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Non-premixed combustion in porous media, also known as diffusion combustion, is found
in many burners and combustion systems for both household and industry. However, in
terms of porous combustion, there have been far fewer studies of non-premixed as compared
to premixed combustion. Moreover, most of the previous works regarding the non-premixed
porous combustion were based on experiments. The present research numerically investigates
the behavior of non-premixed combustion of CH4 in a porous medium. The mathematical
model proposed consists of conservation of mass, momentum equation, energy equation
and species equations. This set of equations is discretized based on a sixth-order accurate
compact finite difference algorithm. The discretized equations are integrated according to the
third-order Runge-Kutta method. The porous medium is defined as a pseudohomogeneous
medium in which temperature gradients between two phases are assumed negligible. The
proposed unsteady model is successfully validated with the published study. The model is
able to correctly describe physical behavior of a non-premixed flame. The effects of porous
materials on the combustion process are analyzed. It is found that porous combustion has
a broader reaction zone than combustion in a free space. The location of the reaction zone
is determined by diffusion velocity of the mixture gas. The porous structure made of SiC
gives higher temperature than when Al2O3 is used since SiC has higher thermal conductivity
and lower heat capacity. The developed model can be utilized as a tool for fast adaption of
combustion systems and for optimizing the combustion efficiency.

Keywords: porous combustion, non-premixed combustion, local thermal equilibrium, pseu-
dohomogeneous, numerical model

Notations

ρ – density
t – time
µ – coefficient of viscosity
p – pressure
K – permeability
ε – porosity
ω̇k – reaction rate of species k
Yk – mass fraction of species k
N – number of reacting species k
τ = {τij} – stress tensor
δij – Kronecker delta
et, e – total and internal energy per unit mass
h – enthalpy
Cp – specific heat for mixture gas
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T – temperature
qj – heat fluxes
λeff , λs – effective and solid thermal conductivity
Pr – Prandtl number
Vkj – Fickian velocity
Sc – Schmidt number
Dk – diffusion coefficient for species k
n – number of iterations
f – temperature dependent function
R – mixture gas constant

1. Introduction

Porous combustion has been extensively used in many current industrial applications due to
many advantages over conventional or free space combustion. Combustion in porous media gives
efficient energy recirculation, better flame stabilization with leaner flame stability limit, as well
as a higher combustion rate. Additionally, reduction of CO and NOx can be achieved. Due to
many advantageous features of porous combustion, a large number of numerical simulations
have been carried out to study combustion in porous media for various different aspects such
as properties of porous media, porous geometry, flame stabilization, formation of pollutants,
flame structure, flame speed, conversion efficiency of heat into radiation energy, etc. Simulations
developed from mathematical models enable a numerical parametric study for applications that
porous combustion is involved. A two-dimensional model of two different geometries of the porous
burner was developed to study the effect of multidimensionality on flames within the pore scale
(Hackert et al., 1999). The conservation equations solved include both gas-phase and solid-
-phase energy equations. A one-step global reaction mechanism for the complete combustion
of the fuel was utilized. The density was obtained from the ideal gas law. The conservation
equations were solved using the alternating direction implicit (ADI) method, and the pressure
field was solved using the SIMPLE algorithm. Brenner et al. (2000) computed heat flow in
porous media based on the pseudohomogeneous heat transfer and the flow model which treated
the solid and fluid phases as an artificial unique phase. The two-dimensional steady problem
of a chemically reacting mixture gas including 20 species was considered. The thermodynamic
data was obtained from the Chemkin-II database (Kee et al., 1992). The finite volume code by
Brenner et al. (2000) was used again to find the optimal amount of the inert components H2O
and HCl synthesis based on the heat balance of the reactor for the H2/Cl2 system (Wawrzinek et
al., 2001). It was found further that the flame speed and the adiabatic flame temperature were
higher for the H2/Cl2 reaction compared to CH4/air combustion. Effects of porous properties
have also been investigated extensively. Bubnovich et al. (2007) carried out one-dimensional
simulations on combustion behavior within the two layers of different sizes of alumina balls.
Zeldovich’s mechanism was utilized for modeling the formation of NOx. Species fractions, gas
and solid temperatures were solved using Newton’s method while pressure was computed by the
congradient method.

