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The effects of axial compressive forces on free vibration frequencies of rotating machine
support beams are investigated taking into account their geometric stiffness. One class of
structures that has economic and strategic importance is the base of machines, which is
excited by vibrations induced by the supported equipment. These vibrations can affect the
structures or, more generally, may generate damage to the supported equipment and the
quality of production. They may also render human working conditions difficult. In the
current work, these effects are studied via mathematical modeling, numerical simulation
and experimental evaluation.
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1. Introduction

Dynamic characteristics of structures are known to depend on their stiffness and mass. Based
on these two elements, natural frequencies and vibration modes of a system can be determined.
However, the initial stiffness of a structure, computed in the unloaded state, can be affected by
the presence of loads, and this is called the geometric stiffness. This is the case of compression
loads which tend to decrease the stiffness, the vibration frequencies become lower. In the case of
tensile forces, one observes the opposite effect. This latter phenomenon is explored in the so-called
tensegrity structures, which work as cable-strut assemblies; their stiffness and self-equilibrium
states result from interaction of tension in cables and compression in bars, as shown by Ashwear
et al. (2016). Positive structural effects considering the influence of different pretension schemes
were also studied by Zhou et al. (2012). Changes in vibratory behavior due to changes in stiffness
produced by loading were reported by Chandravanshi and Mukhopadhyay (2017). These authors
found that this type of spring experiences a cycle of compressive and tension forces that alter
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its stiffness and conditions of operation, interfering with the dynamic response of the supported
system.

One type of structures of considerable economic and strategic importance for civil and mili-
tary industries is the machinery base, which is subject to vibrations induced by the supported
equipment. The importance of rotary machines can be measured by intensive research done
on the subject in the last years, as reported by Heindel et al. (2018). Application of rotors
in modern turbomachinery, particularly in the power generation industry, requires continuous
diagnosis and control, see Czajkowski et al. (2016). Vibration in rotating machinery is a re-
sult of dynamic forces caused by moving or unbalanced parts. Machines may vibrate at various
frequencies and amplitudes. These vibrations may affect safety of the structure itself, but, in
a more general case, they may have detrimental effects on the equipment and quality of the
manufactured product. They can also make the working environment of operators difficult. All
industrial sectors are subject to these problems, including sensitive fields of oil, wind and atomic
energy, marine structures and even high-rise buildings.

Certain cases related to structural engineering can be mentioned as examples of vibration
and resonance problems. The latter is defined as the tendency of a mechanical system to display
a large-amplitude response when the excitation frequency matches one of the system natural
frequencies. This may lead to violent swaying motion and even catastrophic failure. Maximum
amplitudes when passing through resonance frequencies are major concerns in the design of
machines, see Markert and Seidler (2001). Vibration problems in periodically excited beams
were studied by Patel et al. (2016), who investigated changes in their linear free vibration
frequency ratios. Wang et al. (2018) studied the resonance with respect to response analysis for
a turbine blade with varying rotating speed where the rotating blade was modeled as a cantilever
beam. Analytical and experimental studies of the resonance in beams were also conducted by
Ng et al. (2002) who numerically studied amplifier factors in a particular internal relation of
a system, and by Motallebi et al. (2016) who studied jump and bifurcation phenomena in the
forced vibration of nonlinear cantilever beams. Within the marine industry, the work of Lin et
al. (2009) exemplifies a resonance problem for a ship structure and its control. A research by
Zou et al. (2016) specifically addresses the longitudinal primary resonance response of a marine
propulsion shaft. An overview of vibration problems that include resonance aspects affecting
motors and their bases, including the Sommerfeld effect, was presented by Balthazar et al.
(2003). The Sommerfeld effect can be defined as the occurrence of differentiated phenomena
when the oscillating system interacts with the source of excitation.

When observing rotary machines in traditional applications, it is possible to verify that the
supported equipment is, as a rule, many orders of magnitude more valuable than the supporting
structure, both in terms of its cost of acquisition and potential damage. Reduction of quality
of production is possible if unacceptable vibrations lead to defects in the manufactured objects.
Consider, for example, the supporting structure of an industrial point welding robot for an auto-
motive bodywork. Excessive vibration can lead to imprecision in the welding process, affecting
the quality of the vehicle. Although equipment support structures are, in general, oversized,
and therefore usually not subject to the effects of geometric stiffness. The tendency of mod-
ern structural engineering is towards more slender members, due to the use of more efficient
and lightweight materials and increasingly powerful structural analysis tools. In this context, it
could be noted that new phenomena and emergent areas were addressed in a recent study by
Balthazar et al. (2018), concerning structures supporting unbalanced machines capable of only
limited power output. The motion of an oscillating structure excited by such energy sources is
accompanied by full interaction between these non-ideal motors and their supports.

