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The maglev trains are strongly nonlinear and open-loop unstable systems with external dis-
turbances and parameters uncertainty. In this paper, the Gaussian process method is utilized
to get the dynamic parameters, and a backstepping sliding mode controller is proposed for
magnetic levitation systems (MLS) of maglev trains. That is, for a MLS of a maglev train,
a nonlinear dynamic model with accurate parameters is obtained by the Gaussian process
regression method, based on which a novel robust control algorithm is designed. Specifically,
the MLS is divided into two sub-systems by a backstepping method. The inter virtual control
inputs and the Lyapunov function are constructed in the first sub-system. For the second
sub-system, the sliding mode surface is constructed to fulfil the design of the whole controller
to asymptotically regulate the airgap to a desired trajectory. The stability of the proposed
control method is analyzed by the Lyapunov method. Both simulation and experimental
results are included to illustrate the superior performance of the presented method to cope
with parameters perturbations and external disturbance.
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1. Introduction

Maglev transportation technology has developed rapidly in the recent decades, and many maglev
lines have appeared all over the world with the advantages of zero friction, stronger turning
ability, faster speed potential and environment friendly, as shown in Fig. 1 (Lee et al., 2006; Yan,
2008; Thornton, 2009). Because of human’s unremitting pursuit of traffic speed and comfort,
maglev transportation will flourish in the near future. The magnetic levitation technology is
one of the key technologies of maglev transportation. The modeling and control of the magnetic
levitation system (MLS) is the premise to ensure the high-quality operation of maglev vehicles
(Boldea et al., 2017).

The modeling of the MLS is relatively mature. However, values of the model parameters are
not easy to obtain, and the parameters will be perturbed during vehicle operation. In addition,
the model has a strong nonlinearity and is easy to be disturbed, which brings difficulties to the
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Fig. 1. Maglev transportation line all over the world

design of the controller. The traditional magnetic levitation control method is designed based
on the linearization model near the equilibrium point, such as the PID controller, state feedback
controller, etc. These methods can adjust the airgap, but when the system state is far from the
equilibrium point, the control effect is greatly reduced, not to mention the ability of dealing
with parameters change or disturbances. The airgap of an EMS maglev train is about 8.5 mm.
Therefore, the decline of levitation control performance will lead to the train colliding the rail,
resulting in serious safety problems.

In the recent decades, researchers from all over the world have proposed a variety of mag-
netic levitation control algorithms and achieved certain results. MacLeod and Goodall (1996)
combined the FDW (frequency domain weighting) method and the LQR levitation controller
to improve the ability to restrain the influence from the rail irregularity. Sinha et al. (1993)
and Sinha and Pechev (1999) presented a model reference adaptive controller (MRAC) with to
deal with the parameters change and nonlinearity. The airgap error was optimized by utilizing
an evaluation function. Sun et al. (2019) designed an adaptive Neural-Fuzzy Robust Controller
with sliding mode control and a neural-fuzzy switching law, which could suppress the influence
of the external interference and with smooth control inputs. Li et al. (2015) presented a lev-
itation control law with a virtual energy harvester to remove the unexpected oscillation for a
maglev vehicle and a track when the train is standing still on the track. Morales et al. (2011)
combined precise linearization with output feedback control to propose a GPI controller, which
was based on a fast online algebraic parameter estimation. Experimental results were included
to show the effectiveness of the tracking control. Sun et al. (2019) presented a maglev train-
-track couping dynamic model with a flexible track and designed a feedback controller based on
fuzzy logic system to remove the vehicle-rail coupling vibration. Additionally, with the rise of AI
(artificial intelligence), many intelligent control algorithms such as neural network (Wu et al.,
2008; Wai and Lee, 2008), genetic algorithm (Kusagawa et al., 2004), support vector machine
(Liu and Rong, 2015), Monte Carlo simulation (Zhang et al., 2013) and so on, have begun to
explore in the field of magnetic levitation systems. However, these control algorithms cannot
strictly prove the stability of the whole system with a feedback controller theoretically. Only
simulation or experiment results can be utilized to show their partial performance. Unfortu-
nately, when the magnetic levitation system parameters perturb greatly, some rules of these
algorithms should be relearned or retuned, which brings great difficulties to engineering appli-
cations. Furthermore, in the actual operation of maglev trains, some system parameters cannot
be obtained accurately in advance, such as levitation mass, inductance, etc., which makes the
system modeling more difficult. Therefore, an excellent magnetic levitation control algorithm
needs to obtain an accurate dynamic model in advance and is able to carry out a strict stability
proof.

