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Elevated water tanks in an empty condition, though not important in structural design,
becomes an important problem in seismic design. The objective of the present research is to
investigate the elevated water tanks in empty and in filled conditions and to emphasize the
importance of seismic response. Four elevated tanks with various parameters are selected
for seismic analysis with the base isolation technique. It is found out that empty tanks are
highly vulnerable to earthquake effects, whereas filled tanks can be mitigated by providing
base isolation. A simple experimental investigation has also been carried out to validate the
analytical results.
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1. Introduction

Earthquake occurrence in Bhuj, Gujarat, India, on 26th January of 2001 left the entire country in
scare. The death toll and fatalities were immeasurable. Since then, researchers started realizing
that the scale of catastrophe could be reduced to a great extent if the buildings were constructed
as earthquake resistant. Indian code, namely (IS1893(Part 1):2002) gives the specifications to
be followed for designing earthquake-resistant buildings.

Generally, there are two types of methods in making the building earthquake resistant, called
conventional and nonconventional methods. A conventional method is the traditional one which
consists in resisting lateral force by increasing design capacity and stiffness. A nonconventional
method deals with reducing the seismic demand instead of increasing strength by providing
either base isolation devices or dampers (Agarwal and Shrikhande, 2013; Mirza Hessabi et al.,
2017).

Shekari et al. (2010) investigated seismic performances of elevated water tanks subjected to
long period ground shaking. The effectiveness of the base isolation system on tanks of various
aspect ratio was tested, and it was concluded that seismic responses of slender and wide liquid
storage tanks could be reduced considerably by installing base isolation systems.

Seleemah and El-Sharkawy (2011) observed that 50%-90% of base shear as well as impulsive
displacement get reduced when the liquid storage tanks were provided with a base isolation
system. Three kinds of isolation systems were considered and the results were compared with
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fixed based tanks. It was also concluded that the effect of base isolation is significant in slender
tanks when compared to broad tanks.

Shrimali and Jangid (2004) carried out analytical studies for determining seismic responses
of base isolated ground supported tanks. Seismic analysis of tanks with different aspect ratio
were done using three methods such as modal superposition method, response spectrum method
and an approximate method. Finally, it was concluded that the simplified approximate method
was found to match with other two methods.

Wang et al. (2001) assessed the possibility of increasing the earthquake resistance of rigid
cylindrical tanks by providing base isolation devices. Friction pendulum seismic bearings were
adopted. A hydrodynamic model was developed to determine the seismic responses more effi-
ciently. The extensive research confirmed the effectiveness of the base isolation system of friction
pendulum seismic bearings.

Kanyilmaz and Castiglioni (2017) found that the existing silos, which were designed before
the latest revision of earthquake code books, are highly susceptible to earthquakes. The existing
structures were retrofitted by base isolation devices in the form of curved surface single sliding
pendulum devices. The reduction in seismic responses of the retrofitted structures were compared
with original structures.

Ghateh et al. (2015) developed an approach to establish seismic response factors for tanks
ranging from small to very big in size. Pushover curves were drawn for forty-eight prototypes
selected, and the seismic response factors were determined from those curves. Out of the various
factors considered, it was found out that the tank size is the main factor affecting the seismic
response factors of tanks. Finally, it was concluded that the same response factors should not
be used for all types of tanks. Instead, it had to be used according to the tank size.

Hirde et al. (2011) emphasized the importance of elevated water tanks in the seismic prone
region especially after the occurrence of an earthquake. Seismic performances of 240 models
of elevated water tanks were studied by varying different parameters such as height of tanks,
soil conditions and seismic zones. Belostotskiy et al. (2015) did a numerical simulation of par-
tially filled thin cylindrical tanks considering the sloshing effects for both linear and nonlinear
conditions. In addition to the fluid-structure interaction, partitioned and simultaneous solution
procedures were investigated. Finally, the results obtained from the software were discussed with
the codal provisions.

Chaduvula et al. (2013) considered the fluid- soil-structure interaction effects on the seis-
mic performance of elevated water tanks. A model of cylindrical steel tank of scale 1:4 was
constructed and was subjected to acceleration along the horizontal and vertical direction along
with rocking motion. It was found out that the base shear, base moment and hydrostatic pres-
sures were increasing with the increase in acceleration, and the results obtained experimentally
were compared with the results obtained using various codes.

