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This article presents results of comparative analysis of kinematics and dynamics of five
varieties of the parallelogram-based RCM mechanism applied in real-life designs of surgical
robots. Analyses were conducted using ANSYS Workbench v. 16.2. Obtained results allow for
formulation of guidelines concerning conscious selection of the form of the RCM mechanism
and assessment of its usefulness from the perspective of application in new solutions of
laparoscopic surgical robots.
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1. Introduction

Since the beginning of the 90’s, minimally invasive operations have become very popular and
widely performed surgical procedures as an alternative to traditional opening of the abdominal
wall. The main advantages of such procedures are, above all: smaller post-operative wounds and
lesser pain linked to their treatment, faster convalescence after the procedure, and the possibility
of a quicker return to health and everyday professional activity, a lower number of infections
in comparison to classical methods, lower cost of treatment related to shorter hospitalization,
and faster return from medical leave as well as a better cosmetic effect. These techniques are
successfully applied today in, among other fields, neurosurgery, urology, vascular surgery, cardiac
surgery, laryngology and orthopedics as well as many other disciplines of interventional medicine
(Kuo and Dai, 2009; Kuo et al., 2012). In the classical procedure, laparoscopy requires the
doctor to have many hours of pre-operative training, proper posture and hand positioning for
the purpose of operating the instrument. The great difficulty in each of the techniques listed is,
above all: non-intuitive performance of precise mirror movements with the instrument, narrow
field of vision of the endoscope as well as the method of removing excised organs. The size and
shape of actual tools used during operations and a schematic presentation of the idea of a typical
laparoscopic procedure are presented in Fig. 1. The development of new technologies in the field
of mechatronics and biomedical engineering has resulted in the fact that surgical robots assisting
surgeons in the operating room – e.g. the da Vinci robot (Taylor et al., 2016) – currently achieve
the greatest accuracy in performing the minimally invasive procedure.

Due to the specific nature of laparoscopic surgery, there is a need to work out a mechanism
for robots of this type that through a fixed geometric Remote Center of Motion (RCM) found
outside of the mechanism itself, will allow for problem-free operation of the surgical instrument,
inserted under the skin through small incisions (Fu et al., 2013; Pan et al., 2014; Roh et al.,
2015; Chen et al., 2015; Chng et al., 2016; Li et al., 2017; Lee et al., 2018; Bai et al., 2014; Yip et
al., 2014). Many scientific centers around the world are currently working on the parallelogram
mechanisms of this type, as can be seen in studies (Zong et al., 2008; Koseki et al., 2003; Choi
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Fig. 1. View of (a) typical size of surgical instruments use in laparoscopic surgery, (b) idea of
laparoscopy surgery

et al., 2013; Zhang et al., 2015; Hadavand et al., 2014). However, analyses determining the
suitability of applying solutions of this type in original designs are absent in these studies.

This paper presents the results of comparative analysis of five varieties of the parallelogram-
-based RCM mechanism most commonly applied in real-life designs of surgical robots. Anal-
yses are conducted using ANSYS Workbench v. 16.2. The results of analysis are intended to
contribute to better determination of usefulness of a given type of the RCM mechanism from
the perspective of its adoption in new surgical robot arm designs. This work constitutes a
continuation, expansion and supplementation of the knowledge described in the author’s work
(Trochimczuk, 2013; Trochimczuk et al., 2019).
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2. Materials and methods

In modern surgical robot solutions, a remote center of motion is provided by three methods:
i) through passive point (RCM) fixation, ii) kinematic point fixation (hardware method), and
iii) active point fixation (mechatronic control method) (Trochimczuk et al., 2019). The first of
these methods is the least popular and essentially concerns only the simplest robot designs.
The second is the most commonly encountered due to use of multiple varieties of the spherical
mechanism and the parallelogram mechanism. The third method is used, as a rule, with the
application of existing structures of industrial robots adapted to medical tasks.

