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Stochastic uncertainty theory is used to develop a new Bingham model of magnetorheological
dampers superior to the existing model. Some input variables are defined as stochastic
variables by the stochastic factor method, and the stochastic Bingham model is developed
by the algebraic synthesis method. Curves of the damping force obtained by the stochastic
Bingham model and the Bingham model in the literature are compared with experimental
results, revealing that the curves obtained by the stochastic Bingham model are much closer
to the experimental curves. Therefore, we confirm that the stochastic Bingham model is
superior to the model from the literature.
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1. Introduction

Magnetorheological (MR) dampers have been widely studied because of their controllable
damping force, high shear yield limit and low energy consumption (Du et al., 2016). The
Ford corporation, which is the most famous magnetorheological fluid (MRF) supplier, first
began commercialization of MR dampers (Jia and Zhou, 2009). Stanway et al. (1987) first
established a Bingham model in the study of electrorheological dampers. Then, Shames
and Cozzarelli (1992) used the Bingham model to study damping force curves of MR
dampers. However, hysteretic characteristics and the shear thinning phenomenon were not
reflected by the Bingham model. Thus, Wereley et al. (1998) established a dual-viscosity
hysteresis model. To study stochastic vibration with hysteresis, Wen established a Bouc-
-Wen model (Wen, 1976). Then, the Bouc-Wen model was further investigated by a number
of researchers (Gan et al., 2016; Zaman and Sikder, 2015). Spencer et al. (1997) developed a
phenomenological model based on the Bouc-Wen model to improve the accuracy of the model.
Then, Miah et al. (2015) proposed a modified phenomenological model verified by experimental
results to describe nonlinear characteristics of rotary MR dampers. Additionally, a rotary MR
damper was designed for a vehicle seat and a phenomenological model was utilized to inves-
tigate the corresponding dynamic performances (Sun et al., 2016). Aguirre et al. (2012) used
a modified Dahl model to study the damping force of large MR dampers, and this model was
experimentally validated. A modified Sigmoid model was developed to investigate the damping
force of integrated MR dampers. and an experimental validation was conducted (Zhang et al.,
2017). Sapiński et al. (2016) developed an energy harvesting MR damper that converted vibra-
tion energy into electrical energy. Then, Ahamed et al. (2016) performed a review of energy
harvesting MR dampers. Recently, a self-sensing MR damper was developed and experimentally
validated (Hu et al., 2017). In terms of vibration control of MR dampers, the fuzzy control
theory is generally used (Yang and Cai, 2015; Liem and Ahn, 2016; Tang et al., 2017).
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In the investigations discussed above, geometric variables of MR dampers were only defined
as certain variables. However, the geometric variables are uncertain due to kinds of uncertain
factors in the engineering. If the geometric variables of MR dampers are defined as uncertain
variables, such as stochastic variables, a superior Bingham model of the damping force could be
obtained. A stochastic uncertain theory including a stochastic factor method and an algebraic
synthesis method was initially developed by Chen working at Xidian University (Chen, 1994).
We were the initial researchers to introduce the stochastic uncertain theory including a stochastic
factor method and an algebraic synthesis method in an English paper. We made an application
of this theory in another paper (Chen et al., 2018). This theory is introduced below.
In this paper, the stochastic uncertainty theory is utilized to investigate the damping force

obtained by a Bingham model from the literature under uncertainties of geometric variables. The
variation process of the damping force is regarded as a stochastic process. The piston diameter,
piston rod diameter, orifice length and orifice diameter are defined as stochastic variables with
the stochastic factor method. The stochastic Bingham model is established with the algebraic
synthesis method.

2. Bingham model by Ou (2003)

An MR damper is mainly composed of several components, including an upper cavity, lower
cavity, supplementary room, coil, piston, piston rod, and a damping hole, as shown in Fig. 1.