Mori et al. (2015) did a seismic assessment of heritage-listed two elevated water tanks. One
was taller with framed staging and another one shorter with shaft staging using time history
analysis and suggested different retrofitting techniques for each tank. The analysis showed taller
one suffered a numerical collapse of the framed structure, whereas tensile stress beyond the
permissible limit took place in the large space of the shaft staging of the shorter one.

From the literature review, it is understood that researches on elevated water tanks with the
filled condition were more emphasized than with the empty condition. But the empty tank of
elevated water tanks becomes important in the seismic design in certain conditions. As seismic
performances of empty tanks differ from those of filled tanks regarding natural time period, it
is very much essential to determine their performances during an earthquake. So, this research
involves giving additional importance to the performance of empty tanks.
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2. Base isolated elevated tank

The main function of base isolation systems is to decouple the super-structure from the sub-
-structure, which is mainly subjected to the excitation from earthquake energy transmitted from
the epicentre. So, a certain amount of energy will be dissipated from being transmitted to the
super-structure. The mass of the base slab and lateral stiffness of isolation devices are to be
fixed as needed. When isolation is provided, displacement will be very high at the level of the
isolation devices and the behaviour of super-structure seems to be a rigid body. But, in the case
of highly elevated water tank, this rigid movement is doubtful as the mass is lumped at the top.
The main intention of this research is to investigate the seismic performance of elevated water
tanks with and without providing base isolation and its variation with respect to fundamental
natural time period. Therefore, four different types of tanks varying with respect to the storage
capacity as well as horizontal-bracing configurations have been selected. The structural frames
and horizontal bracings of four elevated water tanks with fixed base are shown in Fig. 1.

Fig. 1. Structural modeling of elevated water tanks: (a) structural configuration of elevated water tank,
(b) horizontal brackins of elevated water tanks

Seismic response quantities such as roof displacement δroof , base shear V and base momentM
have been calculated for those elevated water tanks. When the tanks are provided with base
isolation, their degree of freedom will be increased by one. Staad-pro software is used to calculate
the lateral stiffness of elevated water tanks. If the tank is completely or partially filled with water,
it is treated as a two degrees of freedom system (impulsive mode and convective mode) and if it
is an empty tank, it is considered as a single degree of freedom system. It is depicted in Fig. 2.
Natural time periods for both kinds of tanks are calculated as per guidelines (IITK-GSDMA,
2007 and Housner, 1963) and for these natural time periods, pseudo spectral accelerations (Sa/g)
have been obtained from the elastic design response spectrum.
When elevated water tanks are provided with the base isolation system, their degree of

freedom is increased by one, i.e., degree of freedom of an empty tank and the tank filled with
water with base isolation are two and three, respectively. Generally, the force displacement
relationship of isolation systems is nonlinear in nature. But only linear behaviour is considered
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Fig. 2. Structural idealization of an elevated water filled tank without base isolation: (a) over head
water tank, (b) spring mass model, (c) two mass idealization of the over head water tank, (d) equivalent

two number of the uncoupled system

here in order to emphasise the effectiveness of the base isolation system. Dynamic properties
such as the fundamental natural frequency, its corresponding natural time period and damping
ratio of the tank with a fixed base are represented by ωf , Tf and ζf , respectively. Meanwhile,
the subscript term f is replaced by b for the tank resting on the base isolation system. The
basic equation of motion for a multiple degrees of freedom system (Chopra, 2012; Clough and
Penzien, 1993) is given as

Mẍ+Cẋ+Kx = −Mẍg(t) (2.1)

whereM – mass matrix, C – damping matrix, K – stiffness matrix, x – structural displacement
response, ẋ – structural velocity response, ẍ – structural acceleration response, ẍg – ground
acceleration due to an earthquake.
The elevated water tank without water resting on the base isolation system is to be treated

as a two degrees of freedom system and its stiffness, mass and damping matrices are denoted
by K, M, C, respectively. Generally, there is a huge deviation between high damping of the
isolation system with rubber bearings and low damping of the super-structures. Therefore, the
damping coefficient matrix of the combined system is nonclassical. Normally, in modal analysis,
the coupled equations are converted into uncoupled equations and split into N single degrees of
freedom systems where N is the number of degrees of freedom. But it is impractical to adopt
modal analysis for the nonclassically damped systems (Paz and Leigh, 2010). But this research
is mainly intended to determine the dynamic response of a tank resting on both the fixed base
and base isolation systems, and also to determine the effectiveness of the base isolation system.
Therefore, it is reasonable to adopt modal analysis here even though it will give approximate
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results. Mass and stiffness matrices of the two degrees of freedom systems and their characteristic
equations are solved in order to obtain the natural frequencies and mode shapes. Then the
responses from the two uncoupled equations of motion using modal analysis are obtained by the
response spectrum method. and its total response is calculated as a square root of the result
from the square method.