The research problem undertaken in this article was formulated through definition, based
on reports in the literature, of five most commonly applied varieties of the parallelogram-based
RCM mechanism used to position the laparoscopic surgical instrument. Thanks to its simple
structure and high rigidity and, hence, high accuracy of the end effector movements, it is a
very popular design that has been successfully adopted by many designers in new surgical robot
solutions. Examples of applications are discussed in the works (Trochimczuk, 2013; Wang et al.,
2016). While reviewing the literature from the perspective of the usefulness of applied solutions,
the author noticed that there is a lack of descriptions confirming justification of an applied
kinematic solution and providing a guide for designing new constructions. A list of analyzed
results of studies is given in (Gijbels et al., 2014; Liu and Wang, 2003). The five configura-
tions of the kinematic structure selected for the purposes of original research are presented in
Fig. 2.

Fig. 2. Different structure of parallelogram RCM mechanisms: (a) configuration A, (b) configuration B,
(c) configuration C, (d) configuration D, (e) configuration E

For the purposes of analysis, it is accepted that the drives for moving the parallelogram
are situated, in each of the configurations, in kinematic pairs designated as A and B in
Fig. 2. A three-dimensional solid model was made for each kinematic structure in SolidWorks
2018 software. These models were then imported into ANSYS Workbench v. 16.2 software
(Fig. 3).

Stainless steel taken from the standard ANSYS library (Ansys, 2013) was accepted as the
material of all links of the mechanisms. A list of the weights of individual links made of this
material is given in Table 1. The following designations are adopted in the table: link 1 – weight
of the fixation link; link 2 – weight of the link forming the rotary pair A with the fixation link;
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Fig. 3. View of solid models in ANSYS Workbench: (a) configuration A, (b) configuration B,
(c) configuration C, (d) configuration D, (e) configuration E

link 3 – weight of the moving link forming the rotary pair B with link 2; link 4 – weight of
the 2nd moving link forming a rotary pair with link 2 parallel to link 3; link 5 – weight of the
link parallel to link 2; link 6 – weight of the link forming a rotary pair with link 5, serving
for fixation of the surgical instrument; link 7 – weight of the link (surgical instrument); link 8
– weights of additional links differentiating individual structures of the mechanism. For the
purposes of numerical simulations, constant loads were also assumed at the points: A = 40N,
B = 25N, acting according to the direction of gravity, arising from the weight of actual drives
used to move pairs of the mechanism (solutions from Harmonic Drive – FHA-17C and FHA-25C
– rotary actuators were adopted) as well as variable load at the TCP of the surgical instrument
P = ±50N simulating the maximum loading during resection or cutting of an organ. The
action of the force of gravity on the constructions was also simulated. The following parameters
were accepted in every rotary joint of kinematic pairs: torsional stiffness = 0.005N·mm/deg
and torsional damping = 0.01N·mm·s/deg. Additionally, it was assumed that movement in the
rotary pairs (points A and B) was restricted to the range of ±45◦. Models prepared in this way
were subjected to further kinematic and dynamic analysis. For this purpose, modules of ANSYS
Workbench software were employed: 1) rigid dynamics, 2) modal and 3) harmonic response
(Ansys, 2013).

Table 1. Mass of links in selected mechanism configurations

Config. A Config. B Config. C Config. D Config. E

Total mass [kg] 52.1 55.578 52.722 54.624 53.122

Link 1 [kg] 7.5477 7.5477 7.5477 7.5477 7.5477

Link 2 [kg] 18.075 18.075 18.075 18.075 18.075

Link 3 [kg] 4.687 5.195 4.76 4.687 4.76

Link 4 [kg] 4.76 4.687 4.687 5.195 4.76

Link 5 [kg] 11.415 11.415 11.415 11.415 11.415

Link 6 [kg] 3.4287 4.5317 3.4287 5.4317 3.4287

Link 7 [kg] 0.92315 1.0842 0.92315 1.0842 0.92315

Link 8 [kg] 1.2639 3.043 1.8856 2.0885 2.2123
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2.1. Kinematic analysis of parallelogram mechanisms