Fig. 1. Structure of the magnetorheological damper (Deng et al., 2008)

The Bingham model of an MR damper is established according to Ou (2003) in the following
Sections. The Bingham model is studied under the flow mode.
The shear stress and the shear rate of the MRF are defined as

τ = τa sgn (v̇1) + ηv̇1 v̇1 =
dv1

dy
(2.1)

where τ is the shear stress of the MRF, τa is the shear yield limit of the MRF, v̇1 is the shear
rate of the MRF, η is the dynamic viscosity of the MRF, v1 is the speed of the MRF, and
y represents the radial direction of the damping hole.
Equation (2.2) is obtained from Eq. (2.1)

dv1

dy
=





τ + τa
η

for τ < −τa

0 for |τ | ¬ τa

τ − τa
η

for τ > τa

(2.2)

According to the law of conservation of momentum, Eq. (2.3) is obtained as

dp

dx
=
dτ

dy
(2.3)
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where p denotes the pressure difference between the two ends of the piston, and x denotes the
axial direction. When the value of y = 0 (the middle position of the damping hole), the value of
τ = 0.
According to Eq. (2.3), the shear stress τ is described as

τ =
dp

dx
y (2.4)

Combining Eq. (2.2) and Eq. (2.4), the speed v1 is expressed as

v1 =





1

2η

(
−
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−
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)
[
h
(
−
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)
− 2τa

]2
for |y| ¬

ht

2

(2.5)

where h is the diameter of the damping hole.
When the MRF does not reach the yield limit, it only exhibits elastic deformation. When

the yield limit is reached, a velocity gradient in the y direction will be generated near the edge
of the hole. As shown in Fig. 2, there is no velocity gradient at the hc position, and a velocity
gradient appears at the ht position.

Fig. 2. Velocity distribution of the MRF (Ou, 2003)

The flow of the MRF is defined as

Q =

h/2∫

−h/s

bv1 dy (2.6)

where Q denotes the flow of the MRF, and b denotes width of the plate perpendicular to the
xy-plane when the damping hole is assumed to be the gap between the upper and lower plates.
Combining Eq. (2.5) and Eq. (2.6), the flow Q can be described as

Q =
b

12η

(L
p

)2[
4τ3a − 3τah

2
( p
L

)2
+ h3
( p
L

)3]
(2.7)

where L is length of the damping hole.
Equation (2.8) is obtained from a book by Tao (1997)

p =
12ηLQ

bh3
+
3Lτa
h

(2.8)

The flow Q can also be defined as

Q = Sv2 (2.9)

where S is the effective area of the piston, and v2 is the speed of the piston.
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The effective area S is defined as

S =
π(d21 − d

2
2)

4
(2.10)

where d1 is the piston diameter, and d2 is the piston rod diameter.
The values of sgn (v2) are described as

sgn (v2) =





1 for v2 < 0

0 for v2 = 0

−1 for v2 > 0

(2.11)

Combining Eqs. (2.7)-(2.11), and considering the friction force Ff and the opposite direction
between the damping force and the piston speed, the Bingham model in Ou (2003) is described
as

FT = −
3πηL(d21 − d

2
2)
2

4d1h3
v2 +

[3πL(d21 − d22)
4h

τa + Ff
]
sgn (v2) (2.12)

where FT represents the damping force obtained from the Bingham model by Ou (2003).

3. Stochastic Bingham model of an MR damper

The stochastic uncertainty theory includes the stochastic factor method, the algebraic synthesis
method and some calculation rules. The stochastic factor method and the algebraic synthesis
method are only described in Chinese in (Chen, 1994). And the calculation rules are also un-
systematic. In this Section, two methods of the stochastic uncertainty theory are described by
mathematical formulas, and the calculation rules are expressed clearly.