In order to gain knowledge about the effectiveness of base isolation, four elevated water tanks
with various capacity are selected. Their dynamic properties and capacity details are shown in
Table 1. Weight of the container, staging, horizontal bracing and centre of gravity of the empty
container are calculated, and the lateral stiffness of each tank is calculated by applying a lateral
load to the top of the tank and measuring the displacement using Staad-pro software. The
damping ratio of tank is adopted as 2%, even though, normally it is taken as 5% for dynamic
analysis of structures (Chopra, 2012).

Table 1. Geometric and structural properties of elevated water tanks

Dynamic parameters Tank 1 Tank 2 Tank 3 Tank 4

Impulsive mass [kg] 45528.02 94893.52 121889.14 133126.16

Convective mass [kg] 55057.14 120570.6 378781.08 279135.50

Height of impulsive mass [m] 2.7 3.7718 8.4046 5.325

Height of convective mass [m] 2.625 3.3725 9.16875 5.325

Mass of container and one third
94468.09 201927.1 946803.33 358807.33

mass of staging [kg]

Height of centre of gravity
0.778 0.865 0.891 0.802

from base of container [m]

Stiffness [kN/m] 3675.119 5488.47 28409.09 10905.125

Impulsive time period [s] 1.226 1.4611 1.2186 1.3344

Convective time period [s] 2.90 3.4245 5.893 4.287

Empty tank time period [s] 1.0073 1.205 1.147 1.1397

2.1. Base isolation system – super-structure interaction effect

The damping ratio of base isolation devices and that of elevated water tanks are taken as
10% and 2%, respectively. As significant difference in damping of both the base isolation devices
and that of the elevated water tank exists, and a classical damping matrix cannot be assumed
for the combined base isolated elevated water tank. Here, the challenge is how to construct
the nonclassical damping matrix for the combined system. It is done by framing the classical
damping matrix for the elevated water tank alone without considering base isolation devices at
first. Then energy dissipating damping contribution from the isolators is added in order to get
the damping matrix of the combined system (Livaoǧlu and Doǧangün, 2006).

The damping matrix of fixed based tanks is obtained using the relation Cf = a1kf , where
a1 = 2ζ1/ω1. Natural frequencies and the corresponding natural time periods of tanks are
obtained using the eigenvalues and eigenvectors concept. Then, modal analysis is done to obtain
the responses such as modal damping ratio, modal static responses, roof displacement, base
shear and base moment on individual degree of freedom system using the response spectrum
method. The elastic design response spectrum from (IS1893(Part 1):2002) is referred and then
the total response is obtained by square root summation of the square method. Mode shapes of
the empty tank and a tank filled with water are delineated in Figs. 3a and 3b.
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Fig. 3. Mode shape of elevated filled water tank 1: (a) fixed based tank, (b) base isolated tank

3. Vibration properties of base isolated tanks

Mass of the base slab and lateral stiffness of the isolation system are represented as mb and kb,
respectively. Here, mb is taken as 2/3 of mass of staging and ks = (M +mb)ω

2
b , whereM is total

mass of the tank. Having framed the mass matrix and stiffness matrix of the base isolated tanks,
the next step is to solve the characteristic equation, as mentioned in the fixed based tanks, in
order to get the natural frequencies and mode shapes. Equation (2.2) shows the characteristic
equation to be solved and Eqs. (2.3) are used to calculate the dynamic properties of the fixed
and isolated tanks, respectively

|Kf −Mfω
2
n|φ = 0 |Kb −Mbω

2
n|φ = 0 (3.1)

and

Tf =
2π

ωf
Tb =

2π

ωb
ωb =

√

k

m+mb

ζf =
c

2mωf
ζb =

cb
2(m+mb)ωb

(3.2)