A porous burner with an integrated heat exchanger was modeled as a two-dimensional ax-
ially symmetric geometry (Malico et al., 2000). The combustion reaction was described by the
skeletal mechanism. The non-thermal equilibrium was considered between the gas phase and
the solid phase. The chemical reaction rates and thermophysical properties were obtained using
Chemkin-II. The SIMPLE method was employed to obtain numerical solutions. Further, the
mathematical model accounting for turbulence effects was proposed to study one-dimensional
turbulent combustion of methane/air in a porous medium. The thermo-mechanical models based
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on the double-decomposition concept were developed and used to solve the similar problem. In
this work, the turbulence was predicted utilizing the macroscopic k-ε model.

Nonetheless, the previous work on the modeling of the non-premixed or diffusion combustion
in a porous burner is rather limited. In 2007, the numerical database of turbulent nonpremixed
flame of wood pyrolysis gas was developed using direct numerical simulation (DNS) (Pakdee and
Mahalingam, 2007). Combustion of a pyrolysis gas with the air was modeled by a reduced kinetic
mechanism. Later, numerical simulation of methane/air non-premixed combustion in porous
media was investigated (Tarokh et al., 2009). The results showed that the combustion efficiency
was improved in porous media with significantly lower NOx and CO emissions. Additionally,
effects of swirl on combustion and radiation flux from a nonpremixed flame porous burner
were investigated (Kamal and Mohamad, 2005). It was found that the gap distance between
the swirling flow and the base of the porous medium could be adjusted so that the optimized
radiation flux was achieved.
Recently, non-premixed combustion of porous biomass particles in a counter-flow configura-

tion has been modeled using a derived analytical model. In this study, the combustion process
was divided into different zones including pre-heat, reaction and post-flame zones (Hosseinzadeh
et al., 2020). The investigations of the flame structure and extinction limits of confined diffusion
flames were conducted (Endo Kokubun et al., 2017). Effects of the porosity and mass injection
rate on flame extinction were determined based on the general theory by Cheatham and Matalon
(2000). The chemistry considered was a global one-step reaction with a generic representation
of the fuel and oxidizer. Klayborworn and Pakdee (2019) numerically investigated the effects
of porous insertion in a burner on flame characteristics of turbulent non-premixed syngas com-
bustion. It was found that the porosity and porous thickness significantly influence the flame
characteristics and heat process.
From the literature, as compared with premixed combustion, the previous studies on non-

-premixed combustion are few. Therefore, in the present work, non-premixed combustion where
the flame is stabilized and burned completely inside the porous matrix is investigated using the
proposed mathematical model. To the best knowledge of the authors, the proposed model with
the current approach has not been reported in the literature.

2. Mathematical formulation

The numerical model includes fully compressible, chemically reacting continuity, energy, Navier-
-Stokes and species transport equations. The transient model treats the methane combustion
kinetics using a one-step reaction including four species which are CH4, O2, CO2 and H2O.

2.1. Governing equations

In the present study, the porous medium is assumed to be homogeneous and thermally
isotropic. Such a model can be used if the mass flow density, pore diameter and porosity are
not too high and if the heat transport properties and the temperature are not too low. This
model was successfully employed in the investigation of methane-air non-premixed combustion
in porous media (Brenner et al., 2000). Numerical calculations were consistent with experimen-
tal data. Further, the same model was used to numerically investigate porous combustion for
HCI synthesis (Wawrzinek et al., 2001) wherein the adiabatic flame temperature and flame speed
were successfully carried out. Accordingly, the saturated fluid within the medium was considered
in a local thermodynamic equilibrium (LTE) with the solid matrix (Pakdee and Rattanadecho,
2011). The validity regime of local thermal equilibrium assumption was established (Marafie
and Vafai, 2001). The fluid flow was unsteady, laminar and incompressible. The pressure work
and viscous dissipation were all assumed negligible. The thermophysical properties of the porous
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medium were taken to be constant. The Darcy-Forchheimer-Brinkman model was used to repre-
sent the fluid transport within the porous medium (Marafie and Vafai, 2001). Brinkmann’s and
Forchheimer’s extensions treated the viscous stresses at the bounding walls and the non-linear
drag effect due to the solid matrix respectively (Marafie and Vafai, 2001). Furthermore, the solid
matrix was made of spherical particles, while the porosity and permeability of the medium were
assumed to be uniform throughout the rectangular domain.
We neglect body forces, the Soret and Dufour effects and gas radiation. Although a one

