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In this paper, the problem of motion of controlled mechanical systems under a servo con-
straint is considered. The servo constraint which is prescribed by the designer is supposed
to be non-ideal, that is, it does work in a virtual displacement. The second order form con-
straint is introduced to obtain a closed-form (i.e., analytical form) control input. The final
servo control contains two parts: the first one generates the constraint force so that the
constraint is exactly followed, while the second one can be designed by the designer for the
facility, such as to compensate the effects of the friction force. After geometrical analysis
applied to the Coulomb friction forces, we found that they actually depend on the control
forces (i.e., the two are coupled). Application to a 3-DOF robot manipulator is made.
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1. Introduction

A mechanical system is often required to follow certain constraints. Sometimes these constraints
are fulfilled by constraint forces generated by the Nature. That is, when one determines motion
of a system, it is generally assumed that the environment (which includes the structure of the
machines) can automatically generate the required constraint force. Those constraints are called
passive constraints (i.e., material constraints) as the constraint is followed in a passive manner.
This passive constraint problem is along with the original Lagrange aspect. Many important
contributions have been made on the subject (for a survey, see, for example, Papastavridis,
2002).
In contrast to this, the servo constraint problem is to find what the engineer should do, so that

the constraints are followed. This problem is one of the few frontiers in analytical mechanics
that have rarely been studied until recently. In the past, efforts on this problem were made
on individual examples (see, e.g., Cabannes, 1968; Kirgetov, 1967; Zhao et al., 2020; Huang
et al., 2013) instead of a systematic framework. One reason is perhaps the concepts of servos
(together with implementation via use of microprocessors) is relatively new, in comparison to
other developments in analytical mechanics. Chen (2009) proposed a systematic approach for the
servo constraint problem. In this paper, we followed the work by Chen (2009) and considered
the case when the servo constraints are non-ideal. For example, when friction forces exist in
the mechanical system. Following Udwadia and Kalaba (1996), the Moore-Penrose inverse of
a matrix is adopted to explore the geometric structure of the constraints. Provided certain
assumptions are met, the analytical expression of the servo control is obtained. After geometrical
analysis of the Coulomb friction force, it is very interesting to find out that the friction force is
actually coupled with the control force. This is really helpful since in some textbooks the friction
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force can be compensated by the control forces, see Sciavicco and Siciliano (2000), in which even
the normal force is taken to be constant.
The primary objective of this article is to develop a method to obtain a closed-form control

force in a mechanical system under an ideal or non-ideal servo constraint. The control force
keeps the mechanical system strictly constrained and can compensate the effect of friction.
The main contributions of the article are threefold. Firstly, the non-ideal servo constraint

problem is formulated. The second order form constraint which contains the acceleration ex-
plicitly and linearly is used to describe the servo constraint. Both holonomic and nonholonomic
constraints can be written in this form. Because of the linearity in the acceleration, the Moore-
-Penrose inverse of a matrix can be adopted to explore the geometric structure of the constraints.
Secondly, the servo control for the non-ideal constraint is obtained. The servo control consists

of two parts: the first one generates the constraint force, while the second one is an extra force
that can be designed to compensate the friction force. The servo control is in an analytical
form (i.e., closed-form). This control turns out to be a model-based state feedback control, and
is readily applicable. No auxiliary variables such as Lagrange multipliers or pseudo-generalized
speeds are needed. Besides, the control is continuous in the state.
Thirdly, the friction force is found to be coupled with the control force. A geometrical analysis

is applied to the Coulomb friction force, in which it turns out that the Coulomb friction force is
based on the specific control applied. This is a surprising outcome, which defies some conventional
wisdom in which it was believed that the Coulomb friction force can be determined a priori of
the control design.
The rest of the paper is outlined as follows. Section 2 provides a brief introduction about

the passive ideal constraint problem. Section 3 presents the modeling of the servo constraint
problem. The Moore-Penrose inverse is detailed in Section 4 as preliminaries before designing
the detailed control law. Section 5 proposes the servo constraint control for the above mechanical
system. Section 6 discusses the non-ideal constraint case. Section 7 illustrates the proposed servo
control. Finally, conclusions are made in Section 8.