The sizes of mass and stiffness matrices and the results of vibration properties are given in
Tables 2 and 3, respectively. The mode shape of tank 1 is depicted in Fig. 3. Modal static
distribution of the earthquake force Sn is calculated using Eq. (2.4), and its direction is directly
proportional to mode shapes. For example, the forces of Sn due to the first mode are positive
when moving from the bottom to the top

Sn = Γnmφn (3.3)

where

Γn =
Lhn
Mn

Lhn =
n
∑

j=1

mjφjn

The modal damping ratio ζ is calculated as

ζn =
C

2Mnφn
(3.4)

where Cn = φ
T
nCφn and Mn = φ

T
nMφn. In the case of fixed tanks, it is observed that the

damping ratio is almost 2% in the first mode and varies from 5% to 10% from tank 1 to tank 4
in the second mode. Since the mammoth amount of mass is lumped in the top, the behaviour
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Table 2. Vibration properties of elevated water tanks with fixed base

Tank
No.

Tank filled with water Empty tank
Impulsive mode Convective mode Fundamental mode
ω f T ω f T ω f T
[rad/s] [Hz] [s] [rad/s] [Hz] [s] [rad/s] [Hz] [s]

1 2.047 0.326 3.068 5.326 0.848 1.179 6.237 0.993 1.007

2 1.761 0.280 3.566 4.488 0.715 1.399 5.213 0.830 1.205

3 1.422 0.227 4.415 4.848 0.772 1.295 5.513 0.877 1.140

4 1.048 0.167 5.991 5.196 0.827 1.209 5.477 0.871 1.147

Table 3. Vibration properties of elevated water tanks with base isolation

T
an
k
N
o.

Tank filled with water Empty tank
Fundamental

2nd mode 3rd mode
Fundamental

2nd mode
mode mode

ω f T ω f T ω f T ω f T ω f T
[rad/s] [Hz] [s] [rad/s] [Hz] [s] [rad/s] [Hz] [s] [rad/s] [Hz] [s] [rad/s] [Hz] [s]

1 1.91 0.31 3.28 3.58 0.57 1.75 12.18 1.94 0.52 3.25 0.52 1.93 11.84 1.883 0.531

2 1.67 0.27 3.75 3.27 0.52 1.92 10.82 1.72 0.58 3.14 0.50 2.00 10.35 1.647 0.607

3 1.38 0.22 4.56 3.37 0.54 1.86 13.02 2.07 0.48 3.06 0.49 2.05 12.14 1.945 0.514

4 1.04 0.17 6.07 3.22 0.51 1.95 13.60 2.16 0.46 3.01 0.48 2.09 13.07 2.079 0.481

of the structure will not be rigid, and instead, highly deformed. This might be the reason for
higher damping in the second mode. Meanwhile, damping in the 3rd mode of isolated tanks is
very high ranging from 20% for tank 1 to 37% for tank 4. This huge value is contributed by a
high amount of damping present in the isolation system.

3.1. Peak modal and total responses

The peak value rno of the responses of each mode is obtained from the elastic design response
spectrum. From the elastic design response spectrum given in (IS1893(Part 1):2002) as shown
in Fig. 4, it is known that the two main factors are influencing the spectral acceleration are
damping ratio and natural time period. The dynamic response is directly proportional to spectral
acceleration and which, in turn, depends on the natural time period. Therefore, the natural
time period plays a vital role in governing the dynamic response during an earthquake. As
per guidelines (IITK-GSDMA, 2007; IS1893(Part 1):2002), the importance factor I is taken
as 1.5, as the elevated water tank should exist even after the occurrence of earthquakes and the
response reduction factor R as 2.5 as it confirms ductile detailing (IS13920:1993) and special
resisting frame moment. Becouse the region is of low seismic intensity, the relevant zone factor Z
is adopted as 0.1. Once the above values are fixed, the design seismic horizontal acceleration
coefficient is calculated from

Ah =
Z

2

I

R

Sa
g

(3.5)

Response quantities due to each mode is given by rn = r
st
n (Sa/g), where r

st
n is the static response

and Sa/g is the spectral acceleration, i.e., dynamic response. Equations (2.7) are the formulae
used to calculate the base shear and base moment (ACI 350.3, 2006; NZS 3106, 2009) and are
static base shear and base moments due to the n-th mode

Vbn = V
st
bnAn Mbn =M

st
bnAn (3.6)
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where

M stbn =M
∗

nh
∗

n M∗n = V
st
bn

Roof displacements of elevated tanks are calculated using

δjn = ΓnφnDn (3.7)

where Dn is the spectral displacement ordinate obtained by dividing the spectral acceleration
by ω2n.

