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For a metal ceramic functionally graded (FGM) ring plate, considering variations in physical
properties with temperature and a power-law distribution of material components along the
thickness direction, thermoelastic coupled nonlinear vibration equation in thermal environ-
ment is derived by means of Kirchhoff’s thin plate theory and the Hamiltonian principle.
The transverse nonlinear vibration differential equation of the inner and outside-clamped
ring plate under static load is obtained by using the Galerkin method; moreover, pertur-
bation solution of static deflection is carried out. An improved L-P method is employed to
solve the strongly nonlinear vibration equation. The vibration response and nonlinear nat-
ural frequency expression are developed. Through numerical examples, natural frequency
characteristic curves of the rotating FGM ring plate are plotted. The Runge-Kutta method
is applied to obtain vibration response, phase and power spectrum diagrams. The influence
of different parameters on natural vibration characteristics is analyzed. The results show
that analytical solutions are consistent with numerical solutions, and the natural frequency
decreases with an increase in the metal content and surface temperature, but grows with an
increase in the rotational speed.

Keywords: functionally graded ring plate, natural vibration, rotational motion, strong non-
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1. Introduction

In practical engineering applications, FGM ring plates are widely used in space and rotating
mechanical structures such as space shuttles engine combustion chambers, bearings, disks, etc.
Most of them may exhibit complex dynamic behavior because of operation in complex coupled
fields. Particularly, the existence of a temperature field affects stability and the running state of
ring plate components. Since a metal ceramic FGM can reduce thermal deformation and relieve
thermal stress at high temperature, a ring plate made of a metal ceramic FGM has a wide range
of applications in many fields, so it is particularly important to study vibration of metal ceramic
FGM ring plates.
Investigators have reported and discussed the dynamic behavior of rotating ring plate struc-

tures. Lamb and Southwell (1921) and Southwell (1992) were first to study the traveling wave
dynamics of a rotating circular thin plate. Norouzi and Younesian (2015) studied forced vi-
bration of a rotating disk under transverse load and obtained natural frequencies at different
rotational speeds. Chen and Chen (2007) analyzed non-axisymmetric vibration and stability
of a rotating sandwich ring plate by the finite element method and discussed the influence of
variation of parameters such as stiffness and thickness on vibration of the system. Hashemi et al.
(2009) combined the Mindlin plate theory with the second-order strain displacement hypothesis
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to establish a finite element formula for vibration analysis of rotating thick plates and studied
linear and nonlinear differences of the in-plane vibration of rotating plates.
A lot of research has been done on dynamic problems of functionally graded structures (FGS).

Hu et al. (2017) used the Bessel function as a mode function to study bifurcation and chaos of a
rotating annular thin plate with different boundary conditions in a magnetic field. In addition,
bending and vibration problems of FGM ring plates and shells in thermal environment were
studied. Ma and Wang (2003, 2004) examined nonlinear bending and post buckling behavior
of FGM circular plates under thermal mechanical loading. Yousefitabar and Matapouri (2017)
analyzed stability of FGM annular plates under three different temperature loads and proposed
an analytical solution for the thermal buckling load. Hu and Zhang (2012) discussed bifurcation
and chaos of an FGM circular plate with a fixed support. Nosier and Fallah (2009) generalized the
first-order shear deformation theory of von Karman and analyzed nonlinear axisymmetric and
asymmetric behavior of FGM ring circular plates under transverse mechanical loads. Malekzadeh
et al. (2011) used the difference orthogonal method to study free vibration of annular plates with
thin and medium thickness functionally graded structure in thermal environment on the basis
of the two-parameter elasticity. Żur (2018), based on the classical elastic theory, studied the
problem of axisymmetric and non-axisymmetric free vibration of a gradient annular plate with
an elastic support function. Dai and Dai (2016) obtained displacement and stress fields of an
FGM hollow disk under a change in the temperature field by a semi-analytical method. Shakouri
(2019) reported and analyzed free vibration of a functionally graded rotating conical shell in
thermal environment.
At present, the research on FGS is mainly focused on the critical internal force, thermal

stress and bending, however, the investigations on nonlinear vibration of FGS under coupled
fields are few. In this paper, considering the rotation effect, thermoelastic coupled strongly
nonlinear vibration of an FGM ring plate is investigated. Through analytical and numerical
solutions, the free vibration response and the natural vibration frequency expression of the
nonlinear system are obtained. In addition, the effect of the volume fraction index, rotational
speed and temperature on vibration characteristics of the system are given.