2. Passive ideal constraint problem

Consider a discrete mechanical system whose configuration can be described by n dimensional
generalized coordinates q = [q1, q2, . . . , qn]

T. The kinetic energy T = T (q, q̇, t) of the system,
relative to an inertial frame, takes the form (Rosenberg, 1977)

T (q, q̇, t) =
1

2
q̇TM(q, t)q̇+N(q, t)q̇ +P(q, t) (2.1)

where M(q, t) =MT(q, t) ∈ R
n×n, N(q, t) ∈ R

1×n, and P(q, t) ∈ R
n. Here the three terms on

the right-hand side are contributions due to quadratic, linear and constant terms of q̇, respec-
tively.
Suppose that the system is under m passive (i.e., material) ideal constraints

n∑

i=1

Ali(q, t)q̇i +Al(q, t) = 0 l = 1, . . . ,m (2.2)

where Ali(·) and Al(·) are both C
1, m ¬ n. The constraints may not be integrable (and hence

nonholonomic). The q̇ satisfying equation (2.2) is called the possible velocity.

Remark. By an ideal constraint, we mean that the constraint force which is induced by the
constraint does no work in a virtual displacement. This is a basic assumption in classical
analytical mechanics. However, this has been generalized to the non-ideal constraint force
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which will do work in a virtual displacement (Udwadia and Kalaba, 2000; Sun et al., 2015).
Such a constraint force may occur when there is a sliding friction or some electromagnetic
interaction occurs in the system.

The Pfaffian form of equation (2.2) is given by Abraham et al. (1988) as

n∑

i=1

Ali(q, t)dqi +Al(q, t)dt = 0 l = 1, . . . ,m (2.3)

Accordingly, the virtual displacement δq = [δq1, δq2, . . . , δqn]
T is governed by

n∑

i=1

Ali(q, t)δqi = 0 l = 1, . . . ,m (2.4)

Suppose the system is under an impressed force Q = [Q1, Q2, . . . , Qn]
T. By letting Qci ,

i = 1, 2, . . . , n, denote the component of the constraint force in the direction qi, the equation of
motion of the constrained system, for each i = 1, 2, . . . , n, is given by

d

dt

∂T (q, q̇, t)

∂q̇i
−
∂T (q, q̇, t)

∂qi
= Qi(q, q̇, t) +Q

c
i (2.5)

Since constraint equation (2.2) is ideal, by the principle of virtual work, the work done by the
constraint force in every virtual displacement is zero, that is

QcTδq =
n∑

i=1

Qciδqi = 0 (2.6)

The fundamental equation, from Lagrange’s form of d’Alembert’s principle (Yin et al., 2020),
takes the form

n∑

i=1

( d
dt

∂T (q, q̇, t)

∂q̇i
−
∂T (q, q̇, t)

∂qi
−Qi(q, q̇, t)

)
δqi = 0 (2.7)

The Lagrange’s equations of motion, after the use of the Principle of Relaxation of the Con-
straints (Hamel, 1949), for each i = 1, 2, . . . , n, are given by

d

dt

∂T (q, q̇, t)

∂q̇i
−
∂T (q, q̇, t)

∂qi
−Qi(q, q̇, t) +

m∑

l=1

λlAli(q, t) = 0 (2.8)

where λl are the Lagrangian multipliers. The constraint force component Q
c
i is related to the

Lagrangian multiplier as

Qci =
m∑

l=1

λlAli(q, t) = 0 i = 1, . . . , n (2.9)

The passive ideal constraint problem can be stated as follows: Given the initial condition of
the state (i.e. q(t0) and q̇(t0), where t0 is the initial time), determine qi(t), q̇i(t), i = 1, . . . , n,
and λi(t), i = 1, . . . ,m, for all t ­ t0. Note that this can be solved by uniting (2.3) and (2.8)
which constitute a set of n+m equations with n+m variables q1, . . . , qn, λ1, . . . , λm. It is worth
realizing that the constraint force in (2.9) is to be decided after ideal constraint equation (2.2)
is satisfied. That is, the surroundings of the system are able to implement this constraint force.

Remark. The nature of the passive ideal constraint problem is such that the designer is not
responsible for actively generating the constraint force. It is generally assumed that the
environment can automatically generate the required force so that the constraints are
strictly obeyed.
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3. Servo constraint problem

Consider the mechanical system described above is following the constraints by a set of control
forces rather than by the passive (i.e., material) environment. This kind of constraints are called
servo constraints (also called prescribed constraints, program constraints, active constraints, or
constraints of the second type in some other literature). Here, we call the control forces relative
to the servo constraints the servo control. The equation of motion of original mechanical system
(2.5) with the servo control, for each i = 1, 2, . . . , n, can be rewritten as

d

dt

∂T (q, q̇, t)

∂q̇i
−
∂T (q, q̇, t)

∂qi
= Qi(q, q̇, t) +Q

c
i,s (3.1)

where Qi is the i-th impressed force (but not the servo controls), and Q
c
i,s is the i-th constraint

force provided by the active servo controls.
Based on the available controls, the structure of the constraint force is predetermined as

Qci,s =
p∑

l=1

ulBil(q, q̇, t) (3.2)

where Bil(q, q̇, t) ∈ R is determined by the structure of the servo controls that are available,
and ul ∈ R is the actual servo control.