Fig. 4. Elastic design response spectrum from (IS1893(Part 1):2002)

4. Experimental work

4.1. Procedure

A tank model made of steel is resting on a steel base plate, and spring isolation is provided
below the base plate. In the spring isolation system, the suspension system in the form of
springs is placed between the sub-structure and super-structure. The spring isolation dissipates
vibration energy induced by dynamic load and protects the super-structure. The specifications
of the steel open coiled springs are as follows: inside diameter of the coil and diameter of the
wire are 40mm and 5mm, respectively. The number of turns is 8 and the slope of coil is 20◦. The
corresponding stiffness of spring is calculated to be equal to 5.804 kN/m (Mahadevan and Reddy,
2019). Harmonic forced vibration is induced at a rate of 2 cycles per second in the base plate
level. An accelerometer, a device used to measure motion of a structure along three mutually
perpendicular directions x, y and z, consists of an Arduino Board with a microcontroller. It is
simply connected to a computer with a USB cable for gathering accelerometer values from the
roof level of the tank. The load is being applied continuously up to 15 s and the acceleration
response is readily plotted in numerical values as well as a graphical form in the computer system.
Table 4 shows the readings of roof displacement of the tanks which are obtained by doing double
time integration of the acceleration values from the test conducted. Figure 5 shows details of
the models of elevated tanks, the accelerometer and isolation device. Results in graphical forms
are depicted in Fig. 6. The major excitations shown in the first and second row delineate the
roof accelerations along x, y directions, respectively, and the smallest excitation depicted in the
second row represents the acceleration in the z direction.
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Table 4. Results of δroof of both elevated tanks

Tank
No.

Fixed base Isolated base
Filled tank Empty tank Filled tank Empty tank
[mm] [mm] [mm] [mm]

1 165.926 148.543 195.708 172.212

2 172.249 121.655 614.969 579.607

Fig. 5. Experimental details of elevated water tanks: (a) model 1, (b) model 2, (c) accelerometer,
(d) base isolation device

Fig. 6. Experimental details of elevated water tanks: (a) experiment on elevated water tank 1,
(b) recorded acceleration values along three directions

4.2. Model detailing

It has been decided to adopt two tanks reflecting the configurations of tank 1 and tank 2 in
order to test displacements of tanks experimentally with and without providing base isolation.
Heights of the staging and container were fixed at 1.6m and 0.35m, respectively. Thicknesses of
the roof slab, base slab and wall were taken as 2mm, 3mm and 2mm, respectively. Diameter of
steel rods reflecting the columns and tie beams were adopted as 10mm and 8mm, respectively.
Differences between the tanks are the storage capacity and horizontal bracing configurations.
Diameters of container of the 1st and 2nd tank were fixed at 0.45m and 0.6m, respectively. the
bracing interval along the vertical direction was taken as 0.4m. It has been decided to provide
spring isolation.
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5. Result and discussion

It is known from Tables 2-3 that the natural time period of impulsive mode of filled tanks with
the fixed base is highly deviated and is ranging from 3.0 s for tank 1 to 6.0 s for tank 4, while
the natural time period of the convective mode as well as that of empty tanks is fixed around
1.0 s. Natural time periods of base isolated tanks are also clearly depicted in Tables 2 and 3.
Modal damping ratios of both filled as well as empty tanks with and without base isolation are
graphically represented in Fig. 7. One can clearly see high damping ratios for 2nd and 3rd mode
shapes compared to the fundamental mode. This high damping ratio is the main reason for very
small seismic responses of higher modes.