In this paper, the nonlinear mathematical model of the MLS of a maglev train is established
and analyzed firstly. The Gaussian process is used to get accurate parameter values of the model.
Then, the controller is proposed directly based on the nonlinear dynamic model without any
linearization. Finally, sufficient simulation and experimental results demonstrate the presented
method has superior dynamic performance and robustness.
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2. Dynamics development and analysis

The maglev train structure and a single magnetic levitation system can be illustrated in Figs. 2
and 3.

Fig. 2. Maglev train structure

Fig. 3. Single magnetic levitation system (MLS)

Based on the Maxwell equations and the Biot-Savart theorem (Sun et al., 2020), the con-
ventional dynamic system equations of the maglev train levitation system can be obtained as
follows (Sun et al., 2019)

m
d2xm(t)

dt2
= −µ0AmN

2
m

4

( im(t)

xm(t)

)2
+mg + fd

dim(t)

dt
=
im(t)

xm(t)

dxm(t)

dt
+
2xm(t)

µ0N2mAm
[um(t)− im(t)Rm]

(2.1)

where xm(t) is the airgap between electromagnet and track beam, Am is the effective magnetic
pole area, µ0 is the magnetic permeability of the air, fd is the external interference force.
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Convert it to a state space expression. The system status parameters selected here are
x1(t) = xm(t), x2(t) = ẋm(t) and x3(t) = im(t). Then the state space expression of (2.1)
is

ẋ1(t) = x2(t)

ẋ2(t) = −
µ0AmN

2
m

4m

(x3(t)

x1(t)

)2
+ g +

1

m
fd

ẋ3(t) =
x2(t)x3(t)

x1(t)
+
2x1(t)

µ0N2mAm
[um(t)− x3(t)Rm]

(2.2)

Assumption 1: Maglev trains will change the mass of the levitation when passengers get on and
off, assume that the main parameters of the system m are perturbed, which is m−mmin ¬
∆m ¬ m−mmax.

Assumption 2: External disturbance terms are observable and bounded, there is a known
positive number D, making fd/m ¬ D.

Definition 1: For nonlinear systems

ẋ = f(x) x ∈ Rn (2.3)

The system that linearizes at the equilibrium point is

ẋ = A(x0)(x− x0) x ∈ Rn (2.4)

where x0 is an isolated singularity of nonlinear system (2.3). If the real part of all the
eigenvalues of A(x0) is non-zero, then x0 is the double singular point of equation (2.3).

The equivalent system of nonlinear system (2.3) is

ẋ = A(x0)(x− x0) +O(x− x0) x ∈ Rn (2.5)

Theorem 1 (Hartman-Grobman theorem): If x0 is a double-curve point of nonlinear system
(2.2), and the conditions are met

lim
x→x0

(O(x− x0)
|x− x0|

)

= 0 (2.6)

then they have the same topology in nonlinear system (2.3) at the isolated singularity x0
and linearized system at its equilibrium point (2.5).

According to Theorem 1, the linear magnetic analysis method can be used to analyze char-
acteristics of the nonlinear MLS, and the accuracy of the analysis results can be ensured with a
certain precision.
Next, solve the equilibrium point of the nonlinear MLS, that is, the system singularity, which

must satisfy ẋ = (ẋ1, ẋ2, ẋ3)
T = 0, so the system equilibrium point x0 = (xref , ẋref , iref ), the

singular point of the nonlinear system can be calculated as

x0 = (xref , ẋref , iref ) = (xref , 0,
√
κxref ) κ

∆
=
4mg

µ0
N2mAm (2.7)

The equilibrium point of the magnetic levitation system is the double singularity of the
system. Therefore, the stability of the MLS near the equilibrium point can be studied by the
linearized system.
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Through linearization operator (2.8) of the system, the Jacobian matrix of the system can
be calculated

Df(x0) =















∂f1
∂y1
(x0) · · ·

∂f1
∂yn
(x0)

...
. . .

