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This paper presents a method for simplified modeling of bearing nodes of a lathe spindle using
the finite element method. The proposed modeling methodology is based on the use of an
orthotropic material model, which is used to reflect the stiffness properties of the bearing,
both in the radial and axial directions. The modeling results have been experimentally
verified. This resulted in full agreement of the mode shapes, an average relative error of the
natural frequency values of 1.48% and high agreement of the receptance function.
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1. Introduction

Dynamic properties of spindles constitute one of the fundamental aspects considered when de-
signing machine tools (Xi et al., 2018; Ritou et al., 2018). They often have a decisive influence on
the functional characteristics of a processing machine (Hu et al., 2018). An incorrectly designed
spindle can result in a significant reduction in the productivity and accuracy of the machine
(Urbikain et al., 2016). Therefore, it becomes crucial to predict its dynamic properties already
at the machine tool design stage (Cao and Altintas, 2007). The way the bearing systems are
modeled has a significant influence on the accuracy of mapping the dynamic properties of the
spindles (Cao et al., 2018).

Cao and Altintas (2004) presented a methodology for modeling bearing systems of machine
tool spindles. The proposed methodology was based on the use of the Timoshenko beam model
to map the spindle dynamics. The bearing was modeled as a standard nonlinear finite element
based on the Jones bearing model (Jones, 1960), which included centrifugal force and gyroscopic
effects from the bearing roller elements. As a result, the developed model enabled a good mapping
of the dynamic properties of the real bearing, which was confirmed experimentally.

A similar approach was presented by Rantatalo et al. (2007). The authors presented a method
for analyzing transverse vibrations of a milling machine spindle using a finite element model.
To model the spindle, the authors used the Timoshenko beam model for rotating elements
presented in (Nelson, 1980). The bearing stiffness was determined according to (de Mul et al.,
1989), and then included in the matrix describing rotating elements. The modeling resulted in
differences of no more than 7% for the natural frequency values determined computationally
and experimentally.

Xi et al. (2019) presented a dynamic model of a spindle bearing system combining both
the angular contact ball bearing and floating displacement bearing with the consideration of
the spindle housing. In the proposed dynamic model, the dynamic bearing systems models
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were developed by a discrete element method with each bearing component having 6 degrees
of freedom. The spindle shaft including the tool holder and cutter was modeled by the finite
element method based on Timoshenko beam theory, and the spindle housing was modeled as a
rigid beam. The simulated dynamic responses were compared with the results measured in the
experiment in both time and frequency domains. Results showed that the simulated responses
agreed well with the experimentally measured responses.

Xu et al. (2020) presented a five-degrees-of-freedom model of angular contact ball bearings
and a complete high-speed dynamic model with a combination of spindle-holder-tool joints.
The authors analyzed the laws of bearing characteristic parameters changing with a pre-load
and bearing speed including the contact angle, normal contact force and axial deformation.
Influence of the high speed of angular contact ball bearings was introduced in the form of
bearing parameters. Furthermore, nonlinear dynamic responses and stability of the high-speed
spindle system at the bearing and tool point were studied.

Cao et al. (2019) presented an investigation of the error motion issue of a machine tool spindle.
The authors proposed a complete dynamic model of the spindle system. The roller bearings were
modeled using Gupta’s theory (Gupta, 1979), which includes i.a. cage interactions, roller skid
and skew, and geometrical imperfections of bearing raceways. The spindle shaft was discretized
using a rigid body element (Cao et al., 2016) to better couple with the bearing model. The
complete dynamic model was subjected to experimental verification showing a good agreement.

This paper presents the process of modeling the dynamic properties of a lathe spindle using
the finite element method. The main novelty presented in this paper is the methodology of
modeling roller bearings by using an orthotropic material model. The use of the orthotropic
material made it possible to accurately reproduce the stiffness properties of the bearings in
both radial and axial directions, as confirmed experimentally. Furthermore, using the Guyan
reduction method (Guyan, 1965), the influence of the rest of the lathe was included in the
spindle dynamics model.