2. Basic equations

Consider that the material of a ring plate in a temperature field from the upper surface to the
lower surface is a gradually changing circular gradient from a metal to ceramics. As shown in
Fig. 1, the inner diameter of the ring plate is a, the outer diameter is b, the plate thickness is h.
The plate is rotating at the constant angular velocity Ω.

Fig. 1. The mechanical model of a rotating FGM ring plate
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2.1. FGM property parameters

The FGM properties present gradient changes along the thickness direction, and the material
physical parameters are

P = PcVc + PmVm = (Pc − Pm)Vc + Pm (2.1)

where Pc and Pm are physical parameters of ceramics and metal materials changing with tem-
perature. Vc and Vm are volume fractions of the ceramics and metal, respectively

Pc,m = P0(P−1T−1 + 1 + P1T 1 + P2T 2 + P3T 3)

Vc =
(2z + h
2h

)n
Vc + Vm = 1

(2.2)

where n is the volume fraction index; P0, P−1, P1, P2 and P3 are temperature correlation
coefficients determined by the material properties and experimental results.
It is assumed that Young’s modulus E and thermal expansion coefficient α are temperature-

dependent, the heat conductivity κ and density ρ are independent of temperature, and Poisson’s
ratio ν is set as a constant (Shen, 2007)

E(z, T ) = [Ec(T )− Em(T )]
(2z + h
2h

)n
+ Em(T )

α(z, T ) = [αc(T )− αm(T )]
(2z + h
2h

)n
+ αm(T )

κ(z) = (κc − κm)
(2z + h
2h

)n
+ κm ρ(z) = (ρc − ρm)

(2z + h
2h

)n
+ ρm

(2.3)

where Ec and Em are Young’s modulus, αc and αm are temperature-
-dependent expansion coefficients, κc and κm are heat conductivities, ρc and ρm are den-
sities of the ceramic and metal materials, respectively.

2.2. Heat conduction

According to the treatment method in (Yousefitabar and Matapouri, 2017; Hu and Zhang,
2012; Shen, 2007), the temperature distribution function is determined by a steady-state heat
conduction equation and the heat boundary condition. It is assumed that the temperature
field of the FGM ring plate is uniform in the plane of rθ. The temperature field varies non-
uniformly along the thickness, but does not change with time and structural deformation. The
one-dimensional heat conduction equation is as follows

−
d

dz

[
κ(z)
dT

dz

]
= 0 (2.4)

The thermal boundary conditions are

T
(h
2

)
= Tc T

(
−
h

2

)
= Tm (2.5)

The solution of Eq. (2.4) can be expressed by the following polynomials (Shen, 2007)

∆T (z) = ∆Tm + (∆Tc −∆Tm)η(z) (2.6)
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where ∆Tm and ∆Tc represent the temperature rise value from the initial temperature, and

η(z) =
1
β

[(2z + h
2h

)
−

κcm
(n+ 1)κm

(2z + h
2h

)n+1
+

κ2cm
(2n + 1)κ2m

(2z + h
2h

)2n+1

−
κ3cm

(3n + 1)κ3m

(2z + h
2h

)3n+1
+

κ4cm
(4n+ 1)κ4m

(2z + h
2h

)4n+1
−

κ5cm
(5n + 1)κ5m

(2z + h
2h

)5n+1]

β = 1−
κcm

(n + 1)κm
+

κ2cm
(2n + 1)κ2m

−
κ3cm

(3n+ 1)κ3m
+

κ4cm
(4n+ 1)κ4m

−
κ5cm

(5n + 1)κ5m
κcm = κc − κm

(2.7)

Then, the thermal internal force can be expressed as

NT =

h/2∫

−h/2

E(z, T )
1− ν

[α(z, T )∆T (z)] dz MT =

h/2∫

−h/2

zE(z, T )
1− ν

[α(z, T )∆T (z)] dz (2.8)