dimensional problem is considered in this work, the transport equations expressed below are
in generalized forms for multi-dimensional systems. Equations (2.1) are conservation of mass,
momentum, energy and species transport equations, respectively
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where Yk is the mass fraction of species k in the gaseous mixture. N is the number of reacting
species k excludingN2. Therefore,N = 4. The mass fraction of N2 can be found by using the con-
straint that summation of the mass fractions of all the species is one (Pakdee and Mahalingam,
2003). The symbols K and ε denote permeability and porosity of the medium, respectively.
The stress tensor is given by
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(2.2)

The total energy per unit mass is

et = e+
1

2

1
∑

k=1

u2k (2.3)

where e is the internal energy per unit mass
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4
∑
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p

ρ
(2.4)

The enthalpy h is computed taking into account the fluid and solid portions of the porous
medium as

hk = h
0
k + ε

T
∫

T0

Cpk(T
′) dT ′ + (1− ε)CpsT

Cpeff = εCp + (1− ε)Cps

(2.5)

The specific heat for the mixture gas is given by

Cp(T ) =
4
∑

k=1

YkCpk(T ) (2.6)
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Heat fluxes qj amount to

qj = −λeff
∂T

∂xj
+ ρ

4
∑

k=1

hkYkVkj (2.7)

where the effective thermal conductivity is

λeff =
εµCp

Pr
+ (1− ε)λs (2.8)

And the Fickian velocity based on Fick’s law of diffusion is expressed by

Vkj = −εDk
1

Yk

∂Yk

∂xj
(2.9)

The diffusive flux of each species is a function of its concentration gradient. The diffusion model
with the Schmidt approximation number Sc by Smooke and Giovangigli (1991) is used to model
the diffusion coefficient for individual species k as

Dk =
µ

ρSck
(2.10)

2.2. Numerical approach

In the present study, we consider nonpremixed flames of the methane-air mixture. A one
dimensional 6.0 cm domain with a uniform finite difference grid resolution of 256 found to be
adequate to resolve the smallest reaction zones, is utilized. Gaseous methane from the left side
reacts with oxygen gas from the right side in the domain. The iterative finite difference method is
used to solve the transient governing equations subject to their corresponding initial and bound-
ary conditions. Approximation of the convective terms is based on an upwind finite differencing
scheme, which correctly represents the directional influence of the disturbance. Spatial deriva-
tives are discretized using a sixth-order accurate compact finite-different scheme (Lele, 1992).
Such a scheme accurately models the behavior of the acoustic wave and ensures a reasonable
spectral resolution for both the amplitude and phase of the solution. Simulations at the bound-
ary and in the nodes adjacent to the boundary have the third and fourth order of accuracy,
respectively. A third-order Runge-Kutta scheme is applied to integrate the set of equations in
time. Although the problem presently studied is one-dimensional, this approach can be used for
multi-dimensional systems. For a two-dimensional system, all the governing equations can be
written in the form

∂f(x, y, t)

∂t
= Q(f, x, y, t) (2.11)

where f denotes any of the dependent variables of the flow system and the solution to this
variable at time t = t1 is represented by f(x, y, t1). The term Q(f, x, y, t) is the non-linear
operator of f that does not depend explicitly on t, and is the summation of values of all other
terms in the particular governing equation. The value of the function Q at time t = t1 depends
only on the solution function f(x, y, t1), x, y and t. That is, once the solution function f is
determined at a certain time, the function Q can then be evaluated using the finite difference
equations for the first and second derivatives. The solution f at the next time step can be
computed in three steps through the Runge-Kutta integration procedure.
The Courant-Friedrichs-Lewy (CFL) criterion is used for variable time-stepping. For a given

