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This work presents a numerical study on a natural convective flow in a cylindrical container
heated from below, cooled from above, and partially heated from the lateral wall. Mass,
momentum and energy equations were solved with a developed hybrid Fourier-finite volume
code and validated with the commercial software COMSOL Multiphysics for steady-state
solutions. The primary solutions correspond to steady-states Cm with azimuthal wavenum-
bers m. The results show mode competition between different states leading to many flow
solutions including steady axisymmetric, steady non-axisymmetric, time-dependent pulsat-
ing wave solutions, and other flow states with a variety of spatiotemporal symmetries.
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1. Introduction

Thermal instabilities in natural convection flows are a subject of great interest due to the role
that they play in many technological applications like crystal growth, processing of molten
metals, and liquid metal batteries (LMBs). For instance, Lappa (2005) reported instabilities of
liquid metal layers to model crystal growth processes. Son and Yi (2005) studied sources of flow
instabilities for melt in a large crucible. For energy storage devices, like LMBs, the Joule heating
generates convective motion in three layers of conducting fluids (low Prandtl number) segregated
by their differences in density and confined in a cylindrical vessel. In particular, this heating is
mostly localized in the center volume of the vessel occupied by a thin layer of a molten salt
electrolyte, which separates two metals in the liquid state. In the numerical work by Shen and
Zikanov (2016), it was found that convection is always present in small laboratory prototypes,
and it might become stronger in larger systems. In general, the appearance of hydrodynamic
instabilities leads to flows that may affect/improve the battery operation, depending on the flow
patterns. From the experimental point of view, the evidence of the positive effect of convection as
a mechanism of mixing in a single layer of a liquid metal (liquid metal electrode) was reported by
Kelley and Sadoway (2014), and it was confirmed in numerical simulations by Beltrán (2017).
The experimental setup used by Kelley and Sadoway (2014) enforces convection by using a
partially heated cylinder (heating from below and cooling the lateral and top walls).

In the literature, there has been a wide discussion about natural convection with partial
heating or partial active walls. Special attention was focused on two-dimensional square cavities
partially heated from below and from the sides (Hasnaoui et al., 1992). The majority of simu-
lations have been performed for various lengths, positions and inclinations of the heated source



624 J. Núñez et al.

(Nithyadevi et al., 2007; Ben-Cheikh et al., 2010; Al-Rashed et al., 2017; Varol et al., 2009).
Analysis of how different boundary conditions influence the thermal field and the effects in the
determination of the local and averaged heat transfer coefficients were also investigated (Padilla
et al., 2013). Results show that the Nusselt number increases with the increasing heater size
and the Rayleigh number (Cianfrini et al., 2013). Three-dimensional numerical studies reported
multiple states and bifurcations on natural convection in a rectangular cavity with partially
heated vertical walls (Gelfgat, 2017). The study of natural convection has been extended to
nanofluids (Nascimento et al., 2019). Correlation equations for the Nusselt number in terms
of the Rayleigh number, heated length, and volume fraction were reported in partially heated
cylindrical enclosures (Guestal et al., 2018).

On the other hand, the phenomena of symmetry breaking and transition to unsteady non-
-symmetric convection for fluids with a low Prandtl number are commonly found in electromag-
netic processing of materials and other applications. For instance, Bennacer et al. (2006) studied
numerically the symmetry breaking of the melt flow in a Bridgman configuration. It consists of
a cartesian domain filled with a liquid metal heated from below and cooled from above, and par-
tially heated from the lateral walls. They noticed that symmetry breaking firstly occurs in the
transverse plane and also that the heat transfer increases locally on the bottom and decreases
on the vertical active walls. Erenburg et al. (2003) investigated multiple states, stability, and
bifurcations of natural convection in a rectangular cavity with partially heated vertical walls.
The appearance of complicated multiplicity is explained by development of stably and unstably
stratified regions, where damping and Rayleigh-Bénard instability mechanisms compete with
the primary buoyancy force localized near the heated parts of the vertical boundaries.