2.3. Kinetic energy and deformation potential energy

Let the deformation displacement components of any point in the ring plate be

ur1(r, θ, z, t) = ur(r, θ, t)− z
∂w

∂r
uθ1(r, θ, z, t) = uθ(r, θ, t) −

z

r

∂w

∂θ
w1(r, θ, z, t) = w(r, θ, t)

(2.9)

where ur, uθ and w are the midplane and transverse displacement of the ring plate, respectively;
t is the time variable.
Considering the effect of rotation, the expression for kinetic energy in rotating motion is

given as

T =
1
2

b∫

a

2π∫

0

h/2∫

−h/2

ρ(z)
[(dur1
dt
−Ωuθ1

)2
+
(duθ1
dt
+Ω(ur1 + r)

)2
+
(dw
dt

)2]
dr dθ dz (2.10)

According to the classical Kirchhoff plate theory, considering geometric nonlinearity and
axisymmetry, the expressions for the internal force and bending moment in the middle plane of
a ring plate are obtained as follows

Nr =

h/2∫

−h/2

E(z, T )
1− ν2

(εr + νεθ) dz −NT Nθ =

h/2∫

−h/2

E(z, T )
1− ν2

(νεr + εθ) dz −NT

Mr =

h/2∫

−h/2

zE(z, T )
1− ν2

(εr + νεθ) dz −MT Mθ =

h/2∫

−h/2

zE(z, T )
1− ν2

(νεr + εθ) dz −MT

(2.11)

where

εr =
∂ur
∂r
+
1
2

(∂w
∂r

)2
− z
∂2w

∂r2
εθ =

ur
r
−
z

r

∂w

∂r

are strain components in the middle plane.
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For axisymmetric problems, the potential energy Uε1 of bending deformation and potential
energy Uε2 of middle plane strain caused by deformation of the rotating ring plate are expressed
as

Uε1 =
1
2

R∫

0

2π∫

0

(Mrkr +Mθkθ)r dr dθ Uε2 =
1
2

R∫

0

2π∫

0

(Nrεr +Nθεθ)r dr dθ (2.12)

where kr and kθ are the middle plane curvatures.

2.4. Nonlinear vibration equation

According to the Hamiltonian variational principle, we can get
t2∫

t1

(δT − δUε1 − δUε2) dt = 0 (2.13)

where t1 and t2 describe the fixed integral time domain of integration.
Substituting Eqs. (2.10) to (2.12) into Eq. (2.13) and performing variational operations

on the displacement components ur, uθ and w, the integral expressions for δur, δuθ and δw as
independent variable components can be obtained. To satisfy Eq. (2.13), the terms corresponding
to δur, δuθ and δw in the r, θ and z directions are zero. Here, the axisymmetric vibration of the
plate is studied. Only vibrations in the direction of r and z are considered, hence, only the two
expressions of δur and δw are zero. Then, we obtain the vibration equations

−B1
(∂2ur
∂r2
+
1
r

∂ur
∂r
−
1
r2
ur
)
−B1

1− ν
2r

(∂w
∂r

)2
−B1

∂w

∂r

∂2w

∂r2

+B2
(∂3w
∂r3
+
1
r

∂2w

∂r2
−
1
r2
∂w

∂r

)
+A1

∂2ur
∂t2
−A1Ω

2(r + ur) +A2Ω2
∂w

∂r
= 0

−B1
(
∇
2ur +

ν

r

∂ur
∂r

)∂w
∂r
−B1

(∂ur
∂r
+
ν

r
ur
)∂2w
∂r2
−B1

[ 1
2r

(∂w
∂r

)3
+
3
2

(∂w
∂r

)2 ∂2w
∂r2

]

+B3∇4w +NT∇2w −B2
[∂3ur
∂r3
+
2
r

∂2ur
∂r2
−
1
r2
∂ur
∂r
+
1
r3
ur
]
+A1

∂2w

∂t2

−A3
( ∂4w
∂r2∂t2

+
1
r

∂3w

∂r∂t2

)
−B2

[1− 3ν)
r

∂w

∂r

∂2w

∂r2

]
+A3Ω2∇2w

−A2Ω
2
(∂ur
∂r
+
1
r
ur + 2

)
= 0

(2.14)

where ∇2 = (∂2/∂r2) + (∂/∂r)/r is the differential operator. B1,2,3 and A1,2,3 are coefficients of
stiffness

