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The work presents dynamics of a system of two wheeled mobile robots cooperating in the
transport of large-size cargo in the form of a beam. The purpose of modeling of such a
system was to obtain a mathematical model in an applicable form. Lagrange equations of
the second type were used to describe dynamics, and then the projective method was used
to eliminate Lagrange multipliers. Thanks to this approach, unknown dry friction forces at
the contact points of robot wheels with the ground were eliminated from the description,
and dynamics in controllable coordinates was obtained. In addition, the obtained model
has structural properties that enable its use in synthesis of a control system based on the
mathematical model.
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1. Introduction

A robot formation is a team of robots used to jointly perform a certain task. Robot formations
are used where a given task is so complex or difficult that a single robot cannot perform it on
its own. Such situations occur mainly in the case of large-size transport.
The construction of dynamical models of cooperating robots transporting an object is a

current topic as evidenced by publications (Alipour et al., 2019). The paper (Abbaspour et
al., 2015) presents a model of a system of three mobile robots connected by means of rotary
joints to a large transported plate. The presented mathematical description using Newton Euler
equations was applied in synthesis of the control algorithm.
Solutions to increase the implementation of wheeled robots in large-volume transport also

include tractor-trailer systems. The tractor is an active unit containing drives and controls, while
the trailer is a passive component articulated to the tractor. In modelling dynamical tasks of
such non-holonomic systems, approaches are used both with the assumption of motion without
any slip (Burghardt et al., 2020) and with the consideration of lateral and longitudinal wheel
slip (Alipour et al., 2019).
The model solutions proposed in the article assume, similarly to the mathematical model

of a single non-holonomic mobile robot, the lack of drive wheel slips. The modelling principles
under such assumptions can be found in (Dhaouadi and Hatab, 2013; Yun and Sarkar, 1998). It
should be noted that the assumption of rolling without any slip. The slip occurring is so small
that it can be neglected when the velocities are small and there is sufficient friction between
the wheels and the ground. It is clear that at higher speeds and accelerations and on a rough
or slippery ground, the “pure rolling” assumption will not apply. There is a number of research
papers explaining the effects of driving wheel slip and including descriptions of control algorithms
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for such objects (Wang and Low, 2008). Some researchers treat the slip as a disturbance and
propose to compensate it using control algorithms (Yoo, 2012; Mohammadpour and Naraghi,
2011). Algorithms using elements of artificial intelligence such as fuzzy logic or artificial neural
networks (Hendzel et al., 2013, 2015; Szuster et al., 2014; Hoang and Kang, 2016) work very
well in this type of approach.
Mathematical models formulated for robot formations may serve for many purposes, such as

research, design or control. Solving problems related to dynamics involves searching for cause-
-and-effect relationships between the forces in action and the torques being the causes of mo-
tion. The mathematical models can be used in analyses of their properties, identification and
control.
This article presents a robot formation model that should be implementable for control pur-

poses. Frequently, robot systems are characterised by a high degree of complexity with respect
to movable components. Accounting for all of them significantly complicates calculations, nega-
tively impacts transparency of the model, and makes it more difficult to implement it in control
synthesis. In such situations, simplified models are used, which account only for such elements
that have a significant impact on how the system actually behaves. Analytical mechanics provides
for certain formalisms which can be used to describe dynamics of multi-agent non-holonomic sys-
tems. The formalisms that describe dynamics of non-holonomic systems, which are used most
often, include Lagrange’s equations, Maggi’s equations (Giergiel and Żylski, 2005), Appell’s
equation (Burghardt, 2010) and Kane’s equation (Tanner and Kyriakopoulos, 2001; Thanjavur
and Rajagopalan, 1997).
The assumptions for the mathematical model of the formation analysed is that two identical

wheeled robots are transporting a cylindrical object (a rod). Each robot consists of a frame
and two drive wheels. Other elements have been omitted, assuming that they have a negligible
impact on the dynamics of the whole system. This study aims at achieving a description of
dynamics within controllable coordinates, as it would be of value due to its implementability
in control synthesis. With such an aim, the study first uses Lagrange’s equation, and then uses
the projective method to convert the model so that it is described as a function of controllable
coordinates.