The model analyzed in the current study is a steel beam supporting an unbalanced rotary
machine. It is assumed that the original design took care to keep the natural frequencies of
the system away from those of the excitation. The presence of axial compression forces, which
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reduce the geometric stiffness of the beam and, consequently, its natural frequencies, can lead to
unexpected, potentially dangerous resonance regimes. These effects were analyzed mathemat-
ically, numerically and experimentally. First, a mathematical model was developed, and then
numerical-computational simulations based on the finite element method (FEM) using academic
software were carried out. Finally, a laboratory dynamic tests of physical models to validate our
mathematical and numerical models have been performed.

2. Mathematical model

From the mathematical point of view, a beam in flexion constitutes a continuous system with
infinite degrees of freedom. A practical way to study motion of a beam is to associate it with a
system with a single degree of freedom (SDOF), by recognizing that its deformed axis can be
represented mathematically by a certain shape function that reproduces actual displacements,
and a generalized coordinate, conveniently chosen to represent their amplitude. Thus, the vi-
bration frequency can be found by equating the maximum deformation energy developed in the
motion to the maximum kinetic energy.

Of course, the accuracy obtained by this method depends entirely on the assumed shape
function that is chosen to represent the analyzed free vibration mode. The use of a function
in this manner was first proposed by Rayleigh (1877), and this approach found a wide range
of applications in mechanical vibration problems. The application of the concept of geometric
stiffness in engineering practice, as previously discussed, involves a support beam for a rotating
machine. Studies of vibration problems that take into consideration geometric stiffness can be
found in our previous works, Wahrhaftig (2013-2019).

Consider an unbalanced rotary machine mounted on a beam, subjected to an axial compres-
sive force. It is well known that such forces affect the geometric stiffness and, consequently, the
values of undamped free-vibration frequencies. If the structure is designed, as is usually the case,
with free vibration frequencies that are far from the machine service angular velocity fE, the
changes in the frequency due to geometric stiffness may lead to the appearance of potentially
dangerous resonance conditions. Consider also a simply supported Bernoulli-Euler beam AB, of
length L and moment of inertia I, as a support for a motor Eg, made of a linear elastic material
with modulus of elasticity E, as shown in Fig. 1. The applied axial compression force P is used
to change the geometric stiffness and, consequently, the natural frequencies of vibration f(P ) of
the structure. The eccentricity between the axis of the motor and the beam is initially ignored.

Fig. 1. Beam model: (a) parameters, (b) cross section

The vertical displacement of the midspan point is the generalized coordinate of the system.
The undamped vibration frequency in its first mode is obtained using Rayleigh’s method.

Consider that the vertical displacement of a generic section of the beam in Fig. 2 is given by

v(x, t) = φ(x)q(t) (2.1)

in which φ(x) is a shape function that satisfies the boundary conditions at the supports and
has a unit value at the central section of the beam, whose displacement with time q(t) is our
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Fig. 2. Analytical model

generalized coordinate. In this case, the shape function given in Eq. (2.2) is adopted, which is
the exact solution to the problem without the P load

φ(x) = sin
πx

L
(2.2)

Applying Rayleigh’s method, we compute the conventional bending stiffness K0 associated
with the first mode as a function of the material elasticity and the geometry of the cross section
as follows

K0 =

L
∫

0

EI
(d2φ(x)

dx2

)2
dx =

π4EI

2L3
(2.3)

where EI is the flexural bending stiffness, the product of the material modulus of elasticity and
the moment of inertia of the section. As a function of the axial force, the geometric stiffness KG
is

KG(P ) = P

L
∫

0

(dφ(x)

dx

)2
dx =

Pπ2

2L
(2.4)

The equivalent generalized mass of the system is

M =MC +MV (2.5)

where MC is a lumped mass at the midspan and MV is the generalized mass due to mass of the
beam given by

MV =

L
∫

0

mV φ(x)
2 dx =

mV L

2
(2.6)

in which mV is mass per unit length. Finally, the frequency of undamped free vibration (in
rad/s) is found to be