B1,2,3 =

h/2∫

−h/2

E(z, T )
1− ν2

(1, z, z2) dz A1,2,3 =

h/2∫

−h/2

ρ(z)(1, z, z2) dz

3. Galerkin discretization and static load effect

This paper studies a ring plate with the inner edge fixed and clamped, and the outer edge
constrained by clamped boundary constraints. The boundary conditions are

ur
∣∣∣
r=a
= 0 w

∣∣∣
r=a
= 0

∂w

∂r

∣∣∣∣∣
r=a

= 0

w
∣∣∣
r=b
= 0

∂w

∂r

∣∣∣∣∣
r=b

= 0
(
ν
∂ur
∂r
+
1
r
ur
)∣∣∣∣∣
r=b

= 0

(3.1)
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The time and space variables are separated. According to formulation of the displacement
function (Li et al., 2011; Chonan et al., 1986), the displacement solution in the r and z directions
satisfying the boundary condition is set as follows

ur = fU w = g(t)W (3.2)

where

U =
(r
b
−
a

b

)(r
b
− d
)

W = 1 +
r

b
+
r4

b4
+ E1

r2

b2
+ E2

r3

b3
+ E3

r5

b5
+ E4

r6

b6

Substituting Eq. (3.2) into Eq. (3.1), in order to meet the boundary conditions, the coeffi-
cients in the displacement function can be obtained as follows

d = 1 +
b− a

b+ ν(b− a)
E1 = −

4a4 + 20a3b+ 23a2b2 + 14ab3 + 3b4

a2(a2 + 4ab+ b2)

E2 =
a5 + 10a4b+ 30a3b2 + 24a2b3 + 9ab4 + 2b5

a3(a2 + 4ab+ b2)

E3 = −
b(2a4 + 11a3b+ 16a2b2 + 15ab3 + 6b4)

a3(a2 + 4ab+ b2)

E4 =
b2(a3b+ 6a2b+ 9ab2 + 4b3)
a3(a2 + 4ab+ b2)

(3.3)

Substituting the displacement function in Eq. (3.2) into Eqs. (2.14), yields

a1f + a2g2 + a3g + a4 = 0

b1g̈ + b2g + b3g2 + b4g3 + b5f + b6fg + b7 = 0
(3.4)

where

a1 =
b∫

a

[
−B1
(
U ′′ +

1
r
U ′ −

1
r2
U
)
−A1Ω

2U
]
Ur dr

a2 =
b∫

a

[
−B1
(
W ′W ′′ +

1− ν
2r
(W ′)2

)]
Ur dr

a3 =
b∫

a

[
B2
(
W ′′′ +

1
r
W ′′ −

1
r2
W ′
)
+A2Ω2W ′

]
Ur dr a4 = −

b∫

a

A1Ω
2Ur2 dr

b1 =
b∫

a

[
A1W −A3

(
W ′′ +

1
r
W ′
)]
Wr dr

b2 =
b∫

a

[
B3
(
W iv +

2
r
W ′′′ −

1
r2
W ′′ +

1
r3
W ′
)
+ (NT +A3Ω2)

(
W ′′ +

1
r
W ′
)]
Wr dr

b3 = −
b∫

a

[
B2
1− 3ν
r
W ′′W ′

]
Wr dr b4 = −

b∫

a

B1
[ 1
2r
(W ′)3 +

3
2

(
W ′)2(W ′′)

]
Wr dr

b5 = −
b∫

a

[
B2
(
U ′′′ +

2
r
U ′′ −

1
r2
U ′ +

1
r3
U
)
+A2Ω2

(
U ′′ +

1
r
U ′
)]
Wr dr

b6 = −
b∫

a

B1
[(
U ′′ +

1 + ν
r
U ′
)
W ′ +

(
U ′ +

ν

r
U
)
W ′′
]
Wr dr b7 = −

b∫

a

2A2Ω2Wr dr
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According to Eqs. (3.4), the transverse vibration equation of the ring plate can be obtained

d1g̈ + d2g + d3g2 + d4g3 + d5 = 0 (3.5)