The article is structured as follows: Section 2 presents the methodology of modeling roller
bearings using the orthotropic material. Section 3 contains an example of the application of
the developed methodology to predict dynamic properties of the lathe spindle and provides
a comparison of the modeling results with the experimental ones. A summary and the key
conclusion are included in Section 4.

2. Modeling of bearing nodes using an orthotropic material

A roller bearing is a component in which there are rolling elements between two bearing rings.
The inner ring (1) is rested on a shaft journal or other component. The outer ring (2) is also
fixed and positioned firmly in the housing or other supporting element. Rolling elements (3) are
placed between the rings and are in contact with their raceways, ensuring that the rings rotate
relative to each other. A schematic representation of the design of the roller bearings used in
the typical bearing nodes of the lathe spindle is shown in Fig. 1.

Depending on the direction of the load to be carried (axial, radial), rolling bearings are
characterized by different stiffness. This property became the basis for the idealization during
construction of the replacement bearing model.

Defining different stiffness values in three perpendicular directions is possible by using an
orthotropic material model. The strain-stress relationship of such a model for a three-dimensional
stress state thus takes the following form (Lempriere, 1968)
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Fig. 1. Schematic representation of the roller bearings used in the bearing nodes of the lathe spindle
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where: Gij – Kirchhoff’s modulus for the plane ij, εi – deformation state component describing
volumetric deformation in the direction i, γij – deformation state component describing form
deformation in the plane ij, σi – normal stresses in the direction i, τij – tangential stresses in
the plane ij, i, j – directions X, Y , Z.

The shear modulus for two perpendicular material directions can be approximated according
to the Saint-Venant equation (Saint-Venant, 1863)

Gij =
( 1

Ei
+
1 + 2νji
Ej

)−1
(2.2)

where νji – Poisson’s ratio for deformation in the direction of axis j under load acting in the
direction of axis i.

In addition, the following assumptions were made regarding the construction and mounting
method of the modeled bearings: the bearings are pre-loaded – there is no clearance in the
bearings, the loads acting on the bearing do not cause plastic deformation; the system is not
affected by a kinematic load (associated with inaccurate mounting of the bearing); there are no
errors associated with the geometry of the balls in the system (the balls are perfectly spherical
and have the same diameter); the stiffness of the bearings does not depend on the position of the
balls. The necessary calculations were carried out in accordance with (Guay and Frikha, 2015).

Based on the assumptions made, a methodology for modeling the bearings using finite ele-
ments was proposed. The procedure for determining the values defining the orthotropic model
is shown schematically in Fig. 2.

In the first step, a finite element model was built in the form of a toroid with a rectangular
cross-section to represent dimensions of the bearing block under consideration. The discretization
was performed using six-sided, eight-node isoparametric finite elements. In defining the finite
element properties, an isotropic material model was assumed, whose properties were defined in
relation to the local coordinate systems of the individual finite elements. For the purposes of
this considerations, the material properties for steel were assumed, i.e.

Eiso = 210 000MPa νiso = 0.28 (2.3)
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Fig. 2. Schematic representation of the bearing modeling procedure using an
orthotropic material model

Further, boundary conditions were defined for the developed model to approximate its interaction
with other machine components. The model was then loaded with a unit force of F = [1, 0, 1].
The method of applying the force and boundary conditions for the bearing node model is shown
in Fig. 3.

Fig. 3. Process of bearing node discretization: where: Do – bearing node outer diameter, Di – bearing
node inner diameter, b – bearing node length

In the next step, the displacement vector qiso resulting from the applied unit force was
determined. Stress values were then determined for the selected isolated finite element. The
element was selected so that it had no defined boundary conditions in the form of single point
or multipoint constraints, as shown in Fig. 4.
For an isolated finite element, it can be written as follows

ε
e
iso = Bq

e
iso (2.4)