Most studied cases involve symmetry breaking from a steady axisymmetric state to a rotating
wave (Lopez and Marques, 2009; Gutierrez-Castillo and Lopez, 2017). Besides, Núñez et al.
(2018) performed a numerical study dealing with the symmetry breaking of natural convection
in a cylindrical cavity heated from below and partially cooled from above. Nam and Yi (2010)
performed simulation of thermal fluctuation according to the melt height in a Czochralski growth
system for a cylindrical crucible. The thermal wave patterns exhibited transition behavior from
a 3-pole-wave pattern to a 6-pole-wave pattern when the melt height was decreased from 0.14
to 0.1m.

The present numerical study focuses on the effect of dimensionless parameters like the
Rayleigh and Prandtl numbers as well as the heater size and the aspect ratio on the natural
convective flow in a cylindrical container with a partially heated lateral wall. A hybrid Fourier-
-finite volume method is used to solve the governing equations (Núñez et al., 2012a) as well as
the commercial software COMSOL Multiphysics. Temperature distributions are presented and
the heat transfer rate is evaluated in terms of the Nusselt number. When the Rayleigh number
is varied, the onset of non-axisymmetric natural convection is studied based on a nonlinear nu-
merical instability analysis (Núñez et al., 2018). Apparently, and to the best of our knowledge,
such a detailed study has not been previously performed.

The paper is organized as follows. In Section 2, we describe the physical model under study.
In Section 3, we provide a brief description of the natural convection flow and the assumptions
under which our problem will be set, including all governing equations, boundary conditions,
and the numerical methodology. In Section 4, the numerical results are discussed. Finally, the
concluding remarks are given in Section 5.

2. Problem formulation

The schematic diagram of the system under consideration is shown in Fig. 1. It consists of a
cylindrical container heated from below and cooled from above, with a partially heated lateral
wall. To characterize the geometrical configuration, two relevant dimensionless parameters are
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used: the heater size γ = h/H, and the aspect ratio a = H/D; where h is the heated height
on the lateral wall, H and D are the height and the diameter of the cylinder, respectively. The
heater size is varied in the range of 0 ¬ γ ¬ 1, where zero corresponds to the whole adiabatic
lateral wall and γ > 0 resembles a configuration partially heated from the side. Moderate aspect
ratios, between 0.5 ¬ a ¬ 1.25, are selected to maintain a basic single roll flow configuration.
Cylinders out of this range, typically introduce new instabilities, which break the basic roll into
smaller ones (Lappa, 2010). These geometries are out of the scope of this work. Since this work is
motivated by the understanding of the underlying physics on natural convective flows commonly
encountered on several applications, the Prandtl numbers ranging from 0.001 to 6.67 are studied.

Fig. 1. Schematic diagram of the flow configuration. Red region (bottom wall and side wall up to
height h) has uniform temperature TH . Blue region (upper wall) has uniform temperature TC .

Remaining side wall (white region) is considered adiabatic

3. Governing equations

The flow in the cylindrical cavity described in the previous Section is governed by the coupled
Navier-Stokes (mass and momentum) and energy equations. The Boussinesq approximation is
considered. The set of conservation equations have been solved in its dimensionless form. The
scaling we have used was the most convenient for numerical solution (Núñez, 2012b) and in-
cluded the following characteristic quantities: the axial and radial coordinates are expressed in
terms of the height H and diameter D of the cylinder, respectively. The characteristic velocity uc
is the free-fall velocity, namely uc =

√
gβ∆Th where g is the gravity acceleration. The symbol

∆T = TH−TC denotes the characteristic temperature scale with TH and TC being the tempera-
tures of the lower and upper walls, respectively. The time scale is defined using the characteristic
velocity as h/uc. The governing equations are written in cylindrical coordinates (r, θ, z) as follows
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The operators are defined as
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where u = [ur, uθ, uz] is velocity, p is pressure, and T is temperature. Pr = ν/α is the Prandtl
number, and Ra = gβ(TH − TC)h3/(να) is the Rayleigh number.
For the given configuration, the upper wall has a uniform temperature TC . The bottom

wall and side wall up to the height h have a uniform temperature TH . The remaining side wall
is considered adiabatic. Therefore, thermal boundary conditions at the bottom (hot) and top
(cold) walls are given by