where

d1 = b1 d2 = b2 −
a3b5
a1
−
a4b6
a1

d3 = b3 −
a2b5
a1
−
a3b6
a1

d4 = b4 −
a2b6
a1

d5 = b7 −
a4b5
a1

It can be seen from Eq. (3.5) that during rotation of the ring plate, the static deflection g0
caused by the static load term is generated in the direction of z. Then, the deflection of the ring
plate can be expressed as

g(t) = g0 + g1(t) (3.6)

where g1(t) is the disturbance deflection, and the static deflection g0 should meet the following
requirement

d2g0 + d3g20 + d4g
3
0 + d5 = 0 (3.7)

The solution of Eq. (3.7) can be expressed as

g0 = −
d4
3d5
+

3

√
−e1 +

√
e21 + e

3
2 +

3

√
−e1 −

√
e21 + e

3
2 (3.8)

where

e1 =
27d24d5 − 9d2d3d4 + 2d

3
3

54d34
e2 =

3d2d4 − d23
9d24

Finally, by substituting Eq. (3.6) into Eq. (3.5) and considering Eq. (3.8), the nonlinear
perturbation differential equation of the ring plate can be derived

ẍ(t) + ω20x(t) + η̃1x
2(t) + η̃2x3(t) = 0 (3.9)

where

x = g1 η̃1 =
d3 + 3d4g0
d1

η̃2 =
d4
d1

ω20 =
d2 + 2d3g0 + 3d4g20

d1

4. Improved L-P method for solving strongly nonlinear vibration equation

Considering that the differential equation of the FGM ring plate in thermal environment is
strongly non-linear, ε is introduced into Eq. (3.9), ε > 0. ε is not a small parameter, and with
η1 = η̃1/ε, η2 = η̃2/ε, one gets

ẍ(t) + ω20x(t) + εη1x
2(t) + εη2x3(t) = 0 (4.1)

For convenience of solution and analysis, the time variables are transformed as follows

ω2ẍ(τ) + ω20x(τ) + εη1x
2(τ) + εη2x3(τ) = 0 (4.2)

where τ = ωt, ω is the nonlinear natural vibration frequency of the original system to be
determined.
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To solve nonlinear Eq. (4.2), the transformation parameters are introduced

λ =
εω1

ω20 + εω1
(4.3)

Further, ω2 is expanded into a power series in λ near ω20, which gives

ω2 =
ω20
1− λ

(1 + δ2λ2 + δ3λ3 + · · · ) (4.4)

where ω1 and δi (i = 1, 2, 3, . . .) are undetermined transformation constants.
Expanding x in Eq. (4.2) into a power series in the new parameter λ, one obtains

x =
∞∑

n=0

λnxn = x0 + λx1 + λ2x2 + · · · (4.5)

Substituting Eqs. (4.3), (4.4) and (4.5) into Eq. (4.2) and collecting the coefficients of the
zeroth and first power terms of λ, we get approximate linear partial differential equations in
each order as

ẍ0 + x0 = 0

ẍ1 + x1 = x0 −
η1
ω1
x20 −

η2
ω1
x30

ẍ2 + x2 = x1 − δ2ẍ0 −
2η1
ω1
x0x1 −

3η2
ω1
x20x1

(4.6)

The initial values are x0(0) = a0, ẋ0(0) = 0. Let the solution satisfying Eq. (4.6)1 be

x0 = a0 cos τ (4.7)

Substituting Eq. (4.7) into formula Eq. (4.6)2, yields

ẍ1 + x1 =
(
a0 −

3ηa30
4ω1

)
cos τ −

η1a
2
0

2ω1
cos 2τ −

η2a
3
0

4ω1
cos 3τ −

η1a
2
0

2ω1
(4.8)

To eliminate the duration item, we obtain

ω1 =
3η2a20
4

(4.9)

The solution of Eq. (4.8) is

x1 =
η1a
2
0

6ω1
cos 2τ +

η2a
3
0

32ω1
cos 3τ −

η1a
2
0

2ω1
(4.10)

Similarly, substituting Eqs. (4.7) and (4.10) into Eq. (4.6)3 and eliminating the duration
term, we obtain