...
∂fn
∂y1
(x0) · · ·

∂fn
∂yn
(x0)















(2.8)

In order to make the symbolic expression concise, the current coefficient Pi, the airgap
coefficient Px and the electromagnet inductance Lref at the equilibrium point are introduced,
respectively

Pi =
µ0N

2
mAmiref
2x2ref

Px =
µ0N

2
mAmi

2
ref

2x3ref
Lref =

µ0N
2
mAm
2xref

(2.9)

System (2.2) is linearized near the equilibrium point, and the coefficient matrix is got as
follows

A0 =













0 1 0
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0 −Pi
m

0
Pi
Lref

− Rm
Lref
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0
0
1

Lref









(2.10)

and the output matrix C = [1 0 0].

Then, at the equilibrium point, magnetic levitation system (2.2) can be expressed as

ẋ = A0(x0)(x− x0) +A1(um − u0) +O(x− x0)n (2.11)

Ignoring the external disturbance of the system, equation (2.11) can be obtained by the
Laplace transform

(ms2 − Px)∆x(s) = −Pi∆i(s) ∆u(s) = (Rm + Lref s)∆i(s)− Pis∆x(s) (2.12)

By combining equations (2.12), the transfer function of the MLS can be written through simple
mathematical changes as follows

G(s) =
∆x(s)

∆u(s)
=

−Pi
Lrefms3 +Rmms2 + (P 2i − Lref Px)s−RmPx

(2.13)

Theorem 2 (Hurwitz stability criterion): If the characteristic equation of the system is

ans
n + an−1s

n−1 + · · · + a1s+ a0 = 0

Then, the necessary condition for the stability of the linear system is that the coefficients
of the characteristic polynomials are all positive, that is

an > 0 an−1 > 0 . . . a0 > 0

For transfer function of the MLS (2.13), obviously, in the characteristic polynomial, it can be
known from Theorem 2 that the system is unstable.
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3. Gaussian process regression modeling

It can be seen from the above dynamic equations that the levitation mass and the precision of
electromagnet parameters have an important influence on the accuracy of the model. However,
due to the change of mass and the complexity of electromagnet parameters, there is a certain
gap between the mass and electromagnet parameters obtained by the equivalent method and
the actual value. Therefore, there is a big gap between the general standard dynamic equations
and the actual system.
The Gaussian process is a nonparametric regression method based on probability (Quiñonero-

-Candela et al., 2005). Given the input X and output Y , the task of regression is to learn
a mapping relationship between the input and output, and use this mapping relationship to
predict the corresponding output of other inputs. Suppose that the mapping relationship be-
tween the input and output variables is y = f(x), and there are y1, . . . , yn ∼ N(0, Σ). Among
them, Σpq = Cov (yp, yq) = C(xp, xq) is the covariance between the outputs. Therefore, through
the average value µ(x) (usually 0) and covariance function C(xp, xq) one can completely de-
scribe the Gaussian process. Suppose an N -dimensional input vector x = [x1, x2, . . . , xn] and
N -dimensional output y = [y1, y2, . . . , yn]

T. Given these data, given a new input x∗, we hope
to get the corresponding predicted distribution of the output y∗. For the input x∗, the pre-
diction distribution of the corresponding output y∗ is y∗|x∗, (x,y), and satisfies the Gaussian
distribution

µ(x∗) = k(x∗)TK−1y ]σ2(x∗) = k(x∗)− k(x∗)TK−1k(x∗) + υ0 (3.1)

where k(x∗) = [C(x1,x∗), . . . , C(xN ,x∗)]T is the covariance vector between the training data
and the test data, and k(x∗) = C(x∗,x∗) is the covariance of the test data x∗ and itself. In this
way, the output corresponding to the new input can be predicted by the existing training data.
The airgap, change speed and acceleration of the airgap are selected as the input variables of the
regression model, and the output variables are the output of the controller. After the input and
output variables are obtained, the Gaussian process regression method can be used to estimate
the dynamic model. This paper uses the experimental data for training and testing, so as to get
more accurate electromagnet parameters and mass parameters information.