T =

{

1 at z = 0

0 at z = 1
(3.4)

The thermal boundary condition for the lateral wall plays a major role in the flow. For
the configuration with partial heating from the side, the following boundary conditions are
considered

T = 1 for 0 ¬ z < γ (3.5)

and

∂T

∂r
= 0 for γ ¬ z ¬ 1 (3.6)

For the velocity, the no-slip boundary condition is used

u = 0 on all walls (3.7)

The initial conditions are

u = 0 and T = 0.5 for t = 0 (3.8)

To evaluate the effect of convective flow on the heat transfer of our problem, the mean
Nusselt number is evaluated on the top surface S. It is defined as

Nu = − 1
S
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To quantify the relative influence of, and switching between, different modes, the kinetic energy
of the azimuthal Fourier modes is used. It is defined as

KEm =
1

2

z=1
∫
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r=re
∫

r=0

um · u∗mr dr dz (3.10)

where um is the Fourier mode of the velocity corresponding to the wavenumber m, and u
∗

m is
its complex conjugate.
The numerical procedure implemented to solve Eqs. (3.1), subjected to the boundary condi-

tions given by Eqs. (3.5)-(3.7), is described in the next Section.
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3.1. Numerical methodology

A numerical solution is obtained for the velocity and temperature fields with a hybrid Fourier-
-finite volume code (Núñez, 2012a). The Fourier method has the advantage of a high-order ap-
proximation for the partial derivatives in the angular direction and it guarantees the azimuthal
periodic boundary condition. By using the finite volume method in the r and z directions, dis-
continuous boundary conditions in those directions can be handled. The convective and diffusive
terms are calculated with a central difference scheme. The Euler method is used for the time
integration. The SIMPLEC algorithm (Patankar and Spalding, 1972) is applied for correction
of the velocity components and pressure. This algorithm is iterative and stops with a small
velocity divergence criterion, ǫ = 10−5. In general, this methodology is well suited for stability
and symmetry breaking analysis of viscous flows.

Given the lack of experimental measurements for the configuration addressed in this work,
the hybrid Fourier-finite volume code was validated with PIV experimental results reported
by Ramı́rez et al. (2020) for a cylindrical vessel heated from below and cooled from above. The
working fluid was water. This validation was done for the case with no lateral partial heating, by
fixing γ = 0. In Fig. 2a and 2b, experimental and numerical velocity fields for the r-z plane are
presented, respectively. In general, a single recirculation can be distinguished. Figure 2c shows
a comparison between experimental and numerical results for the velocity components (u, v,w)
along the diameter and for z = 0.5, where the higher velocity is expected. Continuous lines and
markers correspond to the numerical solution and experimental measurements, respectively. It
should be noted that these results are in good agreement when considering the corresponding
experimental uncertainty.

In addition to our code development, the COMSOL Multiphysics 5.5 software is also used
in the present study to look for steady-state solutions. This commercial software was also used
to model the experimental results previously presented, and a similar comparison (not shown)
was obtained.

Fig. 2. Velocity fields for θ = 0: (a) experimental measurements, (b) numerical results, (c) velocity
components (u, v, w) along the diameter and for z = 0.5. Continuous lines and markers correspond to

the numerical solution and experimental measurements, respectively
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For the considered flow (steady-state laminar flow under specified conditions), several pa-
rameters have been tested and variables logged to make a grid sensitivity study. In Table 1, four
different grids were explored, and the main results are presented for the Nu number and the
maximum axial velocity wmax with γ = 0.5, a = 1, and Ra = 10