3.1. Expected values and mean square errors of the stochastic variables

The aim of the stochastic factor method is to obtain the expected values and the mean
square errors of the stochastic variables. The stochastic factor method is described as

A = ĀÃ i(A) = i(Ã)

E(Ã) = 1 σ(Ã) = i(Ã)E(Ã)

E(A) = ĀE(Ã) σ(A) = i(A)E(A)

(3.1)

where A represents a stochastic variable; Ā and Ã represent a certain value and the stochastic
factor of A, respectively; and E, σ and i represent the expected value, the mean square error
and the variation coefficient, respectively.
The stochastic uncertain theory including the stochastic factor method and the algebraic

synthesis method only researches the mean values and the mean square errors of stochastic
variables. d1, d2, L and h are defined as stochastic variables in Eq. (3.2). They do not have
certain constants, and their values are of a stochastic distribution. According to the stochastic
factor method, the stochastic variables d1, d2, L and h are defined as

d1 = d̄1d̃1 d2 = d̄2d̃2L = L̄L̃ h = h̄h̃ (3.2)

The expected value of each stochastic factor is

E(d̃1) = 1 E(d̃2) = 1 E(L̃) = 1 E(h̃) = 1 (3.3)
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Thus, the expected value of each stochastic variable is obtained as

E(d1) = d̄1E(d̃1) E(d2) = d̄2E(d̃2)

E(L) = L̄E(L̃) E(h) = h̄E(h̃)
(3.4)

The variation coefficient of each stochastic factor is expressed as

i(d̃1) = i(d1) i(d̃2) = i(d2) i(L̄) = i(L) i(h̃) = i(h) (3.5)

The mean square error of each stochastic factor is described as

σ(d̃1) = i(d̃1)E(d̃1) σ(d̃2) = i(d̃2)E(d̃2)

σ(L̃) = i(L̃)E(L̃) σ(h̃) = i(h̃)E(h̃)
(3.6)

Therefore, the mean square error of each stochastic variable is expressed as

σ(d1) = d̄1σ(d̃1) σ(d2) = d̄2σ(d̃2) σ(L) = L̄σ(L̄) σ(h) = h̄σ(h̃) (3.7)

3.2. Stochastic Bingham model

The aim of the algebraic synthesis method is to obtain the expected value and the mean
square error of a function including the stochastic variables. The algebraic synthesis method is
described as

Y = f(X1,X2,X3, . . . ,Xn)

E(G1) = j1[E(X1), σ(X1), E(X2), σ(X2)]

σ(G1) = m1[E(X1), σ(X1), E(X2), σ(X2)]

E(G2) = j2[E(G1), σ(G1), E(X3), σ(X3)]

σ(G2) = m2[E(G1), σ(G1), E(X3), σ(X3)]

...

E(Gn−1) = jn−1[E(Gn−2), σ(Gn−2), E(Xn), σ(Xn)]

σ(Gn−1) = mn−1[E(Gn−2), σ(Gn−2), E(Xn), σ(Xn)]

E(Y ) = E(Gn−1)

σ(Y ) = σ(Gn−1)

(3.8)

where Y represents the function, X1,X2,X3,Xn, G1, G2, Gn−2, Gn−1 represent the stochastic
variables; and f, j1,m1, j2,m2, jn−1,mn−1 represent the calculation relationship.

The rules of the mathematical operation among stochastic variables are given in Eqs. (3.9)-
-(3.14). A, B and C are variables, and D is a constant.

By Taylor expansion, the expected value and the mean square error of A are

A = f(B) E(A) = f [E(B)] +
1

2
f ′′[E(B)]σ2(B) σ(A) = f ′[E(B)]σ(B) (3.9)

The expected value and the mean square error of A are obtained with a second-order and a
first-order Taylor series, respectively.

The addition operation is described as

A = B + C E(A) = E(B) + E(C) σ(A) =
√
σ(B)2 + σ(C)2

A = B +D E(A) = E(B) +D σ(A) = σ(B)
(3.10)
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The subtraction operation is expressed as

A = B − C E(A) = E(B)− E(C) σ(A) =
√
σ(B)2 + σ(C)2

A = B −D E(A) = E(B)−D σ(A) = σ(B)
(3.11)

The multiplication operation is expressed as

A = BC E(A) = E(B)E(C)

σ(A) =
√
[E(B)σ(C)]2 + [E(C)σ(B)]2 + [σ(B)σ(C)]2

A = DB E(A) = DE(B) σ(A) = Dσ(B)