2. Kinematics of a formation of two robots transporting a bar

This Section considers a case where two robots, moving on a flat xy surface, are transporting
a bar. The assumption is that the bar is attached above points A1 and A2, i.e. to midpoints of
the line segments connecting the wheels (Fig. 1). The formation moves on a flat surface and the
wheels are not subject to longitudinal or lateral slips. For the description of kinematics, let the
generalised coordinate vector be q = [xM , yM , ϕ, β1, α11, α21, β2, α12, α22]T and the generalised
velocity vector q̇ = [ẋM , ẏM , ϕ̇, β̇1, α̇11, α̇21, β̇2, α̇12, α̇22]T. The physical sense of the respective
variables is as follows: xM , yM are coordinates of a characteristic point of the bar transported
within the xy system; ϕ – the angle of the bar rotation within the xy plane; β1, β2 – the angles
of rotation of the frames of robots 1 and 2; α11, α21 – the angles of rotation of the wheels of
robot 1; α12, α22 – the angles of rotation of the wheels of robot 2.
Given the geometry of the system, the kinematic equation is in a compact form of

J(q)q̇ = 0 (2.1)

where the Jacobian matrix is as follows
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Fig. 1. Diagram of a robot formation transporting a bar
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where r is the radius of the robots wheels and l1 is the distance between the midpoint of
the robot (point A) and the wheel. Out of 9 generalised coordinates, only four are control-
lable: the angle of rotation of the robot wheels, constituting a controllable coordinate vector
qN = [α11, α21, α12, α22]T, which can be used to express kinematic constraint equations.
The relationship between the generalised and controllable velocities q̇N = [α̇11, α̇21, α̇12, α̇22]T

is

q̇ = Dq̇N (2.3)
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where the matrix D is as follows

D =



































r cos β1
4

r cos β1
4

r cos β2
4

r cos β2
4

r sinβ1
4

r sinβ1
4

r sinβ2
4

r sinβ2
4

r
4l1

−

r
4l1

r
4l1

−

r
4l1

r
2l1

−

r
2l1

0 0
1 0 0 0
0 1 0 0
0 0 r

2l1
−

r
2l1

0 0 1 0
0 0 0 1



































(2.4)

Matrices J and D satisfy JD = 0, which allows us to remove the unknown dry friction forces
in the description of dynamics (Abbaspour et al., 2015).

3. Dynamics of a formation of two robots transporting a bar

This Section presents a description of dynamics of the robot formation using Lagrange’s equa-
tions of the second kind, which, in general notation, can be expressed as follows

d

dt

(∂E

∂q̇

)T
−

(∂E

∂q

)T
= Q+ JT(q)λ (3.1)

where E is kinetic energy of the system, Q is the generalised force vector, and λ is the La-
grange multiplier vector. The right-hand side of Lagrange’s equations is determined based on
the principle of virtual work.
Virtual work δL performed by the forces acting upon the robot formations is equal to the

sum of virtual work performed by the forces acting upon the components thereof

δL =
4
∑

i=1

Fṙ dt +
4
∑

j=1

Mα̇ dt (3.2)

The relationship in Eq. (3,2) takes into account the sum of virtual works performed within trans-
lational motion by the force vector F and the sum of virtual works performed by the torque
vector M. Vectors ṙ and α̇ are, respectively, the linear velocity vector of the respective com-
ponents of the robot formation and the angular velocity vector thereof in rotational movement.
External forces acting upon the system are shown in Fig. 2. Forces P are loads applied to the
relevant wheels, and forces T are forces of dry friction between the wheels and the surface in
the respective directions.
In the case analysed, the virtual work is

