and β =∞ are two extreme cases. In the first case, the initial stiffness is the largest, and
the end stiffness is zero. In the second case, the initial stiffness is the smallest, and the stiffness
is kept constant throughout the entire microslip. It can be seen that β is a parameter controlling
the nonlinearity and determining the stiffness continuity.

Fig. 6. Normalized backbone curve of the five-parameter Iwan model χ = −0.5

The above research focuses on the backbone curve of the bolted joint. However, bolts are
more susceptible to vibration loads. Therefore, it is necessary to study the restoring force during
the loading and unloading process under a harmonic load.

During the initial loading process, there are two states for Jenkins elements. Some elements
are in the yielding state when u > φ, providing the restoring force as f∗/N . The rest elements
are in the elastic state when u < φ, providing the restoring force as ukr/N .

In the unloading process, there are three states. Let A represents the amplitude of dis-
placement u. The Jenkins spring element stretches from the loading direction to the unloading
direction, and there is an elastic range of 2φ in length. Some elements are always in the elastic
state because A < φ. Some elements are in the elastic state when A− u < 2φ. The rest Jenkins
elements yield when A− u > 2φ. There is also a linear spring that is always in the elastic state.
Therefore, the restoring force during the unloading stage consists of four parts

←

fmic(u) =

A−u

2
∫

0

−φρ(φ) dφ+

A
∫

(A−u)
2

(u−A+ φ)ρ(φ) dφ+

∞
∫

A

uρ(φ) dφ+ kau (3.9)

The restoring force in the loading process is

~Fmic(u) =

A+u
2
∫

0

φρ(φ) dφ+

A
∫

A+u
2

(u+A− φ)ρ(φ) dφ+

∞
∫

A

uρ(φ) dφ+ kau (3.10)
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Substituting Eq. (3.2) into Eqs. (3.9) and (3.10), we can get

←

Fmic(u) =
R(A− u)χ+2

2χ+1(χ+ 1)(χ+ 2)
−

RAχ+2

(χ+ 1)(χ + 2)
+
Rφχ+1max
χ+ 1

u+ Su+ kau

~Fmic(u) = −
R(A+ u)χ+2

2χ+1(χ+ 1)(χ+ 2)
+

RAχ+2

(χ+ 1)(χ+ 2)
+
Rφχ+1max
χ+ 1

u+ Su+ kau

(3.11)

The highest power of the displacement u is χ + 2, which means that the hysteretic loop is
nonlinear.

The hysteresis curve is normalized the same way as the backbone curve, and the relationship
between p and q is

←

pmic(q) =
−mχ+2 + (m− q)χ+2/2χ+1 + (q + βq)(χ+ 2)

β(χ+ 2) + χ+ 1

~pmic(q) =
mχ+2 − (m+ q)χ+2/2χ+1 + (q + βq)(χ+ 2)

β(χ+ 2) + χ+ 1

(3.12)

Figure 7 shows the normalized hysteresis curve of microslip. It can be found that as β
decreases, the area enclosed by the hysteresis curve becomes larger.

Fig. 7. Normalized hysteresis curve of microslip

When the displacement amplitude of the excitation is greater than the maximum yield
displacement of Jenkins elements, the slip shifts from the microslip to the macroslip stage. The
restoring force during the unloading process is mainly divided into the nonlinear section and
linear section. Only a part of Jenkins elements yield in the nonlinear stage, and the system enters
the linear stage when all Jenkins elements yield. The restoring force in the nonlinear stage when
A− 2φmax ¬ u ¬ A is

←

Fmac(u) =

A−u

2
∫

0

−φρ(φ) dφ+

∞
∫

A−u

2

(u−A+ φ)ρ(φ) dφ+ kau

=
R(A− u)χ+2

2χ+1(χ+ 1)(χ+ 2)
−
Rφχ+1max(A− u)

χ+ 1
+
Rφχ+2max
χ+ 2

− S(A− u) + Sφmax + kau

(3.13)

The restoring force in the linear stage when −A ¬ u < A− 2φmax is

←

Fmac(u) =

φmax
∫

0

−φρ(φ) dφ−

∞
∫

φmax

φρ(φ) dφ+ kau = −
Rφχ+2max
χ+ 2

− Sφmax + kau (3.14)
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The restoring force during the loading process of the hysteresis curve can be derived from
the Masing criterion

~Fmac(u) =































−
R(A+ u)χ+2

2χ+1(χ+ 1)(χ+ 2)
+
Rφχ+1max(A+ u)

χ+ 1
−
Rφχ+2max
χ+ 2

+S(A+ u)− Sφmax + kau −A ¬ u ¬ 2φmax −A

Rφχ+2max
χ+ 2

+ Sφmax + kau 2φmax −A < u ¬ A

(3.15)

We select a set of parameters χ = −0.5, β = 0.1, ka = 1, R = 5.5, φmax = 1, A = 1.5 to plot
the hysteresis curve as shown in Fig. 8. By comparing with Gaul’s experimental results, we find
that the curve generated by the five-parameter model is similar to Gaul’s experimental curve.