ω(P ) =

√

K(P )

M
(2.7)

taking the total beam stiffness as

K(P ) = K0 −KG(P ) (2.8)

The free undamped frequency of vibration in Hertz of the first mode, taking the sign of the
compressive force as positive, is given by

f(P ) =
ω(P )

2π
=
1

2

√

π2EI − PL2

L3(LmV + 2Mc)
(2.9)
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For numerical evaluation, we consider a simple supported beam with theoretical length L
equal to 2m and a cross-section as defined in Fig. 1b where t = 1.5mm is thickness of the
wall and h = 50mm is the external dimension of the square section. It is observed that the
presence of the compressive axial force P reduces the beam stiffness and, consequently, its natural
frequencies f(P ), and this may lead to unexpected, potentially dangerous resonance regimes.
This is illustrated in Fig. 3 by the intersection of the solid (beam) and dot (rotating machine)
curves. This condition is created by the frequency of the motor fE = 13.33Hz (800 rpm) and
the compressive axial force of 38.25 kN. The natural frequency of the beam is given by Eq.
(2.9). It was assumed that the material density is 7850 kg/m3, the lumped mass at the midspan
(motor mass) is equal to 4.57 kg, and the material modulus of elasticity is 205GPa. A numerical
simulation considering the creep of concrete can be found in Wahrhaftig et al. (2018).

Fig. 3. Structure excitation in the resonant regime

3. Computational modelling

To validate the mathematical models and experimental activity, numerical simulation using FEM
was carried out. This is basically an eigenvalues and eigenvectors problem, as given as

(K− ω2M)Φ = 0 (3.1)

where M is the structure mass matrix, and K is the structure stiffness matrix, which includes
the geometric stiffness parcel, in a similar way to Eq. (2.7). In Eq. (3.1), ω2 are the eigenvalues
and Φ are the eigenvectors in the FEM environment. Equation (3.1) is a n-degree polynomial
equation, commonly known as the frequency equation. The n solutions for ω2i are real and positive
in this case and are squares of the natural frequencies of the system. The known matrices for
the mass and stiffness of the six-degree-of-freedom planar beam finite elements are

M =
ρAL

420



















140 0 0 70 0 0
156 22L 0 54 −13L

42L2 0 13L −3L2

140 0 0
symmetric 156 −22L

4L2



















(3.2)

and
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K0 = E
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In Eq. (3.3), the value of the axial force P is computed in the previous static analysis. A single
span 3D beam model based on the previously defined geometry was simulated using ANSYS
software, academic version 19.0. As this was a 3D model, it was necessary to use a Poisson’s
coefficient of 0.3. The model has 80 elements, 161 nodes, and 483 degrees of freedom in total. A
mesh refinement with the analysis of convergence of results, variations of deformations smaller
than 0.01% for finer meshes, and a ratio of the Jacobian equal to one, without distortions, was
obtained.

4. Experimental evaluation

To validate the assumed hypothesis, a test bench was designed to perform a physical test,
consisting of a steel beam compressed by a hydraulic jack, supporting an unbalanced rotary
machine, using the theoretical/numerical approach described previously. When designing the
system, the frequency ranges of interest and the horizontal forces to be applied were predicted.
The model was then calibrated to the resonance of the first mode of vibration of the structural
system.

Figure 4 shows design details of the pinned and roller supports. The former consists of a
robust metallic axis with bearings on both sides, placed between short plates located above and
below and welded to a square plate fixed at the top of the beam. This prevents any horizontal
and vertical motion but allows rotation. Laterally, thick plates were designed to fix this set of
parts to the supporting beam by means of pins. The latter is similar to the former, with a
bearing of a smaller diameter added to the end of the axis at the point of contact with the
support and inserted into a U-shaped profile segment facing vertically inwards. There, a limiter
that eliminated the clearance between the bearing and the upper part of the U-shaped bearing
was added. Thus, the roller support allows all types of motion in the plane that contains the
beam axis, except for vertical motion.