δ2 =
3η22a

4
0

128ω21
−
5η21a

2
0

6ω21
(4.11)

and

x2 = −
(5η1η2a40
32ω21

+
η1a
2
0

18ω1

)
cos 2τ −

( η2a30
256ω1

−
η21a
5
0

48ω21
−
3η22a

3
0

256ω1

)
cos 3τ

+
η1η2a

4
0

96ω21
cos 4τ +

η22a
5
0

1024ω21
cos 5τ −

η1a
2
0

2ω1
+
5η1η2a40
8ω21

(4.12)
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Finally, substituting Eqs. (4.7), (4.10) and (4.12) into Eq. (4.5), the analytical solution is
obtained as follows

x = a0 cos τ +
(λη1a20
6ω1

−
λ2η1a

2
0

18ω1
−
5λ2η1η2a40
32ω21

)
cos 2τ

+
(λη2a30
32ω1

−
λ2η2a

3
0

256ω1
+
λ2η21a

3
0

48ω21
+
3λ2η22a

5
0

512ω21

)
cos 3τ +

λ2η1η2a
4
0

96ω21
cos 4τ

+
λ2η22a

5
0

1024ω21
cos 5τ −

λη1a
2
0

2ω1
−
λ2η1a

2
0

2ω1
+
5λ2η1η2a40
8ω21

(4.13)

It can be seen from Eq. (4.13) that the free vibration solution of the system contains five
simple harmonic excitation and constant terms. The first-order nonlinear natural vibration fre-
quency of the ring plate is

ω = ω0
[
1 +
1
2
λ+
(19
48
−
20η̃21
27η̃22a

2
0

)
λ2 + · · ·

]
(4.14)

where λ = 3η̃2a20/(4ω
2
0 + 3η̃2a

2
0).

5. Numerical results and discussions

In this Section, vibration characteristics of the FGM ring plate with inner-clamped and the
outer-clamped boundary conditions, rotating in thermal environment are analyzed. Selected
is the inner diameter of the ring plate a = 0.3m, outer diameter b = 0.6m and the initial
surface temperature T0 = 300K. The FGM plate is composed of ceramics and metals. Density
and thermal conductivity of the component materials are respectively: Si3N4, ρc = 2370 kg/m3,
κc = 9.16W/(mK); SUS304, ρm = 8166 kg/m3, κm = 12.04W/(mK). The modulus of elasticity
and coefficient of thermal expansion change with temperature. According to (Reddy and Chin,
1998), specific material data for physical parameters of metals and ceramics is listed in Table 1.
Poisson’s ratio is set constant ν = 0.3.

Table 1. Temperature-dependent coefficients for ceramics (Si3N4) and metals (SUS304)

Material
Physical

P−1 P0 P1 P2 P3parameters

Si3N4
α [1/K] 0 5.8723e-6 9.095e-4 0 0
E [Pa] 0 348.43e+9 −3.07e-4 2.16e-7 −8.946e-11

SUS304
α [1/K] 0 12.33e-6 8.086e-4 0 0
E [Pa] 0 201.04e+9 3.079e-4 −6.534e-7 0

5.1. Law of change in natural frequency with different parameters

Figure 2 shows characteristic curves of the first-order nonlinear natural vibration frequency
of the rotating FGM ring plate with a change in the volume fraction index. Figure 2 presents that
when the volume fraction index is from n = 0 to n = 2, the natural frequency drops rapidly, and
then the rate of decrease gradually slows down. As the volume content of ceramics and metals
and n are power exponents, the metal content increases with n. Figure 2a (Ω = 3000 r/min,
h = 0.006m, Tc = 350K and Tm = 300K) shows that the larger the initial amplitude, the greater
the nonlinear natural frequency. In a linear system, the natural frequency is not dependent on the
initial condition but only related to natural parameters of the system. In a nonlinear system, the
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frequency is affected by the initial amplitude. Figure 2b (a0 = 0.006m, h = 0.006m, Tc = 350K
and Tm = 300K) shows that at the same volume fraction, the greater the speed, the greater the
frequency. Figure 2c (a0 = 0.006m, Ω = 3000 r/min, h = 0.006m) shows that as n increases,
the plate surface temperature affects the natural frequency. When only surface temperature
of ceramics increases, the natural frequency decreases, but when temperature of both ceramic
and metal surfaces increase, the frequency is smaller than that when only temperature on the
ceramic side increases.