(3.12)

The division operation is described as

A =
B

C
E(A) =

E(B)

E(C)

[
1 +
( σ(C)
E(C)

)2]

σ(A) =
E(B)

E(C)

√( σ(B)
E(B)

)2
+
( σ(C)
E(C)

)2 (3.13)

The expected value and the mean square error of A2 are

E(A2) = E(A)2 + σ(A)2 σ(A2) = 2E(A)σ(A) (3.14)

The stochastic Bingham model of an MR damper is established by the algebraic synthesis
method and the basic expressions in Eqs. (3.9)-(3.14). The derivation process is described in the
following expressions.
The expected values and the mean square errors of d21 and d

2
2 are described as

E(d21) = [E(d1)]
2 + [σ(d1)]

2 σ(d21) = 4[E(d1)]
2[σ(d1)]

2

E(d22) = [E(d2)]
2 + [σ(d2)]

2 σ(d22) = 4[E(d2)]
2[σ(d2)]

2
(3.15)

For ease of calculation, some expressions are replaced by g1, g2, g3, g4, k1, k2, g5, g6, which are
expressed as

g1 = d
2
1 − d

2
2 g2 = g

2
1 g3 = Lg2 g4 = Lg1

k1 = h
3 k2 = d1k1 g5 =

g3

k2
g6 =

g4

h

(3.16)

Therefore, Eq. (2.12) can also be described as

FT =
3πη

4
v2g5 +

(3π
4
τag6 + Ff

)
sgn (v2) (3.17)

The expected values and the mean square errors of g1, g2, g3, g4 are expressed as

E(g1) = E(d
2
1)−E(d

2
2) σ(g1) =

√
[σ(d21)]

2 + [σ(d22)]
2

E(g2) = [E(g1)]
2 + [σ(g1)]

2 σ(g2) = 4[E(g1)]
2[σ(g1)]

2

E(g3) = E(L)E(g2) σ(g3) =
√
[E(L)σ(g2)]2 + [E(g2)σ(L)]2 + [σ(L)σ(g2)]2

E(g4) = E(L)E(g1) σ(g4) =
√
[E(L)σ(g1)]2 + [E(g1)σ(L)]2 + [σ(L)σ(g1)]2

(3.18)

The expected values and the mean square errors of k1 and k2 are described as

E(k1) = [E(h)]
3 + 3E(h)[σ(h)]2 σ(k1) = 9[E(h)]

4[σ(h)]2

E(k2) = E(d1)E(k1) σ(k2) =
√
[E(d1)σ(k1)]2 + [E(k1)σ(d1)]2 + [σ(d1)σ(k1)]2

(3.19)
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The expected values and the mean square errors of g5 and g6 are expressed as

E(g5) =
E(g3)

E(k2)

[
1 +
( σ(k2)
E(k2)

)2]
σ(g5) =

E(g3)

E(k2)

√( σ(g3)
E(g3)

)2
+
( σ(k2)
E(k2)

)2

E(g6) =
E(g4)

E(h)

[
1 +
( σ(h)
E(h)

)2]
σ(g6) =

E(g4)

E(h)

√( σ(g4)
E(g4)

)2
+
( σ(h)
E(h)

)2
(3.20)

Therefore, the stochastic Bingham model of an MR damper can be described as

E(FS) = −
3πη

4
v2E(g5) +

(3π
4
τaE(g6) + Ff

)
sgn (v2)

σ(FS) =

√
[
−
3πη

4
v2σ(g5)

]2
+
[3π
4
τaσ(g6) sgn (v2)

]2 (3.21)

where E(FS) and σ(FS) denote the expected value and the mean square error of the stochastic
damping force FS , respectively.