Laterally, on both sides of the beam, U-shaped cold-formed metal profiles served as supports
for the central steel beam. Three transverse bracings were arranged along the profiles stiffening
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Fig. 4. Pinned (a) and roller support (b)

Fig. 5. Test apparatus: (a) 3D image, (b) final prototype
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the system in the transverse direction. All of these stiffeners had transport handles and height
variators at their extremities. The height variators were butterfly threaded screws with a small
circular plate in their extremity, enabling manual adjustment of the verticality of the system.
A set of metal parts formed by the union of other U-shaped profiles arranged at the side. The
flat plates placed above and below were mounted and joined by welding in order to build the
support for the hydraulic jack. This assembly was built before the roller support, outside the
theoretical length of the beam.

Figure 5 presents three-dimensional views of the prototype and its service conditions, as
on the testing day. The assembly formed in this way was also designed to provide the desired
inertial safety for the tests and had at least five times the mass of excitation.

5. Execution

A loading plan based on Eq. (2.9) was prepared in order to force a resonance at the predicted
frequencies for each level of the axial compressive force. Once the established force for each stage
has been applied, a frequency inverter was used to vary the frequency of the motor from zero to
a value little beyond the expected frequency for each axial compressive force level, as shown in
Table 1, and then returned it to zero. It is important to mention that the slenderness ratio of
the beam was equal to 101, a reasonable value for steel beams.

Table 1. Expected results

Force [kN] Frequency [Hz] Force [kN] Frequency [Hz]

0 22.95 35 14.41

5 21.93 40 12.73

10 20.87 45 10.79

15 19.75 50 8.41

20 18.56 55 5.02

25 17.28 57.76 (Buckling) 0.00

30 15.91

To compress the beam, a hydraulic jack with a capacity of 80 kN was used. The applied
compressive force was varied from zero to 55 kN at intervals of 5 kN. The tests were interrupted
when the horizontal force reached approximately 50 kN due to the collapse of the beam. It is
possible that the accumulated damage produced by application of the axial compressive force at
the previous loading stages contributed to this occurrence, even though all the stresses induced
to the beam were below the steel yield stress of 250MPa, which corresponds to a force of 72.75 kN
for the section used. It was assumed that there was no variation in the applied force due to the
hydraulic jack, although small oscillations around the set level were observed. It is important to
clarify that the jack was a new device, acquired specifically for being used in the experiment and
there was no record of any leakage. Interactions of similar nature, such as those present in the
supports, losing by friction and damping, and others present in the real system were disregarded.
Even so, the physics of the problem was preserved by the adopted model, given by dimension of
the parts and forces involved.

The response time histories of structural motions were acquired using a bi-directional ac-
celerometer with a measuring range of ±50g (where g is acceleration of gravity). The force was
controlled by a 200 kN capacity load cell HBM (2014). Both sensors were connected to a digital
data acquisition system and to a laptop computer. Both the accelerometer and the acquisi-
tion system, a transportable ADS 1800 with eight channels, were provided by Lynx Electronic
Technology (2014). The acquisition rate used for the experiment was 1000Hz.
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6. Results and discussion

A comparison between the mathematical model and FEM simulations is presented in Fig. 6.
These simulations agree well with Eq. (2.9) with an average difference between them of less
than 1%. All calculations were performed for the undeformed configuration of the beam. Dif-
ferences smaller than 1.98% were found when considering the longitudinal deformation in the
calculation of frequencies. An evaluation of the modal shapes in comparison to the analytical
solution given by Eq. (2.2) for different levels of the applied axial loading in the experimental
activity was also performed and can be observed for one case due the similarity to the others.
There is an average difference of 0.95% in relation to the adopted shape function, considering all
the forces acting on it. It was possible to observe that in all cases, the major differences occurred
at both extremities of the beam and were smaller towards the middle.

Fig. 6. Analytical and computational results: (a) frequency, (b) modal shape (typical)

Fig. 7. Representative temporal series (a) and FFT (b) (presented for 0 kN and 5 kN)

The results of the tests are summarized in a temporal series and using the fast Fourier
transform (FFT). Figure 7 exemplifies the system resonant frequencies for the levels of axial
compressive force of 0 kN and 5 kN. The resonant frequencies were obtained employing the
AqDAnalysis Program (Lynx Electronic Technology, 2014) with an interval of time considered
appropriate for this study, and using Hanning analysis windows, whose main characteristic is a
shape that is similar to a half cycle of a cosine wave.