Fig. 2. Characteristic curves of the frequency-volume fraction index: (a) effect of initial condition,
(b) effect of rotational speed, (c) the effect of surface temperature

Figure 3 presents characteristic curves of the natural frequency varying with rotational speed,
which indicates that the natural frequency increases with rotational speed and the increasing
rate becomes larger. Figure 3a (n = 1, h = 0.006m, Tc = 350K and Tm = 300K) shows
that the natural frequency increases as the initial deflection increases. Figure 3b (a0 = 0.006m,
h = 0.006m, Tc = 350K and Tm = 300K) depicts that the increasing n reduces the natural
frequency. Figure 3c (a0 = 0.006m, n = 1, h = 0.006m) shows that the natural frequency
reduces with an increase in surface temperature.

Fig. 3. Characteristic curves of frequency-rotational speed: (a) effect of initial condition, (b) effect of
volume fraction index, (c) effect of surface temperature

Figure 4 presents characteristic curves of the natural frequency varying with temperature
when only temperature of the ceramic side changes, but the metal surface temperature Tm = T0
is kept constant. It is noted that when the ceramic surface temperature Tc increases, because the
thermal film force term NT is negative in the stiffness term d2, the thermal internal force and
coefficient of stiffness decrease, hence, the natural frequency decreases. The curves in Fig. 4a
(n = 1, Ω = 3000 r/min and h = 0.006m), Fig. 4b (a0 = 0.006m, n = 1 and h = 0.006m)
and Fig. 4c (a0 = 0.006m, Ω = 3000 r/min and h = 0.006m) show that when temperature
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of the ceramic surface increases, the natural frequency decreases with a decrease in the initial
amplitude or rotational speed as well as with an increase of n. This is because growth of n may
increase the metal content and increase the average density. Decreasing the rotational speed
reduces the coefficient of stiffness.

Fig. 4. Frequency-ceramic surface temperature characteristic curves: (a) effect of initial condition,
(b) effect of rotational speed, (c) effect of volume fraction index

5.2. Law of variation of static deflection with different parameters

Figure 5 displays characteristic curves of static deflection of the rotating FGM ring plate
with different parameters. As shown in Fig. 5a (a0 = 0.006m, h = 0.006m, Tc = 350K and
Tm = 300K), static deflection is caused by rotational speed. When rotational speed is zero,
the static deflection is always zero even when the volume fraction index n increases. However,
when rotational speed is not zero and n increases, the static deflection grows first and then
decreases. This is because of the power relationship between the physical property parameters
of the FGM plate and the volume fraction index, and there is a maximum static deflection near
n = 2. According to Fig. 5b (a0 = 0.006m, h = 0.006m, Tc = 350K and Tm = 300K), it can be
concluded that the static deflection increases with an increase in rotational speed, but when n is
zero, the static deflection is a fixed value, which is because the plate degenerates into various
directions of an isotropic plate, and there is no uneven distribution for density of the plate in
the direction of z. Similarly, from Fig. 5c (a0 = 0.006m, Ω = 3000 r/min, h = 0.006m and
Tm = 300K), it can be seen that the static deflection increases with an increase in temperature
on the ceramic side surface. This is because the increase of surface temperature results in growth
of the thermal film force, which increases the static deflection. However, when the volume fraction
index is zero, the plate degenerates into an isotropic plate and there is no static deflection.