4. In all cases, the dimensionless
variables exhibited low influence on the grid size.

Table 1. Grid sensitivity study for the Nusselt number and the maximum axial velocity

nθ × nr × nz Nu wmax

30× 30× 30 2.542 6.431 · 10−2
30× 40× 40 2.534 6.390 · 10−2
42× 60× 60 2.528 6.356 · 10−2
42× 60× 80 2.527 6.342 · 10−2

The results given in Table 1 show that a grid size of 42×60×60 satisfies the grid independence.
Under similar conditions in the COMSOL software, a Nu number of 2.522 was obtained, which
represents a difference of 0.2% when compared to our code. The comparison of all results allows
cross-validation of both models.

4. Results and discussion

The numerical solution for the heat transfer and the fluid flow in a system where the equations
and boundary conditions are invariant to arbitrary azimuthal rotations must preserve the ro-
tation invariance. For the numerical solution, at a moderate Ra number Ra < 103, the motion
consists of a steady axisymmetric flow; whereas, on increasing Ra, the flow undergoes throughout
a series of bifurcations. When a symmetry-breaking bifurcation occurs in the flow, new states
appear, and they have less symmetry and often more complicated dynamics (Crawford, 1991).
In the next Sections, we present the basic states and bifurcation analysis of the flow.

4.1. Basic states

Lateral partial heating introduces a new instability process in natural convection flows. To
get an insight, a comprehensive and systematic study is implemented to analyze the relative
importance of the dimensionless parameters. To show the results for different Fourier modes
solutions, the temperature field is reported at two mutually perpendicular planes for most of
the considered cases. The velocity field, which can be inferred from the temperature field, is
not presented to keep short the results presentation. In the following subsections, the effect of
different parameters is discussed independently.

4.1.1. Heater size

In this Section, we explore the effect of the heater size γ on the flow while maintaining
the other parameters constant, namely, Ra = 104, Pr = 6.67 and a = 1.0. Figure 3 shows the
temperature distributions and isotherms for γ = 0, 0.25, 0.5, 0.75, and 1.0, from the left to
right. The upper row is the plane at the angular orientation, θ = 0, and the lower row is a
perpendicular plane at θ = π/2. For γ = 0, 0.25, and 0.5, non-axisymmetric solutions C1 were
found; however, the behaviour changes when the heater size increases. For, γ = 0.75 and 1.0,
non-axisymmetric solutions become axisymmetric ones C0. It is observed that there is a smooth
transition from C1 to C0. The symmetry breaking bifurcation occurs for the critical heater size
value of γc = 0.727, obtained from the nonlinear stability analysis (Núñez and Beltrán, 2018).
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Fig. 3. Steady-state temperature distributions and isotherms at Ra = 104, Pr = 6.67, and a = 1.0. Top
row θ = 0 and lower row θ = π/2. From left to right γ = 0, 0.25, 0.5, 0.75, and 1.0, respectively

The results show that the Nu number increases as γ increases, see Fig. 4. It reaches values
in the range of 1.965 ¬ Nu ¬ 7.463. It should be noticed that near to γc, the Nusselt number
increases with a different slope.

Fig. 4. Nusselt number on the top wall as a function of the heater size, Ra = 104, Pr = 6.67,
and a = 1.0

4.1.2. Aspect ratio

Now, we turn our attention to analysis of the effect of the aspect ratio on the flow behavior
while keeping the remaining parameters constant: Ra = 104, Pr = 6.67, and γ = 0.5. The results
are presented in Fig. 5 for a = 0.5, 0.75, 1.0, and 1.25. As in the previous case, symmetry-
-breaking bifurcations are also observed. For the considered parameters, three solutions are
found to be steady non-axisymmetric C1. The smallest aspect ratio leads to an axisymmetric
configuration C0, as shown in Fig. 5. In particular, the flow is axisymmetric for a < ac = 0.669,
calculated by a nonlinear stability analysis (Núñez and Beltrán, 2018), and for a > ac the flow
is non-axisymmetric.