Remark. The system is called redundant if the number of independent actuators is greater
than the necessary to enforce servo constraints (i.e., rank [Bil(q, q̇, t)] > n). On the other
hand, called underactuated if the system has a lower number of actuators than its degrees
of freedom, that is, rank [Bil(q, q̇, t)] < n.

Suppose the system is to follow constraints (whether ideal or non-ideal) which are given by

n∑

i=1

Ali(q, t)q̇i +Al(q, t) = 0 l = 1, . . . ,m (3.3)

where m ­ 1, Ali(·) and Al(·) are both C
1 in q and t. These constraints are of the first order

form as they imply restrictions on the velocities as well as the displacement.
We now convert the constraints into their second order form. Differentiating constraint equa-

tions (3.3) with respect to t yields

n∑

i=1

d

dt
Ali(q, t)q̇i +

n∑

i=1

Ali(q, t)q̈i +
d

dt
Al(q, t) = 0 (3.4)

where

d

dt
Ali(q, t) =

n∑

k=1

∂Ali(q, t)

∂qk
q̇k +

∂Ali(q, t)

∂t

d

dt
Al(q, t) =

n∑

k=1

∂Al(q, t)

∂qk
q̇k +

∂Al(q, t)

∂t

(3.5)

Equation (3.4), the second order form of the constraints, can be rewritten as

n∑

i=1

Ali(q, t)q̈i = −
n∑

i=1

d

dt
Ali(q, t)q̇i −

d

dt
Al(q, t) = bi(q, q̇, t) (3.6)

or, in a matrix form

A(q, t)q̈ = b(q, q̇, t) (3.7)

where A = [A]m×n and b = [b1, b2, . . . , bm]
T.
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Remark. Chen (1999) stated that differentiation of the constraint to (3.7) will not result in
the loss of information (such as an integration constant). The trajectory is determined by
the equation of motion with the initial condition of q and q̇. This initial condition should
satisfy the first order constraint (3.4). In other words, the missing information is in fact
retained in the initial condition.

Remark. It has been demonstrated in (Xu et al., 2018) that various control problems, including
stabilization, trajectory following and optimality, can be casted into the form of (3.7).

The servo constraint problem can now be stated as follows: Determine the servo control
ul = ul(q, q̇, t), l = 1, . . . , p, such that when Q

c
i,s is applied to system equation (3.1), the

resulting controlled system fulfills constraint (3.7).

4. Moore-Penrose inverse

We now supply the following mathematical preliminaries for later use (Noble and Daniel, 1977;
Hui et al., 2018).

Definition. Consider a matrix Φ ∈ R
m×n with rank r ¬ 1. Its singular values are given by

σ1 ­ σ2 ­ · · · ­ σr > 0. Suppose that its singular-value decomposition is given by

Φ = UΣVT =
r∑

i=1

σiuiv
T
i (4.1)

where Σ = [diag (σi)]r×r, both U = {u1, . . . , ur} ∈ R
m×r and V = {v1, . . . , vr} ∈ R

n×r

are unitary matrices. Here {u1, . . . , ur} and {v1, . . . , vr} are orthonormal sets of vectors in
R
m and Rn, respectively. The Moore-Penrose (MP) inverse Φ+ ∈ R

m×n of Φ is given by

Φ+ = VΣ−1UT (4.2)

Lemma. An n×m matrix Y is the MP inverse Φ+ of Φ if and only if the following hold

ΦYΦ = Φ YΦY = Y

(ΦY)T = (ΦY) (YΦ)T = (YΦ)
(4.3)

Moreover, Φ+ is unique.