σ
e
iso = Disoε

e
iso (2.5)
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Fig. 4. Isolated finite element

where: B – shape functions matrix;Diso – isotropic material property matrix; ε
e
iso – strain vector

for the isotropic element; σeiso – stress vector for the isotropic element, q
e
iso – displacement vector

of an isolated finite element, defined as

qeiso = [u1, v1, w1, u2, v2, w2, u3, v3, w3, u4, v4, w4, u5, v5, w5, u6, v6, w6, u7, v7, w7, u8, v8, w8]
T

(2.6)

Further, it is assumed that the isotropic model built is characterized by the same stress
state as the target orthotropic model; only the strains change. According to this assumption, a
correction coefficient r which proportionally modifies the stiffnesses at the corresponding degrees
of freedom of the isolated finite element can be determined. Dividing the vector qeiso into its
component vectors containing radial r, axial a and tangential t degrees of freedom can be
written as

qeaiso = [v1, v2, v3, v4, v5, v6, v7, v8]
T qeriso = [u1, u2, u3, u4, u5, u6, u7, u8]

T

qetiso = [w1, w2, w3, w4, w5, w6, w7, w8]
T

(2.7)

This modification is performed as follows

qeaort = raq
ea
iso qerort = rrq

er
iso qetort = rtq

et
iso (2.8)

where: ra – axial correction coefficient (axial displacement ratio); rr – radial correction coefficient
(radial displacement ratio); rt – correction coefficient. Coefficients ra and rr are determined from
the following relationship

ra =
uareal
uaiso

rr =
urreal
uriso

(2.9)

where: uareal – axial displacement of the actual bearing node; u
r
real – radial displacement of the

actual bearing node. The displacement values uareal and u
r
real caused by the unit forces can be

determined from the axial kareal and radial k
r
real stiffness values

uareal =
1

kareal
urreal =

1

krreal
(2.10)
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The values kareal and k
r
real can be determined experimentally or, for example, using data from the

manufacturer’s catalogue. According to (Cao and Altintas, 2004) and (Rantatalo et al., 2007)
at the spindle speed lower than 5 000 rpm, the changing the stiffness of the spindle bearings in
relation to the spindle at rest is negligible. In the case of the lathe in question, the upper spindle
speed limit is 5 000 rpm.
It should be noted that the model developed does not allow representation of the free rotation

of the bearing block relative to its axis. Attempting to represent free rotation results in singularity
of the stiffness matrix of the bearing block model. Accordingly, for the purposes of further
analysis, the following was assumed

rt = rr (2.11)

The values of axial uaiso and radial u
r
iso displacements caused by the unit force F are components

of the vector qiso, and describe the displacements at the point of application of the unit force
in the toroidal model (Fig. 3).
Then, the deformation vector for the isolated finite element was determined according to the

relationship

ε
e
ort = Bq

e
ort (2.12)

In the next step, the orthotropic matrix Dort corresponding to the stiffness of the isolated
orthotropic element is determined, this matrix is determined from the relationship

ε
e
ort = D

−1
ortσ

e
iso (2.13)

This is tantamount to determining the quantities defining the orthotropic material property
matrix i.e., Ex, Ey, Ez, νxy, νyz, νzx, which should then be assigned to the toroid model.
Based on the defined procedure (Fig. 2), the models of bearing nodes used in lathe spindles

were built. The comparison of the accuracy of mapping of the stiffness in the axial and tangential
directions determined for the selected bearing nodes supplemented with relative errors values
is shown in Table 1. The designations next to the bearing catalog number in Table 1 mean
the bearing contact angle, and so designation A5 means that the contact angle is 25◦ and
designation C the contact angle is 15◦.

Table 1. Comparison of the accuracy of mapping of the stiffness in the radial and axial directions
determined for selected bearings

Bearing
compo-
nent

Bearing
arrange-
ment

Bearing
kareal
[N/µm]

krreal
[N/µm]

kareal
krreal

kaort
[N/µm]

krort
[N/µm]

δa δr
node

dimensions
[mm]