4. Controller design and analysis

The system errors of the first-level subsystem can be defined as follows

e1 = x1 − xd ė1 = ẋ1 − ẋd = x2 − ẋd (4.1)

where xd denotes the reference trajectory, e1 represents the error of the first-level subsystem.
According to the backstepping method, the virtual control input of the first-level subsystem

can be defined as u1,d(t), then we can get

ė1 = u1,d − ẋd + e2 (4.2)

where e2(t) denotes the auxiliary signal error

e2(t) = x2(t)− u1,d(t) (4.3)

According to the system error, u1,d(t) can be designed as follows

u1,d(t) = ẋd − c1e1 (4.4)

where c1 ∈ R+ denotes the control factor.



Gaussian process dynamic modeling and backstepping sliding mode control... 55

Substituting (4.4) into (4.2), we can obtain

ė1 = e2 − c1e1 (4.5)

For (4.5), it is easy to see that if e2(t)→ 0, then e1(t)→ 0. For this purpose, we can select the
Lyapunov candidate function as follows

V1 =
1

2
e21 (4.6)

It can be obtained by deriving from both sides of (4.6) as follows

V̇1 = e1ė1 = e1e2 − c1e21 (4.7)

In the design of the second-level subsystem, we should make e2(t)→ 0 as much as possible.
Taking time derivative on both sides of (4.3), we can obtain

ė2(t) = ẋ2(t)− u̇1,d(t) = g +
1

m
fd −

K

mx21
i2m − ẍd + c1ė1 (4.8)

where K = (µ0AmN
2
m)/4; im represents the control current.

According to the sliding mode control (SMC) theory, the sliding surface is presented as below

s = e2 = x2 − ẋd + c1e1 (4.9)

For the next-level subsystem, a novel Lyapunov candidate function is constructed as follows

V2 = V1 +
1

2
e22 =

1

2
e21 +
1

2
e22 (4.10)

Taking time derivative on both sides of (4.10), we can obtain

V̇2 = V̇1 + e2ė2 = e1e2 − c1e21 + e2
(

g +
1

m
fd −

K

mx21
i2m − ẍd + c1ė1

)

(4.11)

To guarantee V̇2 ¬ 0, the proposed controller is designed as follows

i2m =
mx21
K
[g − ẍd + e1 + c1ė1 + c2e2 + η sgn (e2)] (4.12)

where c2 > 0, η  D and

V̇2 =
fd
m
e2 − ηe2 sgn (e2)− c1e21 − c2e22 ¬ −c1e21 − c2e22 − (η −D)|e2| ¬ −c1e21 − c2e22 (4.13)

where c2 > 0, η  D.
The proof of stability is as follows

V̇2 ¬ −c1e21 − c2e22 ¬ 0 (4.14)

Because if V̇ = −ηV , that is V −1dV = −ηdt, the integral is
∫ t
0 V
−1 dV = −

∫ t
0 dt.

Then, lnV
∣

∣

∣

t

0
= −ηt.

Thus the form of exponential convergence V (t) = V (0)e−ηt is obtained.
Decompose V2 = (e

2
1 + e

2
2)/2, and easy to get e1 and e2 are exponentially convergent, when

t → ∞, e1 → 0 and e2 → 0. That is limt→∞ x1 = xd, and since e2 = x2 + c1e1 − ẋd, then
limt→∞ x2 = ẋd.
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In order to avoid or weaken the chattering phenomenon in SMC, we utilize a function sat(·)
with the boundary layer to replace sgn (·), which can guarantee that the proposed controller
(4.12) can be activated outside the boundary layer, and within the boundary layer, the contin-
uous controller is activated

sat(S) =







S

φ0
for |S| ¬ φ0

sgn (S) for |S| > φ0
(4.15)

Finally, the proposed controller is designed as follows

i2m =
mx21
K
[g − ẍd + c1ė1 + c2e2 + ηsat(e2) + e1] (4.16)

5. Numerical simulation

The parameters of the MLS can be obtained through the Gaussian process method shown in
Table 1.