Lemma. Suppose Φ can be decomposed as Φ = Ψ1Ψ2, where Ψ1 ∈ R
m×r, Ψ2 ∈ R

r×n. Suppose
all three matrices have rank r. Then

Φ+ = ΨT2 (Ψ2Ψ
T
2 )
−1(ΨT1 Ψ1)

−1ΨT1 (4.4)

Theorem 1. Consider a matrix Φ ∈ R
m×n with rank r ¬ 1. Then the following are true

(i) R(ΦT) = R(Φ+) = R(Φ+Φ) (4.5)

(ii) N (Φ) = R(I−Φ+Φ) (4.6)

where R(·) (or N (·)) denotes the range (or null) space of the designated matrix. See the
proof in (Chen, 2009).

Theorem 2. Consider a matrix Φ ∈ R
m×n. Any vector y ∈ R

n can be decomposed into
(I−Φ+Φ)y, in N (Φ), and Φ+Φy, in R(Φ). The proof can be found in (Chen, 2009).
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5. Mechanical system servo control design

Substituting equation (2.1) into (3.1), the equation of motion of the mechanical system can be
represented as

M(q, t)q̈ +
[ d
dt
M(q, t)

]
q̇+
dN(q, t)

dt
−
∂T (q, q̇, t)

∂q
= Q(q, q̇, t) +Qcs (5.1)

where Qcs = [Q
c
1,s, Q

c
2,s, . . . , Q

c
n,s]
T. Denote τ := Qcs, mechanical system equation (5.1) can be

organized in the commonly used form

M(q, t)q̈ +C(q, q̇, t)q̇+ g(q, t) +F(q, q̇, t) = τ (5.2)

Here t ∈ R is the independent variable, q ∈ R
n is the coordinate, q̇ ∈ R

n is the velocity, q̈ ∈ R
n

is the acceleration, and τ ∈ R
n is the control input. Furthermore,M(q, t) ∈ R

n×n is the inertial
matrix, C(q, q̇, t)q̇ ∈ R

n is the Coriolis/centripetal force, g(q, t) ∈ R
n is the gravitational force,

and F(q, q̇, t) ∈ R
n is the impressed force.

Assumption 1. For each (q, t) ∈ R
n × R,M(q, t) > 0.

In the past, it was often believed that the inertia matrix M(q, t) was positive definite, and it
was therefore considered a fact rather than an assumption. However, this belief has been shown
to be untrue in (Chen et al., 1998).
Suppose the mechanical system is to follow m holonomic or nonholonomic equality servo

constraints of the form

fi(q, q̇, t) = 0 i = 1, 2, . . . ,m (5.3)

Then by use of equation (3.4), we get a set of m equations that are linear in q̈, in the matrix
form

A(q, t)q̈ = b(q, q̇, t) (5.4)

Definition. For given A and b, constraint equation (5.4) is said to be consistent if there exists
at least one solution q̈.

Assumption 2. Considering constraint equation (5.4), we assume that for each (q, t) ∈ R
n×R,

rank A(q, t) ­ 1. Furthermore, the constraint is consistent (this assumption ensures that
the MP inverse of A exists).

We multiply both sides of (5.2) by M−
1

2 , then we have (from now on, arguments of functions
are sometimes omitted for brevity, when no confusions are likely to arise)

M
1

2 q̈+M−
1

2 (Cq̇+ g + F) =M−
1

2 τ (5.5)

By letting ẍ := M
1

2 q̈, a := −M−
1

2 (Cq̇ + g + F), τ = Bu, the equation of motion of the
system can then be represented as

ẍ = a+M−
1

2Bu =: a+Bu, (5.6)

where B =M−
1

2B, B = [Bil]n×p, u = [u1, . . . , up]
T. Also, we can rewrite equation (5.4) as

AM−
1

2M
1

2 q̈ = b (5.7)
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The servo constraint problem is equivalent to designing u so that system equation (5.6)
obeys the constraint

Dẍ = b (5.8)

where D := AM−
1

2 .
Substituting equation (5.6) into (5.8), we get

D(a+Bu) = b (5.9)

Let b := b−Da, we have

(DB)u = b (5.10)

where u ∈ R
m is unknown. This can also be viewed as a constraint on u.

Definition. System equation (5.6) is said to be servo constraint controllable with respect to
a set Ωq × Ωq̇ × Ωt if there is a control u such that the system under this control meets
constraint equation (5.8) for all (q, q̇, t) ∈ Ωq ×Ωq̇ ×Ωt.

Let

Ψ = {(q, q̇, t) ∈ Ωq ×Ωq̇ ×Ωt| b(q, q̇, t) 6= D(q, t)a(q, q̇, t)} (5.11)

and

Ψ c = Ωq ×Ωq̇ ×Ωt\Ψ (5.12)

meaning that Ψ ∪ Ψ c = Ωq ×Ωq̇ ×Ωt.