Fig. 5. Characteristic curves of static deflection as a function of different parameters:
(a) variation with n, (b) variation with Ω, (c) variation with Tc
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Figure 6 presents the phase diagram between the displacement and speed of the FGM ring
plate. Figure 6a (a0 = 0.006m, Ω = 3000 r/min, h = 0.006m, Tc = 350K and Tm = 300K)
indicates that the singularity is in the center, and the rotational speed of the ring plate at the
equilibrium position (x′ = 0, v′ = 0) decreases with an increase in the volume fraction index.
From Fig. 6b (a0 = 0.006m, n = 1, h = 0.006m, Tc = 350K and Tm = 300K), we note that the
rotational speed has an effect on the equilibrium position and the phase diagram. An increase in
the rotational speed moves the vibration equilibrium position to the left. As the rotational speed
increases, the static deflection term becomes larger. Then when the rotation speed increases from
Ω = 0 r/min to Ω = 3000 r/min and Ω = 6000 r/min, accordingly, the equilibrium position may
change from x = 0m to x = −0.000015 m and x = −0.0003m, and the speed at the equilibrium
position may also increase. Figure 6c (a0 = 0.006m, n = 1, Ω = 3000 r/min, h = 0.006m
and Tm = 300K) presents that for increasing the surface temperature of ceramics only, the
equilibrium position of the plate is basically the zero point, which means that the influence of
the static load is very small in this situation. As temperature increases, the nonlinear natural
frequency of the plate decreases, resulting in a decrease in the rotational speed of the equilibrium
position (x′ = 0, v′ = 0).

Fig. 6. The phase diagram: (a) the effect of n, (b) the effect of Ω, (c) the effect of Tc

5.3. Comparison of calculation results

Figure 7 shows a comparison between the analytical solution obtained by the L-P method
and the numerical solution obtained by the Runge-Kutta method for the nonlinear free vibra-
tion response of the FGM ring plate. In Fig. 7, the parameters are: a0 = 0.006m, n = 1,
Ω = 3000 r/min, h = 0.006m, Tc = 350K and Tm = 300K. The results show that the analytical
results agree well with the numerical ones.

Fig. 7. Comparison diagrams: (a) response diagram, (b) comparison of phase diagram
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Figure 8 presents the power spectrum of the FGM rotating plate. The parameters in Fig. 8
are the same as those in Fig. 6. Three points are respectively taken in Fig. 2a, Fig. 3a and Fig. 4a,
that is, when the initial value is a0 = 0.006m, three different volume fraction indexes (n = 0.5,
n = 1, n = 5), rotational speeds (Ω = 0 r/min, Ω = 3000 r/min, Ω = 6000 r/min) and surface
temperatures (Tc = 300K, Tc = 350K, Tc = 400K). In Fig. 8, the natural frequency from the
analytical solution can be obtained, and then numerical calculation is performed by the Runge-
-Kutta and Fourier transform method according to equation (3.6). Then the power spectrum
diagrams are given in Fig. 8 respectively. Table 2 shows the comparison results between the
specific analytical and numerical solutions. The results are basically consistent, which further
illustrates reliability of the analytical solution in this paper.

Fig. 8. The power spectrum of different parameters: (a) power spectrum for different n, (b) power
spectrum for different Ω, (c) power spectrum for different Tc

Table 2. Comparison of analytical and numerical solutions for natural frequencies

Figure Different Analytical Numerical
number parameters solution solution

n = 0.5 3740.3 rad/s 3768 rad/s
Fig. 2 n = 1 3283.9 rad/s 3266 rad/s

n = 5 2666.2 rad/s 2638 rad/s
Ω = 0 r/min 3149.9 rad/s 3140 rad/s

Fig. 3 Ω = 3000 r/min 3283.9 rad/s 3266 rad/s
Ω = 6000 r/min 3654.2 rad/s 3642 rad/s
Tc = 300K 3667.0 rad/s 3642 rad/s

Fig. 4 Tc = 350K 3283.9 rad/s 3266 rad/s
Tc = 400K 2840.4 rad/s 2826 rad/s

6. Conclusions

In this paper, based on the nonlinear elastic theory and improved L-P method, strongly nonlinear
natural vibration of an FGM ring plate is studied and an analytical solution and expression
for the natural frequency of the strongly nonlinear system are obtained. The results can be
summarized as follows:

• With an increase in the rotational speed, the natural frequency of transverse nonlinear
vibration of the FGM plate increases. Moreover, the rotational speed causes that the
static load may lead to an amplitude shift.
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• Compared with the linear system, the nonlinear natural vibration is affected by the initial
amplitude, where the natural frequency increases with an increase of the initial amplitude,
however, decreases with an increase of surface temperature of the plate.
• In thermal environment, the natural frequency firstly increases and then decreases with
growth of the volume fraction index. The static deflection increases with an increase of the
rotational speed and surface temperature.
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