Table 1. Parameter values of the MLS

Parameters Value Parameters Value

Mass [m/kg] 750 µ0 [Hm
−1] 4π · 10−7

Number of coil turns Nm 450 Reference airgap xref [m] 0.008

Area of coil Am [m
2] 0.024 Initial airgap x0 [m] 0.016

Coil resistance Rm [Ω] 1.2

The control parameters c1, c2 and η of the proposed controller are tuned sufficiently to obtain
the best performance, which yields the following values: c1 = 6, c2 = 10.5, η = 1.5. In order to
verify the superiority of the proposed controller, we compare the proposed controller with the
PID and fuzzy PID controller (Carvajal et al., 2020). The stability region of the PID controller
for the MLS of maglev trains is very small. The trial-and-error method is used to determine the
best control parameters of the PID, which are: P = 70000, I = 2000, D = 9000. Subsequently,
we verify the performance of the proposed controller, PID controller and fuzzy PID under the
following three cases:

• Case 1. Static levitation without disturbances and parameter perturbations.
• Case 2. External disturbance, shown in Fig. 7, applied to the system.
• Case 3. Parameter perturbations included. For the maglev train, the mass always changes
when passengers pick-up and drop-off. So a change in the levitated mass m is mainly
considered.

Case 1. Track of the desired position without external disturbances

The simulation results of the proposed controller, PID and fuzzy PID controller are illustrated
in Figs. 4 and 5.
It can be seen from Figs. 4 and 5 that under the action of the PID controller, there is a static

error of 0.25mm and 0.18mm for the fuzzy PID. The maximum control circuit of the PID and
fuzzy PID reached 200A, which far exceeded the current limit of 70A. The control current has
fluctuations, which is related to the excessive gain. However, a small gain will cause the system
to be unstable. The essential reason is that the MSL is a highly nonlinear system, and the PID
or fuzzy PID are controllers based on linearization theory, which easily fails when applied to a
nonlinear MLS. Additionally, the proposed controller is a nonlinear controller, which has not
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Fig. 4. (a) Airgap response in case 1, (b) control inputs in case 1

Fig. 5. Phase path with proposed controller in case 1

been linearized or simplified in the process of design, analysis and stability proof. The dynamic
response of the airgap is better, and there is no overshoot and steady state error. The current
maximum value is 55A, which is less than the system limit value of 70A. As shown in Fig. 5,
the phase path of the proposed controller is smooth, which basically realizes removal of the
oscillation of the control input.

Case 2. With the external disturbance

Discuss the dynamic performance of the PID, fuzzy PID and the proposed controller under
the disturbance. The external disturbance is shown in Fig. 6.

Fig. 6. Nonlinear external disturbance

The simulation results for the three controllers are shown in Fig. 7.
We can learn from Fig. 7 that the maximum error of the system with the PID controller

is 0.4mm and 0.2mm for the fuzzy PID, and the control currents all exceed the physical limit
of the actuator 70A. Under the action of the proposed controller, the maximum error of the
system is 0.029mm. Moreover, the control current is smoother than the PID or fuzzy PID.
In order to further verify the increased performance over PID controllers, the amplitude in

Fig. 6 is magnified three times with the frequency remain unchanged. The results of simulation
for the airgap response are shown in Fig. 8.
We can learn from Fig. 8a that when the disturbance is increased three times, the PID

controller cannot stabilize the system and the system is unstable. In the same situation, the
proposed controller can stabilize the system near the target trajectory with the maximum error
of ±0.25mm.
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Fig. 7. (a) Airgap response in case 2. (b) control inputs in case 2

Fig. 8. Airgap with (a) PID and (b) proposed method under triple disturbance

Case 3. Parameter perturbations

The mass is increased up to 1.2 times of the nominal mass, and the simulation results are
shown in Fig. 9.

Fig. 9. (a) Airgap response in case 3, (b) control inputs in case 3

It can be seen from Fig. 9 that when the parameter is perturbed, there is a static error of
0.4mm for the PID controller and 0.3mm for the fuzzy PID controller. The control currents of
these two controllers have some oscillations. The proposed controller is almost without a static
error and overshoot during the levitation process. Moreover, the control current of the proposed
controller is smooth and below the limit value of 70A.