7913A5
7913C

Do = ∅90 233.0
104.00

466.00
520.00

2
5
232.96
105.58

466.91
566.15

0.02%
1.52%

0.02%
5.84%

DB Di = ∅65
b = 26

7020A5
7020C

Do = ∅150 617.00
276.76

1287.00
1439.90

2.09
5.2

616.94
275.86

1286.91
1348.64

0.01%
0.32%

0.01%
6.33%

DBD Di = ∅100
b = 84

7222A5
7222C

Do = ∅200 1065.00
337.41

2217.60
1755.50

2.09
5.2

1065.38
340.11

1117.39
1722.47

0.02%
0.79%

0.01%
1.89%

DBD Di = ∅110
b = 124

When analyzing the modeling results presented in Table 1, it can be noticed that thanks to
the proposed modeling procedure it is possible to achieve high accuracy of mapping the radial
and axial stiffness of the bearings.
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The proposed method allows for an accurate representation of the stiffness properties of bear-
ing nodes, regardless of their overall dimensions. Moreover, it is possible to accurately reproduce
these properties independently of the bearing arrangement.
However, when analyzing the obtained results, it can be noticed that in the case of bearings

with a smaller contact angle (type C), and thus a larger ratio kareal/k
r
real, the accuracy of the

mapping decreases, especially in the case of radial stiffness. It is related to the procedure of
determining the parameters of the orthotropic material itself and it concerns the stage of analysis
of an isolated finite element. It should be noted that when determining the correction coefficients
rr and ra, the volumetric and shear strains of the isolated element are considered, and the latter
affect the deterioration of the accuracy of the radial stiffness representation. To be precise,
the axial stiffness of the bearing node model is similarly determined by both the volumetric and
shear components, but in the case of radial stiffness, the shear component is much less important.
Since the proposed procedure for determining the parameters of the orthotropic material equally
considers the volume and shear strains, it favors the bearings with a lower kareal/k

r
real ratio.

3. Predicting dynamics of a lathe spindle

3.1. Lathe spindle under analysis

The procedure for modeling the bearing nodes is presented on the example of the spindle
of TAE35N rope thread lathe manufactured by AFM DEFUM. A graphical visualization of the
spindle under consideration with the bearing nodes under further analysis marked is shown in
Fig. 5.

Fig. 5. The lathe spindle under consideration with the bearing node marked
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The front bearing node A is a locating node operating in the DBD configuration. The
node consists of three NSK super-precision angular contact bearings with designation 7020A5
TRDUDMP3 and two spacer rings. The bearings used are characterized by the ability to carry
loads in both radial and axial directions. In addition, they provide the possibility of achieving a
pre-load in class M (Middle).
The rear bearing node B is a floating node consisting of a double-row roller bearing manu-

factured by NSK, with designation NN3019TB KRE44CC0P4. The bearing used is only capable
of supporting radial loads.

3.2. Bearing nodes models

Based on the proposed modeling method, the orthotropic material properties were defined
(Table 2), and the finite element models of the bearing nodes were built (using Midas NFX
software). The MAT12 with the local material properties definition model for spatial finite
elements was used to map the orthotropic material properties. This coordinate system ensures
reduction of the impact of receiving DOF, in the form of rotation of the spindle in relation to
the entire headstock.

Table 2. Material property values for orthotropic bearing block models

Property Node A Node B

Ex 1120MPa 7960MPa

Ey 190MPa 630MPa

Ez 2290MPa 190 000MPa

νyx 0.21 0.02

νzy 0.21 1.33

νxz 0.21 0.05

νxy 1.24 0.30

νyz 0.07 0.05

νzx 0.43 1.33

Fig. 6. Developed discrete models of bearing nodes

The discretization was carried out using a structured mesh constructed from six-sided eight-
-node isoparametric CHEXA finite elements with linear shape functions. In summary, the de-
veloped bearing node A model consisted of 15 400 finite elements and 63 306 degrees of freedom,
while the bearing node B model consisted of 4800 finite elements and 25 926 degrees of freedom.
Discrete models of the analyzed bearing blocks are shown in Fig. 6.
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It should be noted that in the case of the bearing node B, the bearing used does not carry
loads in the axial direction, so its finite element model consists of a set of two meshes (blue and
red) that can move freely relative to each other in the axial direction. Free movement is ensured
by means of surface-to-surface contact of the bidirectional sliding type.