CFL number, the time step is determined according to the following criterion

∆t = min(∆tf,∆tc) (2.12)
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where∆tf and∆tc are the fluid and chemical times. The CFL numbers for the fluid and chemical
scales are chosen to be 0.6 and 0.005, respectively (Pakdee and Mahalingam, 2003).
Since the internal energy e is a function of temperature via equation (2.4) and the temper-

ature is not known either, the internal energy cannot be computed explicitly. In the present
study, the internal energy and temperature can be obtained simultaneously using the Newton-
-Raphson method, an iterative root finding method. We set up the function f from the definition
of internal energy as

f = e−
4
∑

k=1

Yk

T
∫

T0

Cpk(T
′) dT ′ +RT (2.13)

The derivative of f with respect to T is

f ′ = −Cp(T ) +R (2.14)

where Cp(T ) is the specific heat of the gaseous mixture as given in equation (2.6).
Finally, the temperature can be progressively estimated an iteration procedure given by

Tn+1 = Tn −
f(Tn)

f ′(Tn)
(2.15)

where n is the number of iteration.

2.3. Problem configuration initial and boundary conditions

CH4-air diffusion flame is investigated in a one-dimensional space with 6 cm in length. A
gaseous methane fuel on the left and the air on the right sides are placed in the domain. Con-
ditions at the two ends are handled using the modified Navier-Stokes characteristic boundary
conditions (NSCBC) with the nonreflecting conditions. The detailed procedure for deriving a
modified NSCBC is given in (Pakdee and Mahalingam, 2003). The one-dimensional span is dis-
cretized to have 600 intervals with 601 grid points. This high resolution ensures that the reaction
zone is adequately resolved. After the grid dependency has been carried out, a 600 resolution
was found to be sufficient to capture the flow and thermal behavior accurately.
Regarding the mechanical condition of porous media, the resistance to the temperature

cycle is the most important parameter. Therefore, ceramics that have a low thermal expansion
coefficient are favorable to avoid cracks within the porous structure. The ceramic materials
broadly used in applications of porous combustions are alumina (Al2O3), silicon carbide (SiC)
and zirconia. In the present work, alumina and silicon carbide are investigated.
Various structures of porous media used in porous burners include packings of spheres,

ceramic foams and ceramic fibres. Packings of ceramic spheres are used within the preheating
region and in the heat exchanger region to enhance the heat transfer rate (Brenner et al.,
2000). Within the combustion region ceramic foams or fibre structures are more efficient as their
porosities are higher. This results in greater radiative heat transfer as compared with packings
of spheres in addition to lower pressure loss. In the present study, the solid structure of a porous
medium is assumed thermally isotropic, and the porosity considered is assumed uniform with
the value of 0.8.

3. Results and discussion

In order to verify the accuracy of the proposed model, the results obtained by the present study is
validated against the predicted solutions for methane-air counterflow diffusion flames (Beltrame
et al., 2001). In their work, a one-dimensional flame was computed using OPPDIF code (Lutz
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Fig. 1. Numerical solutions of the diffusion flame problem computed from the present work and the
work of Beltrame et al. (2001): (a) temperature, (b) CH4 concentration, (c) O2 and H2O concentration

et al., 1996). The chemical kinetics was based on the modified GRI-MECH 2.11 (Bowman et al.,
1991). The data of the stabilized flame was extracted as it propagated downstream. Comparisons
of the results are shown in Figs. 1a-1c for spatial distributions of temperature and mole fractions
of the reacting species. It was found that both the solutions were in good agreement with the
previously published data (Beltrame et al., 2001). There appears a reaction zone in which high
gradients of scalars sustain the flame stability. The predicted peak temperature, location of the
flame front and species mole fractions agree reasonably well with the published data (Beltrame et
al., 2001). All the profiles are slightly shifted to the right relative to the published data. Although
the present calculation overpredicts the peak temperature, the difference is within 5.5%. In
addition to temperature, the peak values of H2O are within a 1% difference. The reasonable
agreement convincingly verifies the proposed model and numerical method. Next, investigation
of a porous non-premixed flame of a mixture gas is conducted with different porous materials. In
what follows, the combustion process thermal and flow behavior for various cases are analyzed.
The computed data are extracted and plotted. Figure 2 shows temperature distributions in
three cases including the free flame and different porous ceramics which are Al2O3 and SiC. The
reaction zone in the porous portion appears wider than in the free space since heat is spread
wider throughout the solid structure via heat conduction. As a result, fuel and air streams are
continuously preheated causing the flame temperature to be higher than that of the free flame
(Takeno et al., 1981).
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Fig. 2. Temperature profiles for different porous materials