In conclusion, the proposed controller designed by combining the backstepping method and
the quasi-sliding mode control method with a variable boundary layer is an effective control
method, which can satisfy the static and dynamic adjustment performance. The simulation
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results demonstrate that the proposed method has strong robustness to deal with the disturbance
and parameters perturbation without oscillation.

6. Experimental implementation and results

After simulation tests, much effort has been put to perform experiments to further evaluate the
performance of the proposed controller.

Since it is hard to build a full-scale maglev vehicle, a single magnetic levitation system of
a maglev vehicle is established as illustrated in Fig. 10. It consists of an electromagnet, car-
-body load (can change by adding iron plates), secondary suspension and the dSPACE control
system. The length of the electromagnet coil is 534mm. The suspension stiffness of the secondary
suspension is 60N/mm. The initial car-body load is 242 kg. The airgap is measured by an eddy
current sensor. The data recording frequency is 1 kHz.

Fig. 10. Single magnetic levitation system with dSPACE

The experimental results of the proposed controller without parameters perturbation are
provided in Fig. 11.

Fig. 11. Experimental results 1: (a) airgap, (b) current

It can be seen from Fig. 11 that the airgap response with the proposed controller can track the
target trajectory, which is stable by about 1 s, and the steady state error is 0. The experimental
current is relatively smooth, and the maximum current is 57A, which is less than the limit value
of 70A.

In the experimental device, the car-body mass is increased by adding iron plates. Adjusting
the mass to 1.3 times of the nominal mass, and at 1.5 s removing an iron plate (simulate passenger
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alighting) the mass is reduced to 1.1 times of the nominal mass. The dynamic response of the
airgap is shown in Fig. 12.

Fig. 12. Experimental results 2: (a) airgap, (b) current

It can be seen from Fig. 12a that when the mass becomes 1.3 times the nominal mass, the
suspension can be durably stabilized, and it is stable within about 1.3 s. The mass suddenly
decreases and the airgap changes, but it can be stabilized again within 0.5 s. The control current
is smooth during the whole process, and there is no violent oscillation. However, the traditional
PID leads to rail smashing and cannot be operated normally.
In practice, there are discontinuities in the magnetic track. We provided the experimental

results of the airgap response by applying an impulse disturbance of 4mm per second as shown
in Fig. 13a. In addition, for high speeds at which maglev and railway vehicles travel, there are
areas of the pass-band and stop-band of vibration due to wave propagation in the track (Shi et
al., 2014; Chudzikiewicz et al., 2018; Huang et al., 2017; Sheng and Li, 2007). The experimental
results of the MLS for tracking the periodic track irregularity is provided in Fig. 13b.

Fig. 13. Airgap with (a) impulse and (b) periodic disturbance

It can be seen from Fig. 13 that the proposed controller has the ability to deal with the
impulse disturbance and periodic track irregularity.
In summary, the proposed controller is suitable for practical application in the MLS of the

maglev train and can achieve excellent levitation control performances.

7. Conclusion

In this paper, a novel levitation controller based on the backstepping method and sliding mode
control is presented to cope with the external disturbances and mass parameter changes of the
MLS. However, in order to achieve accurate control, the maglev dynamic model needs to be added
into the control law. However, nonlinear factors will cause large modeling errors. The Gaussian
process method is utilized to overcome this problem. The proposed controller is designed by the
backstepping method and the proof of stability is provided. The simulation results show that
the proposed method can levitate the maglev train with more levitation accuracy, higher anti-
-disturbance and parameters uncertainty capacity. Finally, a single magnetic levitation system
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of the maglev vehicle is established. The experimental results demonstrate that the proposed
controller is suitable for practical application in the MLS of the maglev train and has the ability
to deal with an impulse disturbance and periodic track irregularity. However, for high speeds
at which maglev and railway vehicles travel, there are areas of the pass-band and stop-band of
vibration due to wave propagation in the track. Our future works will focus on the dynamic
performance of the MLS of the maglev train that is in motion with various track irregularity
excitations.
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