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This paper presents a deep learning-based road recognition strategy for advanced suspen-
sion systems. A four-quarter suspension model with a magnetorheological (MR) damper is
developed, and four typical road images with corresponding roughness data are collected.
A back-propagation neural network based autoencoder and Convolutional Neural Networks
(CNN) are utilized to form the deep learning structure. By utilizing the multi-object ge-
netic algorithm, the optimal parameters can be obtained, and the control current can be
adaptively adjusted. Simulation results indicate that the designed structure can identify the
road type accurately, and the recognition-based control strategy can improve the suspension
performance effectively.
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1. Introduction

The latest developments of vehicle engineering have brought expanding business request to
enchain passengers’ comfort, and the current broadly used suspension systems can hardly make
attained without sacrificing handling stability (Qin et al., 2018). To solve this, active and semi-
-active suspension frameworks need to be developed as a feasible option and have been broadly
studied in the recent years for their better trade-off between comfort and stability (Qin et al.,
2018; Krzyżyński and Maciejewski, 2019). Morales et al. (2016) designed an active suspension
control system with adjustable damping and stiffness by using a magnetorheological (MR) shock
absorber and pneumatic system, which achieve the same roll angle levels as a similar passive
system while reducing sprung mass acceleration by up to 30%. A semi-active seat suspension
model with an MR damper was presented by Maciejewski et al. (2019) to reduce the horizontal
direction vibration. An actuator motion based semi-active variable damping control method was
proposed by Gong and Chen (2020) to improve the vertical performance of heavy vehicles.

Active and semi-active control can effectively reduce the impact of vibration on the human
body, and most of current researches take the road input as a bounded external disturbance to
design control parameters (Sun et al., 2019). In real applications, road conditions are varying
significantly and should be considered in the controller design process. That means to design
appropriate control parameters for different road conditions. With respect to the specific issue,
many adaptive control strategies with adjustable parameters according to various road conditions
have been proposed (Liu et al., 2020; Qin et al., 2019). Under the circumstance, road recognition
is the sticking point for practical applications of controllable suspension systems.
In general, the following three methods are used for road recognition: (1) road elevation

measurement is carried out by keeping the independently operating road roughness meter in
contact with the ground (Doumiati et al., 2011); (2) by installing acceleration or displacement
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sensors on the car, road unevenness is identified through the vehicle dynamic responses, where
the recognition results are always statistical characteristics (Qin et al., 2014); (3) use non-
-contact measurement methods to measure road elevation or identify road types through on-
board sensors such as a lidar and camera (Zhang et al., 2015). The first method has high
accuracy, but requires special instruments and a high real-time measurement cost, which restrict
the engineering application. Owing to the rapid development of intelligent vehicles, the latter
two methods have got a wide range of applications by the agency of dynamic sensors, lidar or
cameras.

Through the adoption of dynamic control sensors installed in cars, the system response-based
method is utilized for road recognition. Qin et al. (2017) provided a deep neural network-based
classification method with the input signal of the unsprung mass response, which could obtain
relative high accuracy. Apart from the data driven modus, the model-based road estimation
strategy has been addressed through the use of the observer technique. To study the fatigue
loads of vehicles arising form road roughness, Fauriat et al. (2016) presented an augmented
Kalman observer to realize the inverse estimation of road information, and the accuracy factors
were also analyzed. Considering the vertical and longitudinal dynamics of vehicles, Rath et al.
(2015) combined two different kinds of observers to estimate road roughness and tire road friction
simultaneously. All the recent literature with respect to the system response suffer from common
weakness, such as accurate extrapolation and unmeasured responses (Li et al., 2016). Moreover,
the model-based road recognition method mainly concentrates on standard road excitation, and
it can hardly be applied to non-road pavements. Lidar or camera based non-contact measure-
ment methods thus arise as an alternative. Viikari et al. (2009) used a 24GHz millimeter-wave
radar to identify road conditions and detect low-friction roads caused by water, ice, or road
surface snow. Peterson et al. (2008) adopted a random state estimation instrument to process
the road surface data collected from 2D and 3D radars and identify the most road surface
shape.