3.3. Finite element model of a lathe spindle

The developed bearing block models were used to model the lathe spindle described in
Section 3.1. The discretization of other parts of the spindle under consideration was carried
out by using six-sided eight-node isoparametric CHEXA finite elements and five sided six-node
isoparametric CPENTA finite elements.
To describe the damping properties of the modeled machine tool, a structural damping model

was used (Neumark, 1962), according to which the damping matrix C can be expressed as

C = jηK (3.1)

where: K – finite element model stiffness matrix; η – loss factor; j – imaginary unit.
In addition, the spindle model includes the workpiece, which is a steel shaft with diameter

of 40mm, and length of 125mm, with 60mm overhang from the lathe holder.
The lathe spindle does not exist as an independent, isolated component. On the other hand,

modeling the entire lathe seems to unnecessarily increase the dimensionality of the model. It
was therefore decided to use the Guyan reduction method (Guyan, 1965) to reduce the model
of the entire lathe to a set of springs, to which the spindle was then attached.
The purpose of model reduction is to find and m degrees of freedom (DOFs) system preserv-

ing the dynamic characteristics of the full model with n DOFs, in which m≪ n. The commonly
used approach is to approximate the state vector by means of the transformation q = TqR,
where T ∈ R

n×m and qR ∈ R
m×1

MR(̈q)R +KRqR = fR (3.2)

where the reduced mass MR and stiffness KR matrices are

MR = T
TMT KR = T

TKT (3.3)

The Guyan reduction consists in reducing the degrees of freedom of the finite element model to
degrees of freedom located on the border of the model (master DOFs). The reduction is made
by removing slave degrees of freedom defined as being outside the model boundary while master
DOFs retain the stiffness and inertia of the model. Partitioning of the state vector in the master
and slave DOFs allows are to divide the system matrices into submatrices as follows
[

Mmm Mms
Msm Mss

] [

q̈m
q̈s

] [

Kmm Kms
Ksm Kss

] [

qm
qs

]

=

[

fm
fs

]

(3.4)

where: qm – master degrees of freedom, qs – slave degrees of freedom.
Solving the second row in Eq. (3.4) for qs results in

qs = −K
−1
ss [Msmq̈m +Mssq̈s +Ksmqm] (3.5)

assuming that there are no loads acting on the slave degrees of freedom (fs = 0) and neglecting
the inertia terms, results in the transformation of the state vector for Guyan reduction
[

qm
qs

]

=

[

I

−K−1ss Ksm

]

qm = Tqm (3.6)

where T is the Guyan transformation matrix used to obtain the reduced system matrices.
In summary, the model developed including the component models of the bearing nodes and

the workpiece consisted of 157 531 elements and had 474 501 degrees of freedom. The complete
finite element model of the spindle is shown in Fig, 7.
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Fig. 7. Discrete model of the lathe spindle under consideration

3.4. Experimental verification

To verify the accuracy of the finite element model of the lathe spindle and the developed
methodology for modeling the bearing nodes, an experimental modal analysis in the form of an
impulse test was carried out.

An experimental modal analysis was carried out for the entire lathe. The excitation was
performed using a PCB 086C05 modal hammer, the machine tool was excited at the end of
the workpiece successively in three mutually perpendicular directions (corresponding to the
coordinate system adopted at the spindle modeling stage). Responses to a given excitation were
measured at 31 points with the application of PCB 356A01 triaxial piezoelectric accelerometers.
The layout measurement points is presented in Fig. 8.

Fig. 8. Measurement points layout

Measurement data acquisition was conducted using Scadas Mobile Vibco and Testlab 2019.1
software. The estimation of the frequency response function was performed with the use of H1
estimator. Other information on the processing of the recorded signals is provided in Table 3.

As a result, 279 frequency response functions were determined, based on which the param-
eters of the modal model were estimated (i.e., values of natural frequencies and corresponding
mode shapes). The estimation process was carried out using a stabilization diagram and the
Polymax algorithm (Peeters et al., 2004).