1032 A.M. Wahrhaftig et al.

Based on the results obtained by the FFT analysis, it could be verified that the frequen-
cies remained almost unaltered for changes in the intensity of the applied axial compressive
forces (Table 2) contrary to the prediction of the mathematical model. Small variations, which
are usual in experimental activity, are observed around the average value of 22.22Hz (with a
standard deviation of 0.89). This experimental evidence led to construction of a new theoretical
consideration regarding physics of the problem. A new hypothesis treated the presence of the
hydraulic jack as a translational spring, the stiffness of which would cancel out the geometric
stiffness parcel.

Table 2. Experimental results obtained

Force [kN] Frequency [Hz] Force [kN] Frequency [Hz]

0 22.71 25 22.71

5 21.97 30 22.46

10 22.46 35 22.95

15 21.48 40 22.46

20 22.95 45 20.02

Average 22.22Hz

7. Consideration of a new hypothesis

A new computational model was therefore elaborated to evaluate this hypothesis. This new
hypothesis considers that the jack interferes with the vibratory system. This interference is
equivalent to the action of a translational spring, as shown in Fig. 8a, where Ks is the spring
stiffness coefficient to be experimentally determined. The computational simulation was also
adjusted to fit this new hypothesis, and a model including the translational spring can be seen
in Fig. 8b. It is useful to mention that springs have been widely applied in the modeling and
control of mechanisms of several orders, as affirmed by Fichera and Grossard (2017), and Nie et
al. (2018).

Fig. 8. Adjusted model: (a) analytical and (b) computational

The jack submitted to experimentation was manufactured by Bovenau (2018) and corre-
sponded to a CJ8-8700 model of 80 kN capacity, with a steel cylinder, diameter of 34mm and
length of 147mm. The hydraulic jack was compressed in a test machine with a 20mm cylinder
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elevation. A value of 83929 kN/m for the spring coefficient was obtained. The results of compu-
tational analysis support this adjustment in the mathematical model. That is, frequencies for
different levels of the compression force are balanced by the physical presence of the hydraulic
jack which acts by introducing a restored force. The results of these new simulations are shown
in Table 3. Compared to the experimental results, these frequencies have an average of 21.52Hz
with the average difference of only 2.7%.

Table 3. Results after adjustment of the model

Force [kN] Computationl [Hz] Experimental [kN] Difference [%]

0 22.81 22.71 −0.4

5 22.55 21.97 −2.6

10 22.19 22.46 1.2

15 22.02 21.48 −2.5

20 21.75 22.95 5.2

25 21.48 22.71 5.4

30 21.20 22.46 5.6

35 20.92 22.95 8.8

40 20.64 22.46 8.1

45 20.35 20.02 −1.6

Average 21.59Hz 22.22Hz 2.7%

It is important to keep in mind that the frequency of the unloaded beam without the
spring, calculated analytically and computationally, was 22.81Hz, and this value was found
to be 22.71Hz from the experiment, thus coinciding with the unloaded value. Imperfections in
terms of construction are therefore of importance in slender beams for these levels of forces. Also
it is important to realize the possibility of existing other restoring forces in the system actuating
concomitantly to that of the hydraulic jack to keep the experimental frequencies close from the
unloaded one.

8. Conclusion

A study of the dynamic behavior of a support beam for a rotating equipment, taking into
consideration the effect of axial compression forces acting on its geometric stiffness has been
presented. This study was carried out using mathematical models, numerical simulations and
laboratory tests of physical scaled models. The basic model elaborated was a metal beam under
axial compressive loads, in which variation in the fundamental frequency due to applied forces
could lead to resonances that are not predicted by linear theory. The effect on geometric stiffness
produced by axial compressive loading and the corresponding possibility of resonant regimes in
the structural support system were demonstrated through computation of natural frequencies.
In practice, the vibration shapes do not change with the application of such forces.
It was possible to conclude that from the theoretical point of view, resonance conditions can

occur due to an increase in the axial compressive force. However, experimental verification of this
phenomenon was compromised due to the physical presence of a hydraulic jack, which interfered
with observation by behaving as a translational spring, canceling the geometric stiffness and
restoring vibratory motions to the axially unloaded state. The mathematical model studied
in this paper offers a possible tool for preventing and control unwanted resonance regimes in
supporting structures for machines. It can be used as a form of vibration control to avoid
harmful effects on the equipment, production process and work environment of the operators.
In the further work, experimental investigation that takes into consideration gravitational loads
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needs to be conducted as well as further consideration of nonlinear aspects in the presented
system.
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