4. Experimental verification

4.1. Values of the variables

The Bingham model by Ou and Guan (1999) was the same as that by Ou (2003), and
the corresponding experimental work was primarily performed in Ou and Guan (1999). For
comparison with the experimental results, the values of the variables are taken from Ou and Guan
(1999). The external excitation isA sin(2πft). The variables and their values are given in Tables 1
and 2. The experiment was performed at Harbin Turbine Company Limited, located in China.
The main test equipment was an electro-hydraulic servo material test machine having a 500 kN
MTS system. The magnetorheological fluid was developed by Fudan University, located in China.
The input voltage was 9V; the maximum electrical current was 2A; and the maximum energy
consumption was 20W. The excitation amplitude was 15mm, and the excitation frequency
was 0.5 Hz. Because the reference paper describing the corresponding experimental work only
clearly gave the experimental curves (damping force with respect to displacement) under the
excitation amplitude of 15mm and the excitation frequency of 0.5Hz. To be compared with
the experimental curves, this paper uses the excitation amplitude of 15mm and the excitation
frequency of 0.5 Hz.

Table 1. Variables and their values, Ou and Guan (1999)

Variable Value

Density ρ [kg/m3] 9000

Kinematic viscosity νo [m
2/s] 10−4

Dynamic viscosity η [Pa·s] 0.9

Piston diameter d̄1 [mm] 100

Piston rod diameter d̄2 [mm] 40

Length of damping hole L̄ [mm] 40

Diameter of damping hole h̄ [mm] 2

Excitation amplitude A [mm] 15

Excitation frequency f [Hz] 0.5

Excitation cycle Tp [s] 2

Friction force Ff [N] 180
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Table 2. Relationship of I, B and τa, Ou and Guan (1999)

Electric current Magnetic induction Shear yield
I [A] intensity B [T] limit τa [Pa]

0.5 0.14 3125

1.0 0.19 3900

1.5 0.23 4350

2.0 0.25 5000

4.2. Results and discussion

4.2.1. Identification of the variation coefficient of the stochastic variables

The variation coefficient of the stochastic variables is a constant. According to professor Chen’
research results (Chen, 1994), the parameters having the same type and physical conditions,
such as geometrical dimensions, have the same variation coefficient, i.e., i(d1) = i(d2) = i(L) =
i(h) = i. The maximum damping force in the experiment when I = 0.5A is applied to identify the
variation coefficient of the stochastic variables. According to Ou and Guan (1999), the maximum
damping force in the experiment is 1.8667 kN when I = 0.5A. The variation coefficient ranges
from 0.01 to 0.30. When I = 0.5A, the expected values of the maximum damping force calculated
by the stochastic Bingham model under different variation coefficients are shown in Table 3.

Table 3. Expected values of the maximum damping force under different variation coefficients
for I = 0.5A

i max[E(FS)] [kN] i max[E(FS)] [kN]

0.01 1.7698 0.16 1.8343

0.02 1.7705 0.17 1.8429

0.03 1.7718 0.18 1.8520

0.04 1.7735 0.19 1.8617

0.05 1.7758 0.20 1.8720

0.06 1.7785 0.21 1.8829

0.07 1.7817 0.22 1.8944

0.08 1.7855 0.23 1.9065

0.09 1.7897 0.24 1.9192

0.10 1.7945 0.25 1.9326

0.11 1.7998 0.26 1.9466

0.12 1.8056 0.27 1.9612

0.13 1.8120 0.28 1.9765

0.14 1.8189 0.29 1.9925

0.15 1.8264 0.30 2.0092

If the expected value of the maximum damping force calculated by the stochastic Bing-
ham model is the closest to the maximum damping force in the experiment, the corresponding
variation coefficient is the variation coefficient of the stochastic variables. When i = 0.19, the ex-
pected value is 1.8617 kN, which is the closest to the experimental value of 1.8667 kN in Table 3.
Therefore, the variation coefficient of the stochastic variables is 0.19.

4.2.2. Experimental verification of the superiority of the model

According to Ou and Guan (1999), when the electrical current I = 0.5A, 1.0A, 1.5 A and
2.0A, the curves of the damping force obtained in the experiment are shown in Fig. 3. In this
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figure, the innermost curve to the outermost curve corresponds to electrical currents of 0.5A,
1.0A, 1.5 A and 2.0A. For a single curve, it looks irregular, and we only find a symmetrical
trend. Here, these curves are only used as standards for comparison. These curves are applied to
verify the superiority of the stochastic Bingham model. Therefore, these curves are not analyzed.
FE denotes the damping force obtained in the experiment.