Assumption 3. Considering D(q, t), B(q, q̇, t) and b(q, q̇, t), we assume that for each
(q, q̇, t) ∈ Ψ , equation (5.10) is consistent, and hence

(DB)(DB)+b = b (5.13)

which means that b ∈ R(DB).

Theorem 3 (Chen, 2009). Subject to Assumptions 1 to 3, the system equation is servo con-
straint controllable with respect to a set Ωq ×Ωq̇ ×Ωt if and only if

rank [D(q, t)B(q, q̇, t)] ­ 1 (5.14)

for all (q, q̇, t) ∈ Ψ . Furthermore, for all (q, q̇, t) ∈ Ψ , the servo control u is given by

u = (DB)+b+ [I− (DB)+(DB)]S (5.15)

where S ∈ R
m is an arbitrary vector which may be dependent on q̇, q, and t. See in (Chen,

2009) for the detailed proof of sufficiency and necessity of the condition.

By Theorem 3, substituting D, B, and b into (5.15), the servo control we need to implement to
the mechanical system is given by

u = (AM−1B)+[b+AM−1(Cq̇+ g+ F)] + [I− (AM−1B)+(AM−1B)]S (5.16)

where S ∈ R
m is an arbitrary vector which makes the control more flexible. Suppose if the servo

constraint is ideal and we choose S = 0, then the second term on the right-hand side of the servo
control u vanishes, only the first term leaves, which is the minimum effort for the servo control
to fulfill the servo constraints. However, if the servo constraint is non-ideal, that is, some other
forces such as the friction force or an electromagnetic force may come out and do work in the
virtual displacement. Then we can design the vector S in the servo control to beat those forces.
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Remark. The servo control u consists of two general parts. The first term on the right-hand
side of (5.16), which lies in the range space of the constraint surface, is the part of the
control force to ensure that the constraint is exactly satisfied, while the second term on the
right-hand side of (5.16) can be regarded as the part of the control force that will cause
motion to the mechanical system. Hence, S is an optional vector which can be used to
design motion of the system in the constraint surface. Also, the vector S can be designed
to compensate the friction force, electromagnetic force or other force acting on the system.

Remark. The servo control u in equation (5.16) is a model based state feedback control, and
is readily applicable. Note that the control is continuous in the state.

6. Friction force depending on control design

After servo control (5.16) is applied to the mechanical system, it is supposed to travel under the
trajectory which can be described by servo constraint (5.3). In this Section, we will consider the
non-ideal servo constraints case in which friction forces occur. It is very interesting to find out
that when the constraints are non-ideal, the friction force and the control force are coupled.
To begin with, recalling that rank(A) ­ 1, by Theorems 2 and 3, we decompose the control

input τ into two orthogonal vectors as (here we use τ instead of u since it is the final servo
control force acting on the system)

τ = τ p + τ t (6.1)

where

τ p = A
+Aτ τ t = (I−A

+A)τ (6.2)

Here A+Aτ ∈ R(AT) is perpendicular to the constraint surface while (I − A+A)τ ∈ N (A)
is tangent to the constraint surface. A geometric interpretation of equations (6.2) is shown in
Fig. 1.

Fig. 1. Decomposition of the servo control force in the range space and null space of the
constraint surface

Suppose the kinematic relations between the generalized coordinate and the Cartesian coor-
dinate are as follows

x = gx(q1, q2, . . . , qn, t)

y = gy(q1, q2, . . . , qn, t)

z = gz(q1, q2, . . . , qn, t)

(6.3)
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Consider J is the matrix between the generalized coordinate and the Cartesian coordinate, which
can be derived from equations (6.3) as

J =





∂gx
∂q1

∂gx
∂q2

· · ·
∂gx
∂qn

∂gy
∂q1

∂gy
∂q2

· · ·
∂gy
∂qn

∂gz
∂q1

∂gz
∂q2

· · ·
∂gz
∂qn




(6.4)

Then we have

Fn = (JJ
T)−1Jτ p = (JJ

T)−1JA+Aτ

Ft = (JJ
T)−1Jτ t = (JJ

T)−1J(I−A+A)τ
(6.5)

Here Fn and Ft are the normal and tangent forces of the servo control τ decomposed into the
constraint surface in the Cartesian coordinate.
Suppose the system is under influence of the Coulomb friction force which is directly pro-

portional to the normal force in magnitude and opposite to the direction of motion. Therefore,
the expression of the Coulomb friction force Ff acting on the system may be represented as