4.1.3. Working fluids

In previous Sections, we used a high Prandtl number value Pr = 6.67. However, in applica-
tions like steel production, crystal growth and LMBs, there are low Prandtl number fluid flows
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Fig. 5. Temperature distributions and isotherms for Ra = 104, Pr = 6.67, and γ = 0.5. Top row θ = 0
and lower row θ = π/2. From left to right a = 0.5, 0.75, 1.0, and 1.25, respectively

involved. Predicting the flow field for low Prandtl number fluids is difficult because the flow is
often in the transition range between conduction and convection dominated regimes (Grötzbach,
2013). The flow is also highly nonlinear because the inertial force dominates, and the viscous
effects are mainly confined to the very thin boundary layers (Mohamad and Viskanta, 1991).

Fig. 6. Temperature distributions and isotherms for Ra = 104, a = 1.0, and γ =0.5. Top row θ = 0 and
lower row θ = π/2. From left to right Pr = 0.001, 0.01, 0.7, and 6.67, respectively

Figure 6 shows variations of the flow due to changes in the Prandtl number. These com-
putations have been carried out for Ra = 104, a = 1.0, γ = 0.5, and considering Pr = 0.001,
0.01, 0.7, and 6.67. At low values of the Prandtl number, the results show that the temperature
field asymptotically approaches an axisymmetric steady-state. At this limit, the Nusselt number
reaches a value of around 1.619, see Fig. 7. Horanyi et al. (1999) reported correlations for the
calculation of the Nu number for some liquid metals as a function of the Ra number, for Mer-
cury (Pr = 0.025) they found that Nu = 0.147Ra0.257. Using the previous correlation, we obtain
Nu = 1.568, quite similar to the asymptotic value previously mentioned.
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Fig. 7. Nusselt number as a function of the Prandtl number, Ra = 104, a = 1.0, and γ = 0.5

4.2. Flow transitions and bifurcations

In this Section, we focus our attention on the analysis of nonlinear dynamics of the system
and bifurcations through a parametric study, assuming water as the working fluid, Pr = 6.67.
The Fourier modes solutions are presented in Fig. 8. In these figures, each point corresponds to a
numerical solution determined for the flow for a = 1.0 and (γ,Ra) values in the parametric space.
A total of 231 calculations for 0.25 ¬ γ ¬ 0.82 and 103 ¬ Ra < 5 · 105 have been performed, for
11 aspect ratios and 21 Rayleigh numbers, all equispaced.

Fig. 8. Fourier modes solutions for a = 1.0, Pr = 6.67, and (γ,Ra) values in the parametric space. Each
type of solution is identified with different symbols in the labels of the figure

An aspect ratio of a = 1.0 was considered to avoid high Fourier mode solutions. Moderate
Rayleigh numbers were considered because at higher values the flow leads to a strong modes
interaction, and the influence of one particular mode might be not identified. Extreme values
of the heater size (γ < 0.25 and γ > 0.82) are not considered in order to avoid thin thermal
boundary layers effects.
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For the smallest value of Ra = 103, convective motions are very slow, and the flow has a
steady axisymmetric solution C0. Major transitions are observed when increasing the Ra number.
Even though the system starts with an entirely symmetrical solution, any small perturbation in
the initial conditions will evolve into a non-axisymmetric solution. This situation is referred to as
symmetry-broken solutions, which means that the solution has less symmetry than the governing
equations. The main pattern observed when the axisymmetric flow is broken corresponds to
standing waves Cm, where the azimuthal wavenumber m depends on γ and Ra values. Over the
entire region, the numerical solution has a large transient state (LT), which reflects that several
solutions can coexist. There are some well-defined regions in the parametric space corresponding
to particular modes. Some solutions (like C3 and PW1,2 modes close to the middle of the map)
look isolated, however, they are unstable mode solutions. No attempt was made to show multiple
states at the same points in the parameter space that were found using other initial conditions.
Other types of flow dynamics that were found are limit cycles LC1 and LC2, and a double
Fourier mode solution H1,2. Several authors (Gutierrez-Castillo and Lopez, 2017) identified that
saddle-node and Hopf bifurcations were the mechanisms that generate such dynamics in the
system, resulting in different coexisting branches of three-dimensional solutions.