Since the high cost of radars hinders its application in mass vehicles, this paper presents a
camera-based road recognition framework for controllable suspension systems. One of the major
problems with the use of cameras for road recognition is of its scope of application, such as
the impact of special circumstances including strong light, weak light, image tilt, and partial
lack of images in the natural environment (Bekhti and Kobayashi, 2015). Besides, the tradi-
tional backpropagation neural network requires complex preprocessing, original images cannot
be directly used as the input of the network. Meanwhile, when there are more neurons in the
network, the weight parameters of the network will be very huge, which makes the classifica-
tion efficiency greatly reduced or even fail to work normally. To deal with these problems and
improve the classification efficiency, a deep learning-based road recognition method is designed
to identify non-standard pavements for controllable suspension systems, which consists of an
autoencoder, a feed forward neural network for road classification, and an adaptive adjustment
mechanism of the controllable suspension according to recognition results. An unsupervised back-
-propagation neural network based autoencoder can learn the hidden features of input images,
and the learned features can be used to reconstruct the image data, thus reducing the compu-
tational burden of the subsequent network (Hinton and Zemel, 1994). The feedforward neural
network consists of a multi-layer Convolutional Neural Networks (CNN) network. Its main advan-
tage is that it can extract features from the input image through simple convolution and pooling
operations, and automatically updates network parameters according to the back-propagation
algorithm. It is worth noting that the actual suspension system is a complex nonlinear system
and different road inputs have a very strong influence on the suspension performance. There-
fore, to achieve better control performance of the system, an accurate system model and road
recognition algorithm can be used to adjust the control parameters adaptively according to the
road type. The main contributions of this work can be summarized as follows:
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• An autoencoder based recognition framework is proposed, which can greatly reduce the
amount of training data and improve the training efficiency.

• The CNN based recognition method can accurately recognize the road surface type using
only the on-board camera via the deep learning structure.

The rest of study is organized as follows: Section 2 presents the four-quarter controllable
suspension model. Network architecture including the autoencoder network and the CNN struc-
ture are given in Section 3. Network training and controllable suspension simulation are shown
and discussed in Section 4, and Section 5 concludes the study.

2. Controllable suspension model

The vehicle suspension system is a type of complex mechanical system with nonlinearity, time-
-varying, structural and non-structural uncertainties. System nonlinearity and parameter un-
certainties are widely present in the suspension system, including structural layout differences,
internal damping components, time-varying parameters and structural uncertainty caused by
load changes. The system uncertainties mentioned above will cause a resonance frequency shift,
time delay and other phenomena, and then cause unknown changes in the dynamic response.
For such a complex mechanical system, the more system characteristics that are considered
when modeling, the more comprehensive the model can be built, the closer the model is to the
actual situation, but at the same time the greater the difficulty of modeling and the higher the
difficulty of analysis. On the other hand, the higher the simplification of the established model,
the easier the analysis, but the results obtained are often not accurate enough. Therefore, the
establishment principle of the vehicle model can be described as: according to the needs of anal-
ysis, find a feasible balance between the accuracy and complexity. Furthermore, in the process
of vehicle system modeling, the following assumptions are often followed to simplify the system:
(1) assume that the load remains constant during the operation of the vehicle model; (2) the tire
stiffness is a constant value and the wheel damping is ignored; (3) there is no “wheel jumping”
phenomenon, and the wheels always keep in contact with the ground.

2.1. Suspension model

The MacPherson suspension system is widely used in vehicle front suspension systems due to
its simple structure, small wheel positioning changes, good handling stability and a large engine
layout space. The typical MacPherson suspension system is shown in Fig. 1a. It consists of an
articulated strut and an A-shaped lower control arm. The shock absorber strut doubles as a
kingpin, and the knuckle rotates around this kingpin. The sliding column is hinged to the body
through the upper mounting assembly, the inner side of the lower control swing arm is connected
to the body through a rubber (hydraulic) bushing; the outer side is hinged to the steering head
through a ball joint. Considering that the mass of the lower control arm is much smaller than
the sprung and the unsprung mass, ignoring the lower control arm rotation angle θ1 and sliding
column rotation angle θ2, the system degenerates to a two degree of freedom model, as shown
in Fig. 1b.