Ff = −µ‖Fn‖p̂(t) as p̂ 6= 0 (6.6)

where µ is the friction coefficient in the corresponding directions, Fn is from (6.5)1, and

p̂(t) =
J(q(t), t)q̇(t)

‖J(q(t), t)q̇(t)‖
as q̇ 6= 0 (6.7)

is the unit vector representing the motion direction in terms of the Jacobian.
Thus, the friction force that is coupled with the control force is given by

Ff = −µ‖(JJ
T)−1JA+Aτ‖

Jq̇

‖Jq̇‖
as Jq̇ 6= 0 (6.8)

Remark. The magnitude of the friction force depends on Fn, which depends on q, q̇ and t.
This dependence is based on the constraints (in terms of A and b) as well as the control
force. In other words, the expression of Fn is based on the constraints and control. For
different controls, this expression needs to be rewritten. This is a surprising outcome, which
defies some conventional wisdom in which it was (mistakenly) believed that the Coulomb
friction force can be determined a priori of the control design. The current finding shows
that the Coulomb friction force is based on the specific control applied. The (unknown)
dependence of Fn on τ is the major difficulty to achieve a closed-form expression of the
Coulomb friction for a controlled mechanical system.

7. Test case: A 3-DOF manipulator

Consider a robot manipulator with three degrees of freedom (DOF) as shown in Fig. 2. The
manipulator consists of three parts: the base, the first arm and the second arm, with mass m1,
m2, m3 and inertia moment I1, I2, I3, respectively. Denote the directions of the space-fixed
axes by Î, Ĵ, K̂ which are rigidly attached to an inertial reference frame (henceforth the inertial
coordinate system). Denote (ψ, θ1, θ2) as the joint coordinates of the base, the first arm and the
second arm, respectively. Use (̂i2, ĵ2, k̂2) and (̂i3, ĵ3, k̂3) as body-fixed coordinates to denote the
position and orientation of the first and second arms. The base rolls are with angular velocity
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ω1 = ψ̇K̂ about the vertical axis K̂. The first arm rotates about the base with angular velocity
ω̂2 = θ̇1 î2 and the second arm rotates about the first arm with angular velocity ω̂3 = θ̇2î3.
Thus, the first arm and the second arm rotates with angular velocity ω2 = ψ̇K̂ + θ̇1î2 and
ω3 = ψ̇iK̂+ θ̇1î2+ θ̇2î3 relative to the inertial frame, respectively. Assume the length of the first
and the second arm are L1 and L2, respectively. Then the translational velocity of the second
arm relative to the inertial frame is v3 = ω2 × L2ĵ2 + ω3 × (L3/2)̂j3.

Fig. 2. A 3-DOF robot manipulator working under the servo constraint surface

By (2.8), we obtain the equation of motion of the manipulator and rewrite it in form of (5.2)
as



m11 0 0
0 m22 m23
0 m32 m33





︸ ︷︷ ︸
M




ψ̈

θ̈1
θ̈2





︸ ︷︷ ︸
q̈

+ [




c11 c12 c13
c21 c22 c23
c31 c32 c33





︸ ︷︷ ︸
C




ψ̇

θ̇1
θ̇2





︸ ︷︷ ︸
q̇

+




g1
g2
g3





︸ ︷︷ ︸
g

=




τ1
τ2
τ3





︸ ︷︷ ︸
τ

(7.1)

where

m11 = Iz1 + Iy2 sin θ
2
1 + Iz2 cos θ

2
1 +m3

(
L2 cos θ1 +

L3
2
cos(θ1 + θ2)

)2

+ Iy3 sin(θ1 + θ2)
2 + Iz3 cos(θ1 + θ2)

2

m22 = Ix2 +m3L
2
2 sin θ

2
2 +m3

(
L2 cos θ2L2 cos θ2 +

L3
2

)

+m3
L3
2

(
L2 cos θ2 +

L3
2

)
+ Ix3

m23 = m32 = m3
L3
2

(
L2 cos θ2 +

L3
2

)
+ Ix3

m33 = m3
(L3
2

)2
+ Ix3

(7.2)

and Iz1 represents the inertia moment of the base, Ix2, Iy2 and Iz2 represent the inertia moment
of the first arm, Ix3, Iy3 and Iz3 represent the inertia moment of the second arm.
Here τ is the servo control we need to design to make sure that the constraint is exactly

followed. The detailed expressions of C and g are omitted for simplicity.
The kinetic energy of the manipulator is given by