Fig. 8. Hysteresis curve of macroslip

In a single excitation cycle, the energy dissipation is equal to the area enclosed by the loading
curve and the unloading curve, which can be calculated through

D(A) =

A
∫

−A

[~F (u)−
←

F (u)] du (3.16)

Substituting Eqs. (3.11) and (3.13)-(3.15) into Eq. (3.16), we can get a relationship between
the energy dissipation and displacement amplitude

Dmic(A) =
4RAχ+3

(χ+ 2)(χ + 3)
= wAχ+3 A < φmax

Dmac(A) =
4RAφx+2max
x+ 2

+ 4SAφmax −
4Rφχ+3max
χ+ 3

− 4Sφ2max A ­ φmax

(3.17)

The backbone curve and the hysteresis curve of microslip are normalized above. In order to
unify and simplify the macroslip curve and the energy dissipation relationship, we propose a

new set of dimensionless variables to simplify the equations.
~←
P =
~←
F (u)/(kaφmax) is the dimen-

sionless restoring force. Q = u/φmax is the dimensionless displacement. κ1 = Rφ
χ+1
max/ka and

κ2 = S/ka are the inherent dimensionless stiffness parameters of the system. η = A/φmax is the
dimensionless amplitude. Pinit represents the dimensionless restoring force in the initial loading
process

Pinit(Q) =















( κ1
χ+ 1

+ κ2 + 1
)

Q−
κ1
Qχ+2

(χ+ 1)(χ+ 2) Q < 1

Q+ κ2 +
κ1
χ+ 2

Q ­ 1
(3.18)
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The restoring force in the hysteresis curve of microslip and macroslip, expressed in the dimen-
sionless form for −η ¬ Q ¬ η

←

Pmic(Q) =
κ1

(η −Q)χ+2
2χ+1(χ+ 1)(χ+ 2) + (

κ1
χ+ 1

+ κ2 + 1)Q−
κ1η
χ+2

(χ+ 1)(χ+ 2)

~Pmic(Q) = −
κ1

(η +Q)χ+2
2χ+1(χ+ 1)(χ+ 2) +

( κ1
χ+ 1

+ κ2 + 1
)

Q+
κ1η
χ+2

(χ+ 1)(χ+ 2)

(3.19)

and

←

Pmac(Q) =































κ1(η −Q)
χ+2

2χ+1(χ+ 1)(χ+ 2)
−

(

κ1
χ+1 + κ2

)

(η −Q)

+Q+
κ1
χ+ 2

+ κ2 η − 2 ¬ Q ¬ η

Q−
κ1
χ+ 2

− κ2 −η < Q < η − 2

~Pmac(Q) =



























−
κ1(η +Q)

χ+2

2χ+1(χ+ 1)(χ+ 2)
+
(

κ1
χ+1 + κ2

)

(η +Q)

+Q−
κ1
χ+ 2

− κ2 −η ¬ Q ¬ 2− η

Q+
κ1
χ+ 2

+ κ2 2− η < Q ¬ η

(3.20)

Let dmic(η) = Dmic(A)/(kaφ
2
max) express the dimensionless energy dissipation. We can get

the dimensionless relationship between the energy dissipation and displacement in micro and
macro slip

dmic(η) =
4κ1η

χ+3

(χ+ 2)(χ+ 3)
η < 1

dmac(η) =
( 4κ1
χ+ 2

+ 4κ2
)

η −
( 4κ1
χ+ 3

+ 4κ2
)

η ­ 1

(3.21)

From Eq. (3.21)1, we can see that the dimensionless energy dissipation of microslip has a log-
log linear relationship with the excitation amplitude. The slope is χ+3 in the double logarithmic
coordinate system, which is consistent with the results in the literature.
Figure 9 shows the curve of dimensionless dissipation of different κ1 in the linear coordinate

and double logarithmic coordinate system, respectively.