Fig. 9. (a) and (c) Kinetic energies KE as a function of time, obtaining pulsating waves C1 : C2 and
C1 : C2 : C3. (b) and (d) Phase portrait, of KE1 vs. KE2

For γ = 0.5 and Ra = 105, the flow has two switching mode solutions C1 and C2, such
that the oscillatory behavior can be distinguished when the flow kinetic energy is evaluated,
see Fig. 9a. This case is named as the pulsating wave PW1,2, where the subindex refers to the
involved Fourier modes. The trajectory in the phase portrait for PW1,2 closes on itself, it is
nearly an elongated ellipse which indicates that the solution switches only from C1 to C2, see
Fig. 9b. For Ra = 1.272·105 , a switching mode solution C1, C2 and C3 is observed. It corresponds
to a pulsating wave PW1,2,3, see Fig. 9c. The kinetic energy in the phase portrait for PW1,2,3
is zero in C3, see Fig. 9d. The period of the inertial oscillations is found to decrease with Ra as
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can be seen in Fig. 10. At the onset of PW , the flow has a very large period, up to 25 periods
were calculated for the solution.

Fig. 10. Precession frequency vs. Rayleigh number for PW1,2 solutions

These solutions disappear when other solutions C4, C5, and C6 take place. The critical
Rayleigh number can be estimated through a linear fit when the precession frequency tends to
zero, ω = 2516.04 − 0.0250112Ra, and it is found that Raω = 100.596.
Finally, C1 to C6 modes can be seen in Fig. 11, and they correspond to steady-state solutions.

Fig. 11. Fourier modes solutions C1 to C6. Isothermal contours are presented in the horizontal plane
at z = γ
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5. Conclusions

Natural convection in a cylindrical enclosure with a partially heated lateral wall was numerically
studied by using a hybrid Fourier-finite volume code. This code was validated with experimental
PIV results reported in the literature for Pr = 6.67 (water); whereas, for low Pr numbers, the
asymptotic value for the numeric evaluation of the Nu number is similar to the one obtained
from a correlation for mercury (Pr = 0.025). In particular, for Ra = 104, the effect on the heat
transfer of parameters like heater size (in the range of 0 ¬ γ ¬ 1.0), aspect ratio (in the range
of 0.5 ¬ a ¬ 1.0), and Pr number (in the range of 0.001 ¬ Pr ¬ 6.67) were detailed analyzed.
The following can be concluded for the steady-state temperature distributions: when the heater
size was increased, the solutions went from non-axisymmetric to axisymmetric ones; on the
other hand, for the increasing of either the aspect ratio or the Pr number, inverse behavior was
observed.
The second part of the results was focused on the analysis of non-steady solutions when

the Ra number was varied in the range of 103 ¬ Ra ¬ 5 · 105. The whole set of solutions in
the parametric space (γ,Ra) was calculated. These results allowed us to know what was the
dominant dynamic according to the conditions of the system. A variety of flow solutions with
many spatiotemporal symmetries were found, for instance: standing waves, pulsating waves
and limit cycles. More complex solutions were also found by the interaction of two or more
Fourier modes. The obtained thermal patterns in the horizontal planes exhibited different pole
structures.
For a fixed value of the heater size, Fourier modes appear progressively and grow from zero

to six as the Rayleigh number is increased. This study provides basic research on the numerical
simulation of natural convection with partial lateral heating, and it exhibits the rich dynamic
behavior of the flow.
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23. Núñez J., López-Caballero M., Ramos E., Hernández-Cruz G., Vargas M., Cuevas S.,
2012a, Verification and experimental validation of a numerical simulation of natural convection in
a slender cylinder, International Journal of Heat and Fluid Flow, 38, 118-125
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