The simplified suspension model consists of the sprung mass mb, linear spring, MR shock
absorber, unsprung mass ms and linear stiffness tire, and the system input xr is the road
roughness excitation. The root mean square (RMS) values of the sprung mass acceleration,
suspension deflection and tire deflection were considered as the evaluation index of vehicle riding
comfort and handling stability. The purpose of the controllable suspension system is to minimize
the sprung mass motion and tire deflection while satisfying the suspension deflection constraint.
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Fig. 1. (a) Typical MacPherson suspension system; (b) simplified suspension model

The semi-active suspension model is as follows:

mbẍb + fd + ks(xb − xw) = 0
mwẍw − fd − ks(xb − xw) + kt(xw − xr) = 0

(2.1)

2.2. MR shock absorber model

The external characteristics of MR shock absorbers are usually strongly nonlinear and have
hysteresis loops. The accuracy of the MR model has a significant impact on the suspension
control. A non-parametric model, pseudo-static model and parametric dynamic model are three
commonly used models of MR shock absorbers. Since the parametric dynamic model describes
the external characteristics of the MR shock absorber most comprehensively and accurately, the
parametric dynamic model proposed by Kwok et al. (2006) is adopted in this paper.

The MR damper model is composed of a hysteresis component, an elastic component and
a damping component in parallel. Considering the dynamic characteristics of the MR damper,
the mathematical model can be obtained as

fd = cẋ+ kx+ αz + f0 z = tanh(βẋ+ δ sgn (x)) (2.2)

where fd, c and k are the output damping force, viscous damping coefficient and stiffness co-
efficient of the shock absorber, respectively. β and δ are the adjustment parameters related
to the height of the hysteresis displacement loop. α, z and f0 represent the hysteresis factor,
hysteresis displacement and damper frictional resistance, respectively. x and ẋ are the relative
displacement and velocity at both ends of the shock absorber. The experimental data is obtained
by means of the test equipment shown in Fig. 2, which can provide insight into MR damper
characteristics. The MR damper used in the work is a RD-8041-1 prototype manufactured by
the LORD Corporation, which accepts the maximum input current of 2A and 12V dc. A sinu-
soidal excitation of a small magnitude (20mm) and different frequencies are applied from the
damping test system as the displacement input. With the application of a set of magnetizing
currents (from 0A to 2A), the damping force is measured, and the MR damper characteristics
are plotted in Fig. 3. The mathematical expressions of the above undetermined parameters can
be obtained through parameter identification of the MR shock absorber, where
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c = 1929i + 1232 k = −1700i + 5100
α = −244i2 + 918i + 32 β = 100

δ = 0.3i+ 0.58 f0 = −18i− 257
(2.3)

Fig. 2. MR damper test platform

Fig. 3. MR damper characteristics: (a) force-velocity characteristic, (b) force-displacement characteristic

2.3. Road roughness collection

The vertical height of the road surface relative to the reference plane is denoted as q, and
the length along the longitudinal direction of the road is denoted as I. The function of q varying
with I is called the road surface roughness function, denoted as q(I). The current measure-
ment techniques mainly include fixed reference measurement, follow-up reference measurement,
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dynamic response measurement and an angle reference measurement method. The roughness
of asphalt road, cement road, gravel road and pebble road were measured using the angular
reference measurement method, and the measured images of the road are shown in Fig. 4a. The
roughness curves corresponding to the four types of road surfaces are plotted in Fig. 4b.

Fig. 4. Road roughness information: (a) road image type, (b) road roughness measurement cureve

3. Network architecture

In this Section, the CNN based deep learning method is designed for road image recognition. For
the large amount of road pictures, to reduce the data size and improve the learning efficiency
of the network, an unsupervised neural network based autoencoder is utilized to preprocess the
road images.

3.1. Autoencoder network

The autoencoder network is a “large to small, then small to large” structure that compresses
the input images to a lower dimension, extracts the main components of the original images,
and then restores the main components to the original dimension through a decoder, as shown
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in Fig. 5. A multilayer feedforward neural net is included in the autoencoder, which is trained
unsupervised by the decoder to reconstruct the optimization conditions for the approximation
between the features and the original features. This process can reduce the size of data and com-
putation burden of the subsequent network while preserving the main features of road images.