Fig. 7. Damping ratios of water tanks with different conditions: (a) filled tank without base isolation,
(b) filled tank with isolation, (c) empty tank with isolation

Spectral acceleration Sa/g, i.e., the dynamic response corresponding to any natural time
period is obtained from the elastic design response spectrum available in (IS1893,(Part 1):2002)
for damping ratio of 5%. In the case of filled tanks with fixed base, ironically, the value of Sa/g
of the impulsive mode is smaller than that of the convective mode. As weight of the elevated
water tank fully filled with water is highly lumped at the peak, its excitation during ground
acceleration due to an earthquake resembles the 2nd mode, i.e., convective mode. Therefore,
the contribution of the convective mode will always be higher than that of the fundamental,
i.e., impulsive mode. It is delineated by significant reduction in the natural time period of the
convective mode compared to that of the impulsive mode. For example, the natural time period
of the first two modes of tank 4 ia 5.991 s and 1.209 s, respectively. Similarly, the Sa/g value for
filled tanks with base isolation is going on increasing from the 1st to 3rd mode. But the huge
amount of damping reduces the response contribution of the third mode and it is shown in Fig. 8.
Similarly, Sa/g values of empty tanks are also proportionate along with the natural time period
and damping ratio. Static and dynamic responses of the base shear due to the fundamental mode
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Fig. 8. Spectral acceleration coefficient of water tanks with different conditions (a) filled tank without
base isolation, (b) filled tank with isolation, (c) empty tank with isolation

for filled tank 1 with the fixed base are 76.846 and 0.456, respectively. The value of ZI/(2R) is
calculated as 0.06. Therefore, every spectral pseudo acceleration is to be multiplied by 0.06 in
order to get the design horizontal seismic coefficient Ah. Multiplying these two gives the base
shear response of 20.625 kN. Similarly, the second mode response is 58.362 kN. Finally, the total
response due to the first and second mode has been obtained using the SRSS method and it is
equal to 61.899 kN, i.e., 3.17% of the total weight W of the tank. It is found out that the base
shear induced from tank 1 to tank 4 is 3.17%, 3.3%, 3.36% and 4.69% of the total weight W of
the tanks filled with water, respectively. When it is provided with base isolation, the reduced
values are 2.05%, 1.86%, 1.68% and 1.88% of W , respectively.

The base shear responses of all tanks with fixed base and isolated base have been calculated
and they are tabulated, respectively, in Tables 5 and 6.

Table 5. Response quantities of elevated water tanks with fixed base

T
an
k
N
o. Tank filled with water Empty tank

Impulsive mode Convective mode SRSS Fundamental mode
Vi Mi (δroof )i Vc Mc (δroof )c V M δroof V M δ
[kN] [kNm] [m] [kN] [kNm] [10−3m] [kN] [kNm] [m] [kN] [kNm] [m]

1 20.63 372.15 0.075 58.36 953.77 −0.306 61.900 1023.80 0.075 77.29 1269.71 0.021

2 47.02 818.63 0.094 101.76 1675.39 −0.378 112.10 1864.69 0.095 138.07 2287.38 0.025

3 62.69 1098.92 0.100 179.84 2953.04 −1.65 190.46 3150.88 0.101 259.35 4275.84 0.024

4 56.90 1016.24 0.131 402.71 6663.26 −0.066 406.71 6740.31 0.131 679.89 11263.10 0.024
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Table 6. Base shear V [kN] of elevated water tanks with base isolation

Tank
No.

Tank filled with water Empty tank
Fundamental

2nd mode 3rd mode SRSS
Fundamental

2nd mode SRSS
mode mode
V1 V2 V3 V V1 V2 V

1 29.701 25.904 −7.206 40.064 26.470 −6.405 27.234

2 50.603 57.195 −14.329 77.699 57.588 −14.130 59.296

3 73.568 107.04 −9.431 130.226 96.686 −19.777 98.688

4 64.309 262.936 −39.179 273.507 248.952 −45.152 253.013

Table 7. Base moment M [kNm] of elevated water tanks with base isolation

Tank
No.