Fig. 9. Dimensionless dissipation curve (χ = −0.5, κ2 = 0.05): (a) linear coordinate, (b) double
logarithmic coordinate system

It can be found from Fig. 9 that although there is no stuck state in the strict sense according
to the theory of this model, in the initial stage of the dimensionless displacement the energy
dissipation value is very close to zero but not zero, which can be approximated by a linear
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relationship between the restoring force and displacement. This phenomenon is consistent with
the literature (Segalman et al., 2009) that the response appears linear at very low loads, and even
at this point there is some microslip and dissipation. In the double logarithmic coordinates, the
non-dimensional energy dissipation of microslip has a linear relationship with the dimensionless
amplitude. On the premise of keeping κ2 unchanged, the energy dissipation will increase with
an increase of κ1.

Figure 10 shows the relationship between the parameter χ and the energy dissipation. The
increase of χ will reduce the energy dissipation. And, as η increases, the curves for different χ
values approach each other in the double logarithmic coordinates.

Fig. 10. Energy dissipation curve for different χ

4. Modified four-parameter model with further consideration of stiffness

continuity

The five-parameter model proposed above still exhibits stiffness discontinuity at the macroslip
point, which is contrary to experimental results of different excitation forces (Gaul and Lenz,
1997) and simulation results of different pre-tightening forces and friction coefficients (Zhao et
al., 2021) as shown in Fig. 11. It shows that the stiffness degradation should be continuous.

Through the analysis of Eq. (3.4) and Fig. 6, we find that the discontinuity is caused by the
value of β. When S is equal to zero, there will be no stiffness discontinuity at the macroslip
point. Therefore, the modified four-parameter model is further studied. Compared with the
five-parameter model, the justified four-parameter model is a special case of S = 0, and the
corresponding restoring force calculation formula will not be presented here. The focus is the
characteristic of energy dissipation. In the nondimensionalization, S = 0 is equivalent to κ2 = 0

dmic(η) =
4κ1η

χ+3

(χ+ 2)(χ+ 3)
η < 1

dmac(η) =
4κ1
χ+ 2

η −
4κ1
χ+ 3

η ­ 1

(4.1)

It can be seen from Eq. (4.1)1 that the dimensionless energy dissipation still maintains a
linear relationship with a slope of χ+ 3 with the dimensionless displacement amplitude in the
double logarithmic coordinate system.

The interface wear caused by different excitation frequencies in a short time is different, but
the impact of wear can be ignored and is usually not considered in the current bolt dynamics
research. The resonance frequency of the bolt assembly is always selected as the loading frequency
for more obvious energy dissipation under the same load amplitude. A set of experimental
data for stepped specimens performed by Segalman with the Big Mass Device is selected as a
comparison.
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Fig. 11. Experimental and simulation results of the force-displacement curve: (a) experimental curves,
(b) simulation curves, (c) simulation curves of different friction coefficients

Figure 12 shows that the curve fitted by the least square method is in good agreement with
the data. The slope in the double logarithmic coordinate system of the fitted curve is 2.8916,
which is also in good agreement with the slope of 2.8272 in Segalman’s experiments.

Fig. 12. Energy dissipation curve fitted with the modified four-parameter model: R = 97.5837,
φmax = −0.009, χ = −0.1084, ka = 100790
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5. Conclusion

• In this article, several typical Iwan models are analyzed, and a five-parameter model com-
bining Jenkins elements, a linear spring and the truncated power-law distribution is pro-
posed, which is able to characterize residual stiffness.

• The restoring force-displacement functions of the five-parameter model backbone curve
and the microslip hysteresis curve are normalized, and the influence of β is observed. The
value of β is the determining factor for the system stiffness discontinuity.

• The restoring force calculation equations of the five-parameter model are dimensionlessly
processed, and the influence of χ and κ1 on energy dissipation is analyzed. A decrease
in the value of χ or an increase in the value of κ1 will lead to the increase of energy
dissipation.

• On the basis of the five-parameter model, a modified four-parameter model with the stiff-
ness continuity is proposed, and the dimensionless energy dissipation relationship is derived
using the same dimensionless processing method. And its effectiveness has been verified
by experimental data.

• The justified four-parameter model proposed in this paper adds constraints to the vari-
able S to characterize the stiffness continuity, and at the same time the number of model
parameters is reduced and the model is simplified. This model is considered to be beneficial
for engineering applications such as discrete analysis and finite element calculations.
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