Fig. 5. Autoencoder structure

The input data can be represented by encoding functions

h = f(x) := sf (Wx+ p)

where sf is the activation function of the encoder, usually taken as the sigmoid function

sf (z) =
1

1 + e−z

where W and p are the neural network parameters, which denote the weights and biases of the
model, respectively. The decode function used in the decode process can be expressed as

r = g(h) := sg(W
Th+ q)

which can map the coding h to the original dimensional space, thus achieving the reproduction
of the input data. sg is the activation function of the decoder, which is also taken as the sigmoid
function. In order to fit the training samples, the difference between the network output and
the corresponding label values needs to be minimized. Based on this, the following loss function
model can be given

J(W,b) =
1

m

m∑

i=1

1

2

∥∥hw,b(x(i))− x(i)
∥∥2
2
+
λ

2
‖W‖22

where ‖•‖2 denotes the L2 norm, x(i) represents the i-th sample, and λ is the hyper parameter.
The first term in the formula is to fit the training sample while the second term can reduce the
amplitude of the weight and prevent overfitting.

If the output is approximately equal to the input data, the reconstruction error can be
minimized by adjusting the parameters of the encoding and decoding stages.

3.2. CNN structure

In general, CNN contains the input layer, convolutional layer, pooling layer and fully con-
nected layer. The convolutional layer comes with an activation function as the Rectified Linear
Unit (ReLU), and the combination of convolutional layer and pooling layer can appear multiple
times in the hidden layer. The fully connected layer is located after the convolutional layer and
connected to the Softmax output layer. In this paper, we build the corresponding CNN to learn
different road image data, and finally realize the purpose of road recognition. The constructed
CNN structure is shown in Fig. 6, including 13 convolutional layers, 5 pooling layers, 3 fully
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connected layers, and finally the Softmax output layer. The parameters of the CNN are listed
in Table 1. For the image data, the operation of the convolution layer is as follows

Z l+1(i, j) = [Z l ⊗wl](i, j) + b =
kl∑

k=1

f∑

x=1

f∑

y=1

[Z lk(s0i+ x, s0j + y)w
l+1
k (x, y)] + b

(i, j) ∈ {0, 1, . . . , Ll+1} Ll+1 =
Ll + 2p − f
s0

+ 1

(3.1)

where Z l, Z l+1 are the input and output of l + 1 convolution layer respectively, also known
as feature maps. wl is the convolution kernel, b is the bias value, and Ll+1 represents the size
of Z l+1. It is assumed that the feature maps have the same length and width. Z l+1(i, j) denotes
the pixel value of a point in the feature map, and K is the number of channels in the feature
maps: K = 1 if the input is a grayscale map, and K = 3 if it is a color map. s0, p and f are the
step size of the convolution, the number of filling layers and the size of the convolution kernel,
respectively.

Fig. 6. CNN structure

After feature extraction in the convolution layer, the output feature map is passed to the
pooling layer for feature selection, where the pixel values of individual points in the feature map
are replaced with the statistics of the pixel values in their adjacent regions for the purpose of
dimensionality reduction. Maximum pooling is utilized in this paper, where the extreme pixel
value in the adjacent region is selected.

When the convolution kernel is of size f = 1, step size s0 = 1 and does not contain padding,
the equation represents the matrix multiplication operation within the fully connected layer

Z l+1 =
kl∑

k=1

L∑

i=1

L∑

j=1

(Z li,j,kw
l+1
k ) + b (3.2)

where Z li,j,k is the pixel value of the fully connected layer input feature map in the k channel at

the point (i, j); wl+1k is the weight value of the convolution kernel in the k channel.
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Table 1. CNN parameters

Type Kernel size No. Type Kernel size No.

Batch size 128 Convolution layer 4-1 3× 3× 256 512

Convolution layer 1-1 3× 3× 3 64 Convolution layer 4-2 3× 3× 512 512

Convolution layer 1-2 3× 3× 64 64 Convolution layer 4-3 3× 3× 512 512

Pooling layer 1 2× 2 Pooling layer 4 2× 2
Convolution layer 2-1 3× 3× 64 128 Convolution layer 5-1 3× 3× 512 512

Convolution layer 2-2 3× 3× 128 128 Convolution layer 5-2 3× 3× 512 512

Pooling layer 2 2× 2 Convolution layer 5-3 3× 3× 512 512

Convolution layer 3-1 3× 3× 128 256 Pooling layer 5 2× 2
Convolution layer 3-2 3× 3× 256 256 Fully connected layer 1 4096