Fig. 3. Profiles of species mole fractions for porous domains: (a) Al2O3, (b) SiC, (c) open space

As the materials used in the porous domain are compared, it is found that flame temperature
in the SiC structure is greater than that occurring in the Al2O3 structure. This is because SiC has
higher specific heat and lower thermal conductivity. Concentration profiles of various reacting
species in terms of the mole fraction are given in Fig. 3 for both materials. It can be observed
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that the reaction zone becomes broader for the porous space than the free space. Furthermore,
locations of the reaction zone found from the temperature profiles (Fig. 2) are consistent with
those indicated by the concentrations profiles. In the plane of the flame front at which CH4 and
O2 are completely consumed, amounts of CO2 and H2O become the highest and the temperature
reaches the maximum. Additionally, it is observed that the oxidation process of the fuel is slowed
down in the porous domain as compared to the free domain when the plane of the porous flame
is shifted to the right relative to the plane of the free flame.

Fig. 4. Mixture fraction for various media

In regard to different materials, the reaction zone for the Al2O3 medium is located farther to
the right. These findings are confirmed in terms of the mixture fraction in Fig. 4 as the mixture
fraction of Al2O3 is displaced to the rightmost relative to those of SiC and the free flame
respectively. Intense chemical reactions take place within the thin layers where the gradients of
species and temperature are high, which sustains the gaseous diffusion flames. Figure 5 shows
values of overall reaction rates for various cases of media. In Fig. 5 locations of the reaction rates
for various cases correspond to the locations of the flame plane previously described in Fig. 3. A
greater reaction rate is achieved with the presence of a porous medium due to energy recirculation
by passive preheating of reactant gases. Regarding different materials, CH4 is oxidized faster in
the SiC medium since SiC has thermal diffusivity higher than Al2O3. Moreover, the velocity
field and pressure distribution throughout the domain are given in Figs. 6a and 6b, respectively.
It is evident in Fig. 6a that the entire field for the Al2O3 case travels to the right side while
it moves to the left in other cases. Furtherly, as expected, the mixture gas travels faster in the
free-space domain than in the porous domain since in the porous domain there are inertial and
viscous effects due to the existence of the solid structure which slows down the gas flow. These
results are reasonably consistent with the location of reaction zones or flame fronts shown in
the previous figures. Lastly, the gas pressure within the porous material is considerably greater
than in the free space. This is mainly attributed to reduction of void volume over the entire
region and the fact that the mixture gas requires greater pressure to overcome the friction force
of porous surfaces.

4. Conclusion

A mathematical model with the proposed numerical procedure for solving an unsteady problem
of nonpremixed combustion in porous media is developed. The heat transport between solid
and gas phases is assumed to be local in thermal equilibrium. The accuracy of the model and
the numerical method are successfully validated against the previously published data. The
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Fig. 5. Reaction rate for various media

Fig. 6. Field variables: (a) velocity, (b) pressure

governing equations are discretized based on the sixth order accurate compact finite difference
approximation. The third-order Runge-Kutta method is applied to advance the solutions in
time. The numerical model is successfully validated by comparing the computed results with the
published data (Beltrame et al., 2001). The computed data including mixture gas temperature,



Numerical study of an unsteady non-premixed flame in a porous medium... 411

flow field and species concentrations are extracted and analyzed. The model is able to correctly
describe physical behavior of premixed combustion in a porous medium. The future work is to
incorporate detailed chemical kinetics for a detailed analysis of emission formation rates.
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