Tank filled with water Empty tank
Fundamental

2nd mode 3rd mode SRSS
Fundamental

2nd mode SRSS
mode mode
M1 M2 M3 M M1 M2 M

1 526.36 411.79 −118.21 678.68 434.85 −105.23 447.40

2 878.67 932.50 −237.20 1303.03 953.94 −234.07 982.24

3 1282.53 1745.18 −154.30 2171.25 1594.06 −326.07 1627.07

4 1143.43 4339.75 −645.80 4534.09 4124.14 −748.00 4191.42

Table 7 shows that the contribution of the 2nd mode is more significant than the fundamental
mode. The prior reason behind this is the distribution of mass due to the fact that the impulsive
and convective modes almost reflect the second natural mode. The base shear is increasing from
tank 1 to tank 4 because the storage capacity of tank 4 is higher than that of other tanks. For
example, the base shear of filled tank 4 with the fixed base is 406.710 kN, and when it is provided
with base isolation it becomes reduced to 273.506 kN. The rate of reduction is 32.75%. The rate
of reduction is slightly above 30% for all filled tanks. Eventually, it is the empty tank with the
fixed base, which carries the maximum base shear because of the shortest natural time period
and lowest damping ratio. So, the empty tanks are highly vulnerable compared to all other types
of tanks. Meanwhile, the rate of reduction calculated for empty tanks shows that it is around
double times that of tanks filled with water, i.e., around 60%. The reduction in the base shear
is delineated in Figs. 9a and 9b. For example, the values of base shear of tank 4 for fixed and

Fig. 9. Base shear of elevated water tanks with different conditions: (a) empty elevated water tank,
(b) filled elevated water tank
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isolated based conditions are 679.891 kN and 253.013 kN, respectively. Therefore, the percentage
of reduction is 62.79%. The base moment of empty tank 4 is very high, i.e., 11263.08 kNm. It
clearly shows that susceptibility of empty tanks can be significantly avoided by providing base
isolation. The results of the base moment are shown in Table 7.
The variation of the base moment of all tanks with and without providing base isolation is

depicted in Figs. 10a and 10b. Ironically, roof displacement of tanks with base isolation is higher
than that of tanks with the fixed base.

Fig. 10. Base moment of elevated water tanks with different conditions: (a) empty elevated water tank,
(b) filled elevated water tank

Figures 11a and 11b shows the δroof of both empty and filled tanks with and without base
isolation. In the case of a filled tank, roof displacement is increased by around 11% for tanks 2, 3
and 4 but it is 32.16% for tank 1 when they are provided with base isolation. Meanwhile, δroof of
the empty tank is increased from 16% to 26% with the maximum displacement registered in
tank 1. For example, δroof of empty tank 1 with the fixed base is 21mm. When it is provided
with base isolation, its value is increased to 26.52mm. But the isolator is displaced to the
amount of 19.32mm. Therefore, the relative displacement of the roof with the base isolator is
only 7.2mm. It is even less than δroof of an empty tank with the fixed base. But, in the case
of a filled tank, the displacement of the isolator is very much smaller. As such, the relative
displacement of the roof with respect to the isolator is not reduced considerably. The results of
roof displacement of elevated tanks are shown in Table 8.

Fig. 11. Roof displacement of elevated water tanks with different conditions: (a) empty elevated water
tank, (b) filled elevated water tank
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Table 8. Roof displacement δroof [m] of elevated water tanks with base isolation

Tank
No.

Tank filled with water Empty tank
Fundamental

2nd mode 3rd mode SRSS
Fundamental

2nd mode SRSS
mode mode

(δroof )1 (δroof )2
(δroof )3 δroof (δroof )1 (δroof )2 δroof×10−3

1 0.09912 −0.001032 0.0011268 0.09912 0.02652 −0.000486 0.02652

2 0.10548 −0.010164 0.01014 0.10596 0.02904 −0.00066 0.02904

3 0.1143 −0.005334 0.02196 0.11442 0.02874 −0.000372 0.02874

4 0.14268 −0.003018 0.03438 0.14274 0.0291 −0.000282 0.0291

6. Conclusion

The following conclusions are made at the end of the response spectrum analysis of elevated
water tanks provided with base isolation.

• The amount of base shear and base moment induced in elevated water tanks is directly
proportional to its storage capacity. The contribution of the second mode in response quan-
tities is more significant than that of the fundamental mode for both the tanks provided
with and without base isolation.

• The most significant reason behind the reduction in base shear by base isolation is the
lengthening of the fundamental natural time period beyond 0.4 s, even though the presence
of damping in the isolation system also reduces the base shear.

• Though the roof displacements of both empty and filled tanks with base isolation are
higher compared to fixed tanks, their relative displacement with respect to the isolation
device is very much less.

• Empty tanks are highly susceptible to earthquake damage because of their short funda-
mental natural time periods, if they are not provided with base isolation.

• It is concluded from the experimental results that the relative displacement of empty tanks
is less than that of filled tanks.

• The rate of reduction of the maximum base shear for an empty tank is double to that of
tanks filled with water. Therefore, it is concluded that the base isolation is highly effective
for empty tanks.
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