For the purposes of assessing the kinematics of the parallelogram mechanism, tests of changes
of the TCP position of the surgical instrument end effector as well as tests of changes of TCP
velocity and acceleration were performed in the ANSYS Rigid Dynamics module on the assump-
tion of displacements of links in the mechanism according to the adopted scenario: rotation by
angle +45◦ over time of 1 s in the rotary pair designated as A; return to initial position over time
of 1 s; rotation by angle −45◦ over time of 1 s in the rotary pair designated as A in Fig. 2; return
to the initial position over time of 1 s. Next, the same scenario is repeated with respect to the
rotary pair designated as B in Fig. 2. After such displacement, simultaneous motion occurs in the
rotary pairs A and B according to the scenarios described above. The phase of the full scheme of
movements lasts 48 seconds, and over its duration, a force of +50N with an orientation opposite
to the force of gravity acts on the end effector for a time of 24 s, and for the next 24 seconds,
a force of −50N oriented consistently with the force of gravity. This test was conducted once
for configuration A, since each of the designed mechanisms would have the same motion due to
identical geometric sizes of the links making up the parallelogram.

To describe the forward kinematics task of the parallelogram mechanism the D-H notation is
used. A manipulator in its basic configuration (without additional links differing in the analyzed
configurations) is analyzed. The procedure described below is analogous with respect to all
manipulator configurations defined in the paper. We obtain a transformation matrix for the
parallelogram mechanism to configuration A (Fig. 2a)

A
PT =











A11 A21 −sθ1 A41
A12 A22 0 A42
A13 A23 0 A43
0 0 0 1











(2.1)

where A
P
T is transformation matrix of the P point coordinate system relative to A point coordi-

nate system, and

A11 = c(β + θ2)cθ1cθ3cθ4 − c(β + θ2)cθ1sθ3sθ4

A12 = c(β + θ2)cθ3cθ4sθ1 − c(β + θ2)sθ1sθ3sθ4

A13 = s(β + θ2)sθ3sθ4 − c(β + θ2)cθ3cθ4

A21 = −c(β + θ2)cθ1cθ3sθ4 − c(β + θ2)cθ1cθ4sθ3

A22 = −c(β + θ2)cθ3sθ1sθ4 − c(β + θ2)cθ4sθ1sθ3

A23 = s(β + θ2)cθ3sθ4 + s(β + θ2)cθ4sθ3

A41 = [c(β + θ2)cθ1cθ3cθ4 − c(β + θ2)cθ1sθ3sθ4]l4 + c(β + θ2)cθ1l2 + c(β + θ2)cθ1cθ3l3

A42 = [c(β + θ2)cθ3cθ4 − s(β + θ2)sθ3sθ4]l4 − s(β + θ2)cθ3l3 − s(β + θ2)l2

A43 = l1 − [s(β + θ2)cθ3cθ4 − s(β + θ2)sθ3sθ4]l4 − s(β + θ2)cθ3l2 − s(β + θ2)l2

where

cθi = cos θi sθi = sin θi

and θi is the angle from Xi−1 to Xi measured about Zi, θ1 – angle of rotation in A, θ2 – angle
of rotation in C, θ3 = 90

◦
− (θ2 + β), θ4 = −β, β – angle of inclination of the H-P link over 90

◦

with respect to A-C link, l1 – distance from A to C measured along Z axis, l2 – distance from
C to G measured along X axis, l3 – distance from G to H measured along X axis, l4 – distance
from H to P measured along X axis.
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2.2. Dynamic analysis of parallelogram mechanisms

For the purpose of comparing the dynamics of five forms of the parallelogram mechanism,
a test was performed for assessing changes in the values of potential energy, kinetic energy,
total energy and internal energy over the duration of the mechanisms motion, according to
the motion scheme described in Section 2.1. The Ansys Rigid Dynamic module was used for
this purpose. Kinetic energy due to motion of parts in a transient analysis is calculated as
0.5*omegaT*Inertia*omega for rotations. Potential energy is calculated as the sum of the po-
tential energy due to gravity and the elastic energy stored in springs. The potential energy due
to gravity is proportional to the height of the body with respect to a reference ground. External
energy is calculated as the sum of all the energy the loads and joints bring to a system. The
total energy is the sum of potential, kinetic and external energies in the Rigid Dynamics analysis
(Ansys, 2013). Other parameters of the test were the same as in the test described in Section 2.1.