δL = (M11 −N11f11)δα11 + (M21 −N21f21)δα21 + (M12 −N12f12)δα12
+ (M22 −N22f22)δα22

(3.3)

where Mij is the torque driving the i-th wheel of the j-th robot, Nij is the pressure exerted on
the i-th wheel of the j-th robot, fij is the rolling friction factor of the i-th wheel of the j-th
robot, and δαij is the virtual displacement of the i-th wheel of the j-th robot. The virtual work
may also be expressed as

δL =
n
∑

k=1

Qkδqk (3.4)
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Fig. 2. Distribution of external forces acting upon the robot formation

where Qk is the k-generalised force, and qk is the k-generalised coordinate. Comparison of
Eq. (3.3) with Eq. (3.4), taking into account the generalised coordinate vector, gives us the
generalised force vector
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The Lagrange multiplier vector is expressed as

λ = [λ1, λ2, λ3, λ4, λ5]T (3.6)
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Taking into account the generalised force vector Q, the Jacobian matrix J and the Lagrange
multiplier vector λ, the right-hand side of Lagrange’s equations is expressed as

Q+ JT(q)λ =
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(3.7)

The Lagrange multipliers represent forces of dry friction present in the plane of contact of the
wheel with the surface. These values are not measurable. The analysis omits the resistance in
the movement between the bar transported and the robots.
For the left-hand side of Lagrange’s equations to be determined, it is necessary to calculate

kinetic energy of the robot formation. The total kinetic energy equals the sum of kinetic energies
of the robot respective components and the kinetic energy of the bar being transported. Within
the model, this amounts to the sum of kinetic energies of the bar transported, robot frames,
and the robot drive wheels. The kinetic energy of the support wheels and other components has
been omitted due to its negligible impact. Figure 3 shows the system components and reference
frames.

Fig. 3. Formation of two robots transporting a bar

The robot formation kinetic energy is given as the following relationship
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where m0 is mass of the bar being transported, m1 is mass of the robot, m11 is mass of the robot
wheel, I0z is the bar moment of inertia about the axis z intersecting the pointM , Iz1 is the robot
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moment of inertia about the axis going through its centre of mass, Iz11 is the wheel moment of
inertia about its rotation axis, Ix11 is the wheel moment of inertia about the vertical axis going
through its centre, l is the bar length, and, finally, l2 is the distance between the robot centre of
mass and the point A. Equation (3.8) is based on the fact that the robots are identical, and thus
it was assumed that m1 = m2, m11 = m21 = m12 = m22, Iz1 = Iz2, Iz11 = Iz21 = Iz12 = Iz22,
Ix11 = Ix21 = Ix12 = Ix22.
In matrix notation, the left-hand sides of Lagrange’s equations are

d

dt
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−
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whereM is the inertia matrix, and C(q, q̇)q̇ is the vector of centrifugal and Coriolis forces. The
inertia matrix is in the form of a symmetric matrix
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where

M11 = m0 + 2m1 + 4m11
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The matrix C(q, q̇) has the form of
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where a = [m1l2l sin(ϕ−β1)]/2, b = [m1l2l sin(ϕ−β2)]/2. Ultimately, the dynamics of the robot
formation in generalised coordinates is specified as

M(q)q̇ +C(q, q̇)q̇ = Q+ JT(q)λ (3.13)

The model is characterised by the fact that the matrix S = Ṁ − 2C is skew-symmetric, which
is a key property from the point of view of control synthesis of the system analysed with the use
of methods that implement mathematical models.