In the next step, the experimental modal model was validated. This process was based on the
analysis of the MAC criterion, which determines the orthogonality of the vibration form vectors.
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Table 3. Parameters of signal acquisition

Parameter Value

Sampling rate 4096Hz

Frequency resolution 0.5Hz

Signal acquisition time 2 s

Number of averages 10

Scaling of frequency response function global

This was done by eliminating interdependent vibration form vectors (a limit value of 10% was
assumed) (Allemang, 2003).

A comparison of natural frequency values determined experimentally and computationally,
supplemented with relative error values, is given in Table 4, while a comparison of selected mode
shapes is shown in Fig. 9.

Table 4. Comparison of experimentally and computationally determined natural frequencies

Mode Natural frequency [Hz] Relative error
shape FEM model Experiment δ [%]

1 136.75 134.02 2.04

2 157.23 160.30 1.91

3 227.59 221.95 2.54

4 285.15 284.32 0.29

5 395.27 389.85 1.39

6 402.13 399.41 0.68

On average 1.48

Fig. 9. Comparison of selected mode shapes determined computationally and experimentally

Comparing the computational model with the experimental values of natural frequencies
(Table 4), the relative error for different mode shapes did not exceed 2.54%, with an average
of 1.48%. In addition, it should be noted that the proposed spindle model shows an agreement
of the mode shapes.

Moreover, sensitivity analysis of the mode shapes to the bearing nodes stiffness was per-
formed. It consisted in changing the bearing preload of the node A resulting in a stiffness change
– Table 5.

Performed analysis showed that the first four modes are almost independent to the bearing
stiffness change (natural frequencies changes did not exceed 2.34%). However, higher modes
switched order, i.e., the fifth mode of the extra light preload model corresponds to the sixth
mode of the middle preload model. Thus, it can be stated that the bearing stiffness has a
significant influence on spindle dynamics.
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Fig. 10. Comparison of the receptance functions determined computationally and experimentally
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Table 5. Comparison of experimentally and computationally determined natural frequencies

Preload level ka [[N/µm] kr [[N/µm]

Middle 617.00 1287.00

Extra light 348.00 724.00

To prove the accuracy of the model not only for the natural frequencies but also in terms
of the frequency response function agreement, a comparison was made between the receptance
functions determined computationally and experimentally at the end of the workpiece. A com-
parison of selected receptance functions is provided in Fig. 10.

When analyzing the amplitudes of the receptance functions, one can see their high agree-
ment. Of particular importance is the ability of the developed computational model to map
the amplitude of the dominant resonance in both the X and Y directions. This is extremely
important for the potential analysis of the stability of machining (Jasiewicz and Miądlicki, 2019;
Hung et al., 2013).

4. Conclusions

This paper presents a procedure for modeling rolling bearings, the utilitarian nature of which is
demonstrated through its application to the modeling of a lathe spindle. The developed modeling
methodology allowed accurate prediction of dynamic properties of the analyzed spindle. This
was confirmed experimentally by comparing values of the natural frequency, natural frequency
form and the receptance function.

The proposed methodology is distinguished by its simplicity of application in a finite ele-
ment model of a larger structure. Connections can be made using both selected contact and
node coincidence models, which can be particularly attractive for computational analysis using
reduction and substructuring methods.

In addition, its versatility has been demonstrated through modeling. More specifically, the
proposed modeling methodology can be used to model both single ball or roller bearings and
complex bearing blocks. In addition, the proposed methodology, using a two-part discrete model
coupled together using bidirectional sliding contact, enables mapping of the free movement of
the bearing in the axial direction.

A limitation of the modeling methodology used is the inability to represent the relative
rotational motion between the outer and inner bearing rings around the shaft axis. This is
directly related to the assumptions of the methodology and the use of an orthotropic material
model. Low natural frequencies related to rotation may be distorted, however there were no
disturbances in the conducted simulations in this study. Moreover, for bearings characterized by
small contact angles and, at the same time, high kareal/k

r
real ratio, the method is less accurate.
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