Fig. 3. Variation in the damping force in the experiment with respect to the displacement (Ou and
Guan, 1999)

Fig. 4. Variation in the damping force obtained by the Bingham model in (Ou, 2003) with respect to
the displacement; (a) I = 0.5A, (b) I = 1.0A, (c) I = 1.5A, (d) I = 2.0A

According to the Bingham model established in Section 2, the curves of the damping force are
shown in Fig. 4. The curves of the stochastic damping force obtained by the stochastic Bingham
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Fig. 5. Variation in the expected value of the damping force obtained by the stochastic Bingham model
with respect to the displacement; (a) I = 0.5A, (b) I = 1.0A, (c) I = 1.5A, (d) I = 2.0A

model established in Section 3 are shown in Fig. 5. Figures 4 and 5 show that the damping force
increases with an increase in the electrical current. The reason for this phenomenon is that the
mechanical energy providing the damping force increases with the increasing magnetic energy,
which is generated by electrical energy. Because of periodic motion of the piston, the variation
curves of the damping force are symmetrical.

For ease of comparison among the curves obtained in the experiment, the Bingham model
by Ou (2003) and the stochastic Bingham model, the curves in Figs. 3, 4 and 5 are placed in
Fig. 6. The curves obtained in the experiment can be used as standards for comparison.

Figure 6 compares the damping force curves obtained from the stochastic Bingham model
and the Bingham model by Ou (2003) with the damping force curves obtained in the experiment
when the electrical current I = 0.5A, 1.0A, 1.5 A and 2.0A. The damping force curves obtained
by the stochastic Bingham model are closer to the experimental curves than the curves obtained
by Ou (2003), indicating that the stochastic Bingham model is much more realistic than Ou
(2003) model under the physical conditions described in Section 4.1. Therefore, the stochastic
Bingham model is superior to the Bingham model by Ou (2003) under the physical conditions
described in Section 4.1.
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Fig. 6. Variation curves of the damping force from the experiment, the stochastic Bingham model and
the Bingham model in (Ou, 2003); (a) I = 0.5A, (b) I = 1.0A, (c) I = 1.5A, (d) I = 2.0A

Fig. 7. Variation in the mean square error of the damping force obtained by the stochastic Bingham
model with respect to the displacement
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The variation curves of the mean square error for the damping force are also obtained by the
stochastic Bingham model established in Section 3, as shown in Fig. 7. The results show that
the mean square error of the damping force increases with the increasing electric current. This
phenomenon indicates that the mean value of the distances between the damping forces and the
mean damping force increases with the increasing electrical current. In comparison with Fig. 5,
we find that the mean square error of the damping force increases with the decreasing absolute
value of the expected value of the damping force. This phenomenon reveals a relationship between
the mean square error and the expected value for the damping force.

5. Conclusions

In this paper, a stochastic Bingham model of an MR damper is established by the stochastic
uncertainty theory. The piston diameter, piston rod diameter, orifice diameter and orifice length
are defined as stochastic variables by the stochastic factor method. The stochastic Bingham
model is established by the algebraic synthesis method. The following conclusions are drawn:

• The variation coefficient of the stochastic variables is identified by an experimental result.
And it is 0.19.

• Superiority of the stochastic Bingham model is verified with experimental results under
physical conditions described in Section 4.1. The damping force curves obtained by the
stochastic Bingham model and the Bingham model by Ou (2003) are compared with the
experimental curves respectively. The damping force curves obtained by the stochastic
Bingham model are closer to the damping force curves in the experiment than those
obtained by Ou (2003), indicating that the stochastic Bingham model is superior to the
Bingham model by Ou (2003) under the physical conditions described in Section 4.1.

• Some rules of the variation curves of the expected value and the mean square error for the
damping force are also revealed.
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