T = T1 + T2 + T3 =
1

2
I1ω
2
1 +
1

2
I2ω
2
2 +
1

2
I3ω
2
3 +
1

2
m3v

2
3 (7.3)
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The potential energy of the manipulator is

V = m2g
L2
2
sin θ1 +m3g

(
L2 sin θ1 +

L3
2
sin(θ1 + θ2)

)
(7.4)

Suppose the end-effector of the robot manipulator is required to work under the following
constraint surface

y + z = const (7.5)

We have the relations

x = −[L2 cos θ1 + L3 cos(θ1 + θ2)] sinψ

y = [L2 cos θ1 + L3 cos(θ1 + θ2)] cosψ

z = L2 sin θ1 + L3 sin(θ1 + θ2)

(7.6)

Thus, constraint equation (7.5) can be rewritten in the form of joint coordinates as

[L2 cos θ1 + L3 cos(θ1 + θ2)] cos φ+ L2 sin θ1 + L3 sin(θ1 + θ2) = const (7.7)

Taking derivative of (7.7) twice with respect to time t, we get the constraint equation in the
form of (5.4) as

[a1, a2, a3]︸ ︷︷ ︸
A




ψ̈

θ̈1
θ̈2





︸ ︷︷ ︸
q̈

= b1︸︷︷︸
b

(7.8)

where

a1 = −L2 cos θ1 sinψ − L3 cos(θ1 + θ2) sinψ

a2 = −L2 sin θ1 cosψ − L3 sin(θ1 + θ2) cosψ + L2 cos θ1 + L3 cos(θ1 + θ2)

a3 = −L3 sin(θ1 + θ2) cosψ + L3 cos(θ1 + θ2)

(7.9)

and

b1 = L2 cos θ1 cosψθ̇
2
1 − L2 sin θ1 sinψψ̇θ̇1 − L2 sin θ1 sinψψ̇θ̇1 + L2 cos θ1 sinψψ̇

2

+ L3 cos(θ1 + θ2) cosψ(θ̇1 + θ̇2)
2 − L3 sin(θ1 + θ2) sinψψ̇(θ̇1 + θ̇2)

− L3 sin(θ1 + θ2) sinψψ̇(θ̇1 + θ̇2) + L3 cos(θ1 + θ2) cosψψ̇
2 + L2 sin θ1θ̇

2
1

+ L3 sin(θ1 + θ2)(θ̇1 + θ̇2)
2

(7.10)

Here, for simplicity, suppose we can control this 3-DOF robot manipulator by input torque
on joint coordinates ψ, θ1, and θ2 independently. Then we have

B =




1 0 0
0 1 0
0 0 1



 (7.11)

By equation (5.16), as B is a unit matrix, the servo control force is thus

τ = (AM−1)+[b+AM−1(Cq̇+ g)] + [I− (AM−1)+(AM−1)]S (7.12)

where the first term on the right-hand side of (7.13) is a part of the control force to ensure that
the constraint is satisfied, the second term on the right-hand side of (7.13) can be considered as
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a part of the control force that will cause motion to the robot manipulator. Hence, S is a 3× 1
optional vector which can be used to design motion of the manipulator in the constraint surface.
From equations (7.6) to (7.13), we get the Jacobian matrix

J =




−L2c̄θ1c̄ψ − L3c̄(θ1 + θ2)c̄ψ L2s̄θ1s̄ψ + L3s̄(θ1 + θ2)̄sψ L3s̄(θ1 + θ2)̄sψ
−L2c̄θ1s̄ψ − L3c̄(θ1 + θ2)̄sψ −L2s̄θ1c̄ψ − L3s̄(θ1 + θ2)c̄ψ −L3s̄(θ1 + θ2)c̄ψ

0 L2c̄θ1 + L3c̄(θ1 + θ2) L3c̄(θ1 + θ2)



 (7.13)

here s̄ denotes sin, c̄ – cos.
By equation (6.8), the friction force coupled with the control force is given by

Ff = −µ‖(JJ
T)−1JA+Aτ‖

Jq̇

‖Jq̇‖
as Jq̇ 6= 0 (7.14)