Convolution layer 3-3 3× 3× 256 256 Fully connected layer 2 4096

Pooling layer 3 2× 2 Fully connected layer 3 4

The Softmax function can compress an N -dimensional vector p which containing arbitrary
real numbers into another N -dimensional real vector σ(p) such that each element takes values
in the range (0, 1) and the sum of all elements is 1. That is, the output of the fully connected
layer 3 in Fig. 6 is transformed into the input with the probability category that the input image
belongs to

σ(p)i1 =
epij

N∑
i1=1
epi1

(3.3)

among which, pi1 is the i1-st element of the N -dimensional vector p.
To prevent the gradient from exploding or vanishing and falling into local optima, the acti-

vation function input of the network layer is standardized by batch normalization to avert the
training trapped into the nonlinear saturation region, thus speeding up the convergence of the
network. For a certain batch of data {x1, x2, . . . , xn} in training, the network layer can either
be the input or output of the middle layer. The data batch normalization can be expressed as

µ =
1

n

n∑

i=1

xi σ
2 =
1

n

n∑

i=1

(xi − µ)

x̂i =
xi − µ√
σ
2 + ε

ŷl = γx̂i + β

(3.4)

Batch normalization uses optimization to change the magnitude of the data variance and mean
value location, where γ and β are parameters that need to be learned by the network, ε is the
given parameter, and the normalization ends up with ŷl as the output.

3.3. Data enhancement

An effective way to improve the generalization ability of CNN is to perform data augmenta-
tion on the training dataset, such as artificially create dummy data and add it to the training
set. Four kinds of road image data are collected, and then image processing is carried out on
some of the road images, i.e., adjusting the image brightness and darkness, panning the image
by a number of pixels in the horizontal or vertical direction, flipping and cropping the image at
a small angle, so as to simulate the influence of the external natural environment and vehicle
vibration on the image quality during sampling and to achieve the purpose of data enhancement.
The original and enhanced images are shown in Fig. 7, and the processing parameters are given
in Table 2.
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Fig. 7. Original and enhanced road images: (a) original images, (b) brightness adjustment, (c) randomly
rotation and cut, (d) randomly shift

Table 2. Image processing parameters

Processing Rotation Cropping Panning Brightness

Range −20-20 −20-20 −40-40 50%

Unit degree degree pixel –

4. Simulations

The overall flowchart of the proposed road recognition-based semi-active suspension control
method is shown in Fig. 8, which consists of road image collection, image autoencoder, road type
recognition and semi-active suspension control. It can be seen from Fig. 8 that the road images
are collected by the camera as the input, and then transfered to the pre-trained autoencoder,
and the decodered images are recognized by the pre-trained CNN. Based on the recognition
results, the semi-active suspension control parameters optimized by the genetic algorithm are
selected to achieve the purpose of adaptive control under different road surfaces to improve
vehicle performance. Four types of roads are simulated, and the CNN recognition range can be
widened by increasing the types of road surfaces in the dataset for common cases.

4.1. Network training and simulation

This paper collects the image data of the four types mentioned in Section 2.3, i.e., asphalt
road, cement road, gravel road and pebble road. Each road type has 10 000 samples after data
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Fig. 8. Road recognition-based suspension control

enhancement, for a total of 40 000 samples, where 30 000 samples are used for training and 10 000
samples are used for validation. Each input sample is processed as a 228 × 228 × 3 RGB color
image as the input of the autoencoder, and the decoded images are trained through the CNN.
The convolution, pooling, error back propagation update weights and other operations of the
CNN need to perform a large number of matrix operations, to speed up the network training,
the GPU is invoked for network training.

The accuracy and loss function value curves of the CNN training and verification are shown
in Fig. 9. It can be seen from the figure that the training process converges after 300 iterations.
The numerical accuracy is close to 1, and the loss function value is close to 0.

Fig. 9. Training progress: (a) training accuracy, (b) loss function
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After training, 12 samples were randomly selected from the validation set and imported into
the trained Network, and the recognition results are shown in Fig. 10. The recognition results
and corresponding probabilities are given at the bottom of each sub-picture. According to the
figure, the trained Network has good recognition as well as generalization ability for the four
typical roads collected in this paper.