2.3. Modal (natural frequency) analysis of parallelogram mechanisms

For the purpose of comparing different structures of the parallelogram mechanism, a com-
parison of the frequency of natural vibrations was also conducted for each of the constructions,
forming the basis for further investigations of dynamics. The Ansys Modal module was used, in
which linear analysis was performed. It was assumed that only such test results corresponding to
the practical ranges of use of the assumed drives moving a given construction would be selected,
i.e. within the range from 1Hz to 100Hz, or 1-100 rotation/s. For the purposes of simulation, a
finite element mesh was generated automatically in the case of configuration A, yielding: 16497
nodes and 6695 elements; in the case of configuration B: 18510 nodes and 7779 elements; in the
case of configuration C: 17097 nodes and 7016 elements; in the case of configuration D: 18097
nodes and 7582 elements; in the case of configuration E: 17804 nodes and 7183 elements. A fixed
support is defined on the wall of link 1.

2.4. Amplitude and phase response analysis of parallelogram mechanisms

In order to assess the amplitude response and phase response with respect to frequency,
as well as to evaluate the values of the resultant deformations, the results of the previous test
in the Ansys Modal module were used by linking the given module to the Ansys Harmonic
Response module. In this analysis, all loads as well as the structure response vary sinusoidally
at the same frequency. A typical harmonic analysis calculates the response of the structure to
cyclic loads over a frequency range (a sine sweep) and obtains a graph of some response quantity
displacements versus frequency (Ansys, 2013). Harmonic analysis are used to verify whether or
not the design structure will successfully overcome resonance, fatigue and other harmful effects
of forced vibration (Ansys, 2013). Loads in the kinematic pairs A and B resulting from the action
of drive weights and the load of the surgical instrument were simulated in the same manner as
described in Sections 2.1 and 2.2. Responses were obtained for frequencies from 1 to 100Hz,
with a step of 1Hz. A fixed support is defined on the wall of link 1.

3. Results

As a result of conducted simulations of operation with the use of ANSYS Workbench v. 16.2
software, sets of results were obtained. On their basis, charts comparing the constructions of
parallelogram RCM mechanisms were made. These results were presented in the form of charts
using Microsoft Excel 2010 and Matlab 2015a software.
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Figures 4-6 present the results of assessment of the change in position, velocity and acceler-
ation of TCP on the X, Y and Z axes of the surgical instrument, in the chart form, for each
structure with respect to the specific instant of time in which such motion is performed.

Fig. 4. Position of TCP point of surgical instrument in X , Y , Z axis

Fig. 5. Velocity of TCP point of surgical instrument in X , Y , Z axis and total velocity

Fig. 6. Acceleration of TCP point of surgical instrument in X , Y , Z axis and total acceleration
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Figures 7-10 contain charts presenting a comparison of changes in potential, kinetic, total
and external energy in the tested configurations A-E.

Fig. 7. Graphs of results of comparative analysis of potential energy of all RCM mechanisms

Fig. 8. Graphs of results of comparative analysis of kinetic energy of all RCM mechanisms
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Fig. 9. Graphs of results of comparative analysis of total energy of all RCM mechanisms

Fig. 10. Graphs of results of comparative analysis of external energy of RCM mechanisms

Figure 11 compares maximum values of potential, kinetic, total and internal energy in each
of the tested configurations.

Figures 12 and 13 present the results of the frequency response under loads acting on the
end effector with values of +50N and −50N, respectively.

Figure 14 presents the results of conducted modal analysis of the parallelogram mechanism
in the tested configurations AE.

Figure 15 presents the response of the construction in the form of deformations to a periodic
sine input function.



920 R. Trochimczuk

Fig. 11. Graphs of comparative analysis of the maximum value of energy of all RCM mechanisms

Fig. 12. Graphs of the comparative frequency response of all RCM mechanisms – force +50N

4. Discussion

• Tests of the kinematics of a multi-link mechanism in ANSYS software (e.g. determina-
tion of the position, velocity and acceleration of a selected point of the structure) make
it possible to rationally plan a strategy for future control of the mechanism. In the case
of the paralellogram RCM mechanism, regardless of the adopted configuration, we obtain
the same result of displacement, velocity and acceleration of TCP of the surgical instru-
ment. It is rational to supplement kinematic testing of the RCM mechanism with static
numerical tests of stresses, rigidity and deformations of the structure under the action of
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Fig. 13. Graphs of the comparative frequency response of all RCM mechanisms – force −50N

Fig. 14. Graphs of results of modal analysis of all configuration of RCM mechanisms
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Fig. 15. Graphs of the comparative phase response of all RCM mechanisms

external forces, in order to quantify the magnitude of deformations in the structure of the
mechanism, which has an influence on the change of TCP position.