8. Numerical simulation results

Assume the robot manipulator with the unit mass m1 = m2 = m3 = 1 and unit arm length
l1 = l2 = l3 = 1, and for simplicity, choose moments of inertia of the base, the first and the
second arm are all unit Iz1 = Ix2 = Iy2 = Iz2 = Ix3 = Iy3 = Iz3 = 1. Suppose the end-effector
of the robot manipulator is going to move under a constraint surface which can be described by
y + z = 2.59. Choose the gravitational acceleration g = 9.8 and the friction coefficient µ = 0.1.
Consider the initial position of the joint coordinates are ψ = 0, θ1 = θ2 = π/12 while the initial
velocities are all zero. We select three different types of the control force by changing the vector S
in equation (7.13) as follows

S1 = [0, 0, 0]
T S2 = [1, 2, 3]

T S3 = [sin 2t, cos 2t, sin 2t]
T (8.1)

where S1, S2, and S3 are zero, constant and time-varying vectors.

Fig. 3. The control force exerting from the joint coordinates of the base under three different control
forces where S = [0, 0, 0t]T, S = [1, 2, 3]T and S = [sin 2t, cos 2t, sin 2t]T, respectively

By following the modeling procedures of the robot manipulator illustrated in the previous
Section and coding the equations in Matlab, we get a corresponding simulation result. Figures
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Fig. 4. The control force exerting from the joint coordinates of the first arm under three different
control forces where S = [0, 0, 0]T, S = [1, 2, 3]T and S = [sin 2t, cos 2t, sin 2t]T, respectively

Fig. 5. The control force exerting from the joint coordinates of the second arm under three different
control forces where S = [0, 0, 0]T, S = [1, 2, 3]T and S = [sin 2t, cos 2t, sin 2t]T, respectively

3-5 show the control force needed to apply at the joint coordinates of the base, the first arm,
and the second arm under three different control forces, respectively.

These control forces are τ which will cause the end-effector to move on the constraint surface.
Figures 6-8 show the related friction forces exerting at the end-effector along with the x, y, z
directions under the three types of control forces. We can see from these figures that the contrast
of the friction forces is remarkable under different controls. Thus the friction forces and the
control forces are coupled.
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Fig. 6. The friction forces generated along the x direction under three different control forces where
S = [0, 0, 0]T, S = [1, 2, 3]T and S = [sin 2t, cos 2t, sin 2t]T, respectively

Fig. 7. The friction forces generated along the y direction under three different control forces where
S = [0, 0, 0]T, S = [1, 2, 3]T and S = [sin 2t, cos 2t, sin 2t]T, respectively

Figures 9-11 show the angular displacement of the base, the first and second arm of the robot
manipulator under three different types of the control force, respectively. And Fig. 12 shows the
constraint following error that the end-effector deviates from the constraint surface. We can see
that the error is really small and the constraint is almost exactly followed under this control
input.
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Fig. 8. The friction forces generated along the z direction under three different control forces where
S = [0, 0, 0]T, S = [1, 2, 3]T and S = [sin 2t, cos 2t, sin 2t]T, respectively

Fig. 9. The angular displacement of the base under three different control forces where S = [0, 0, 0]T,
S = [1, 2, 3]T and S = [sin 2t, cos 2t, sin 2t]T, respectively

9. Conclusions

A robot manipulator is often taken to perform tasks repeatedly with utmost accuracy as a
substitute to a human arm. The analytical friction force is crucial for the robot manipulator
control design if one wants to get an accurate constraint following control. In the past, the friction
force is supposed to be compensated by a certain control strategy. In this paper, however, we
have shown that the friction force may vary with the control input, i.e., they are coupled. Then
method of servo control has been introduced and applied to the constraint following control of
robot manipulators. The second order constraint is developed so that the constraint equation
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Fig. 10. The angular displacement of the first arm under three different control forces where
S = [0, 0, 0]T, S = [1, 2, 3]T and S = [sin 2t, cos 2t, sin 2t]T, respectively

Fig. 11. The angular displacement of the second arm under three different control forces where
S = [0, 0, 0]T, S = [1, 2, 3]T and S = [sin 2t, cos 2t, sin 2t]T, respectively

can be written in a united form for both holonomoic and nonholonomic constraints. By virtue
of this constraint, the control input is derived in a closed-form, and so does the friction force
related to the control forces. The control input consists of two terms, the first term is the forces
that make the manipulators satisfy the constraints, while the second term can be designed to
compensate gravitational forces or friction forces, etc. This will be really helpful in the trajectory
following control of robot manipulators.
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Fig. 12. The numerical constraint following error under three different control forces where
S = [0, 0, 0]T, S = [1, 2, 3]T and S = [sin 2t, cos 2t, sin 2t]T, respectively
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