4. Dynamics of the robot formation in controllable coordinates

This Section deals with the conversion of description concerning dynamics of the robot formation
into description of dynamics in controllable coordinates. The transformation between generalised
velocities and controllable velocities is represented by Eq. (2.3). Based on this equation, the
following generalised acceleration has been drawn

q̈ = Dq̈N + Ḋq̇N (4.1)

By substituting Eqs. (2.3) and (4.1) into Eq. (3.13), we arrive at the equation (Blajer, 1998)

MDq̈N + (MḊ+CD)q̇N = Q+ JT(q)λ (4.2)

which, when multiplied on the left-hand side by DT, is expressed as

DTMDq̈N +DT(MḊ+CD)q̇N = DTQ+DTJT(q)λ (4.3)

By assuming DTMD =MN , DT(MḊ+CD) = CN and DTQ = QN , the equation concerning
the dynamics in controlled coordinates is finally expressed as

MN q̈N +CN q̇N = QN (4.4)

where DTJT = JD = 0. This way, the Lagrange multiplier vector λ, which contains variables
that cannot be measured, has been removed. A key feature of the model is the skew-symmetric
nature of the matrix SN = ṀN − 2CN . To prove this property, the matrix SN expressed as

SN = ṀN − 2CN =
d

dt
(DTMD)− 2DT(MḊ+CD) =

d

dt
(DT)MD+DTṀD

+DTMḊ− 2DT(MḊ+CD) = DT(Ṁ− 2C)D = DTSD
(4.5)

where the following property was used: d
dt
(DT)MD = DTMḊ. Multiplying the skew-symmetric

matrix S on the left-hand side by DT and on the right-hand side by D yields a skew-symmetric
matrix as a result. Therefore, the matrix SN is indeed skew-symmetrical.

5. Simulation

Simulations of the dynamics task were carried out in Matlab/Simulink using the work emulator
described in publications (Burghardt, 2008; Kurc et al., 2016). For the purpose of simulation
it was assumed that the M point of the transported beam moves along the track shown in
Fig. 4c with an assumed linear velocity as in Fig. 4a and an angular velocity as in Fig. 4b. It
was assumed that the waveforms describing the angular and linear velocity profiles are C2 class
functions.
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Fig. 4. (a) Velocity profile of the M point, (b) angular velocity of the transported beam, (c) generated
motion path of the M point, (d) initial setting of the robots and the beam in the emulator

Fig. 5. (a) Angular velocities of the robot driving wheels, (b) angular accelerations of the driving wheels

For the assumed trajectories and initial setting of the robots (Fig. 4d), the angular velocities
of the driving wheels, shown in Fig. 5a, and the angular accelerations of the driving wheels, shown
in Fig. 5b, were generated based on the kinematic relations described in works (Burghardt, 2010).

The obtained values of velocities and accelerations are the input parameters for simulation of
the correctness of solving the simple dynamics task described by dependency (4.4) where values
of elements of the M matrix, CN matrix and QN vector were calculated based on Section 3
and 4. As a result of the simulation, the time waveforms of the torques driving the wheels of
two mobile robots performing the task of transporting a beam along the track shown in Fig. 4c
were obtained. A view showing the shape of the robot formation in successive time intervals,
presented in Fig. 6b, was generated with the use of the robot work emulator. The frequency of
generating successive images by the emulator is 2Hz.

During the task, the mass of the transported solid was assumed as 10 kg. The appearance of
the task and the shape of the time waveforms of the driving torques confirm the correctness of
the dependence obtained in Section 4.
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Fig. 6. (a) The course of the transportation task, (b) solution of the inverse dynamics task

6. Conclusions

The study presents the model of dynamics of a robot formation transporting a certain load. The
model obtained accounts for the most significant phenomena related to the system motion. The
projective method allowed Lagrange multipliers to be removed from the description. The lack of
Lagrange multipliers and the skew-symmetrical nature of the matrix SN = ṀN−2CN makes the
model implementable in control synthesis using methods that implement mathematical models.
The mathematical description of the dynamics of the system of two robots transporting a

beam was simulated in Matlab/Simulink. The use of the author’s emulator of robot operation
allowed visualization of the system motion under simulation conditions. The obtained time
waveforms of the torques driving the wheels of the robots and the appearance of motion of the
robots during the simulation confirm the correctness of the obtained solutions.
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