Fig. 10. Random image test results

4.2. Simulation results of controllable suspension

To achieve good comfort and handling stability for different types of road profiles, it is
necessary to provide different control currents of MR shock absorbers for different road types to
obtain suitable damping characteristics. On the basis of the quarter vehicle model, the optimal
control current of the MR damper with different road excitations is obtained as the optimization
variable, suspension deflection as the constraint, and the root mean square (RMS) value of sprung
mass acceleration and tire deflection as the optimization objectives. In this paper, the multi-
objective optimization problem is transformed into a sing-objective optimization problem by
assigning weight coefficients to the optimization objectives, and then the genetic algorithm is
employed to obtain the optimal solution set of the model. The determined objective function is
given as follows

obj = w1 ∗ BAsemt
BApas

+ w2
DTDsemt
DTDpas

(4.1)

where BAsemt/BApas and DTDsemt/DTDpas are the ratio of the sprung mass acceleration RMS
value and the tire deflection RMS value of the passive and semi-active suspension, respectively.
w1 and w2 are the weighting factors of the above two ratios, respectively, and w1 + w2 = 1.
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Elite operation is used in the genetic algorithm, 20 outstanding individuals are selected
for direct inheritance in each generation without participating in crossover and variation, the
population size is 200, the number of generations is 50, the crossover and variation probabilities
are set to 0.3 and 0.1, respectively, and the control current is between 0A and 2A. The road
profile input adopts the collected time domain road roughness signals. As the riding comfort
and hand stability are conflicted with each other, different weighting factors should be assigned
to the objective function according to the specific road surface, e.g., vehicle handling stability
is considered on poor roads, while riding comfort is the main concern on good roads. The
suspension parameters are listed in Table 3. The weighting coefficients of the objective function
under different road excitations and the optimized control currents are shown in Table 4.

Table 3. Suspension parameters

Parameter Value

Sprung and unsprung mass 410 kg/40 kg

Suspension stiffness 2000N/m

Damping coefficient 1700Ns/m

Tire stiffness 185000N/m

Table 4. Weighting coefficients and optimized control current

Road type w1 w2 Control current [A]

Asphalt 0.7 0.3 0.0489

Cement 0.6 0.4 0.0887

Gravel 0.3 0.7 0.1976

Pebble 0.2 0.8 0.3094

The time domain response of sprung mass acceleration, suspension deflection and tire de-
flection are plotted in Figs. 11a-11c. From the figures, it can be found that the sprung mass
accelerations are effectively improved with the controllable suspension for asphalt and cement
roads with good driving conditions, and the suspension deflections and tire deflections are sim-
ilar to that of the passive system. On the contrary, when driving on gravel and pebble roads,
the sprung mass accelerations of the controllable suspension degraded compared to the passive
suspension, but the tire deflections are reduced, which effectively improves handling stability of
vehicles on poor road surfaces.

The PSD comparison of the sprung mass acceleration and tire deflection with different road
excitations are given in Figs. 12a-12d. As shown in Figs. 12a and 12b, it can be observed that
compared with the passive suspension system, the controlled system considerably reduces the
sprung mass vibration in the natural frequency range between 1Hz and 2Hz with the excitation
of asphalt and cement roads, and the tire deflection amplitudes have increased in the range of
10Hz to 15Hz. The frequency response comparisons with gravel and pebble road excitations
are plotted in Figs. 12c and 12d, from where it can be seen that the tire deflections have a
lower magnitude in high frequencies compared with the passive system, and there is a slight
deterioration observed in the sprung mass vibrations. The simulation results indicate that the
system responses of the controllable suspension are consistent with the weighting coefficients
selection on different road types.
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Fig. 11. Suspension performance under different road profiles: (a) vertical acceleration, (b) suspension
deflection, (c) tire deflection

5. Conclusions

The study presents an adaptive controllable suspension control strategy based on road recogni-
tion. A parametric MR damper based semi-active suspension model is established, and informa-
tion of four typical roads is collected. To avoid a complex pre-process and improve classification
efficiency, an autoencoder based CNN framework is applied to compress road images and extract
the main features of the road surface. The network architecture is composed of an autoencoder
network and multi-layer neural networks, and the parameters of CNNs are well trained by the
pre-training progress. With the road recognition results, the choice of the control current for
different road types is then transformed into a multi-object optimization problem, and a genetic
algorithm is utilized to solve the problem. The simulation results reveal that the proposed road
estimation method can accurately identify the road type, and based on the recognition results,
the control strategy can adaptively adjust the control signals to suit different road surfaces.
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