• The most beneficial weight ratio of the tested mechanisms is obtained, in order from the
best to worst, in configurations A, C, E, D, B; which simultaneously translates to lower
values of potential, kinetic, total and internal energy compared to other configurations.
Considering the best and worst case (configurations A and B), with regard to potential
energy, the difference between the systems is 23.87% to the detriment of configuration B.
Whereas the difference in kinetic energy is approx. 33.45%, in total energy 24.09%, in
internal energy 24.74%. Considering this criterion, a drive of lower power can be applied
in configurations A, C and E (the most favorable), which may affect the final price, weight
and energy consumption required to control the mechanism. Configurations D and B are
cast in an unfavorable light in this comparison. Considering this criterion, configuration A
remains the best for selection as its total and internal energy is 2.33% lower than in
configuration C, and 3.92% lower than energy in configuration E.

• Modal analysis made it possible to determine the frequency of natural, unattenuated vibra-
tions. Obtained results indicate that in the case of configurations A, B, C, the frequencies
of natural vibrations with values of approx. 50-60Hz may cause maximum deformations
of the construction of the order of 10mm. For configurations D and E, at the same fre-
quencies, deformations are nearly 47% larger. At a frequency of about 90Hz, deformation
values of configurations A, C, E of the parallelogram reach up to approx. 16-18mm. Con-
figurations B and D have smaller deformations, however at a lower frequency, i.e. approx.
60Hz.

• Frequency responses of parallelogram mechanisms within the frequency range from 1 to
100Hz (Figs. 12 and 13) indicate that it is most favorable to control the structures of
the RCM mechanisms in configurations E, A, C within the range from 1 to 55Hz. Within
the range from 55Hz-100Hz, the places where resonances may occur are observed. In this
respect, configurations B, D and E are the least favorable (in these configurations, the
amplitudes exceed 1mm in the worst case). At low frequencies up to 10Hz, in the case of
configuration B, high amplitude values (up to 1mm) are also visible. At a frequency of ap-
prox. 20Hz, configuration D also displays a significant amplitude, indicating the potential



Comparative analysis of RCM mechanisms based on parallelogram... 923

for resonance. Analysis of the evolutions of the phase angle allows for the statement that
each of the tested configurations is stable, since periodic transitions of the phase angle
within the range from −180◦ to 180◦ are observed. A change of the end effector load does
not cause significant changes in the amplitude of vibrations.

• Harmonic analysis made it possible to determine the phase-frequency response. It also
allowed for determination of the actual amplitude reached by displacement during long
exposure to the sinusoidally variable load lasting 720◦. In the analyzed cases, configura-
tions A and C appear to be the most favorable (in these cases, deformations are of the
order of approx. 5.5e-04mm). Configurations D and E are comparable but worse than the
aforementioned. The worst-case is configuration B, where deformations amount to approx.
2.3e-03mm and are nearly one order of magnitude greater than in cases A and C).

• In order the improve the accuracy of movements of the parallelogram mechanism in sur-
gical robots, one can use calibration techniques currently applied to industrial robots. A
description of a multilevel calibration technique can be found in the work by Guo et al.
(2015).

• Optimal designing of a surgical manipulator with a parallelogram mechanism can be
achieved with the application of numerical methods. The structure-control design method-
ology described in the work (Valdez et al., 2016) can also be used for this purpose.

5. Conclusions

The parallelogram-based RCM mechanism is a simple and effective solution that makes it possi-
ble to achieve fixed-point movements of a surgical robot end effector due to its simple structure
and an easy method of position control (with only two drives). The low weight of the mechanism
structure, high rigidity and, hence, high accuracy of the end effector movements, are rational
arguments in favor of the application of solutions of this type in new designs of active manip-
ulators in new surgical robots. The results of kinematic, dynamic numerical analyses as well as
modal analysis conducted in this work indicate that the mechanism with configuration A is the
most favorable structure. Alternatively, configurations C and D should also be considered for
applications in new designs.
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