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An active fault tolerant controller is designed for the attitude control of a faulty spacecraft.
Feedback linearization and Lyapunov’s direct method are used to solve angular velocity
equations and to ensure convergence of the system outputs to reference inputs, respectively.
In order to ensure finite time convergence, final time constraints are proposed. Three con-
structive objective functions are considered as performance measures and optimized using
multi-objective optimization. The results show that the outputs converge to the reference
attitudes, even for severe actuator faults/failures.
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1. Introduction

It may be difficult to control a complex and faulty system with satisfactory performance using
conventional state-feedback control (Zhang and Jiang, 2008; Fekih, 2014). Fault tolerant control
(FTC) is a field that considers controlling faulty systems (Linlin, 2016). There are numerous
books, papers and theses that have studied this challenging problem, e.g., Blanke et al. (2006),
Lunze and Richter (2008), Noura et al. (2009), Witczak (2014), Jiang and Yu (2012), Alikhani
(2017), Hu et al. (2017, 2018). According to the literature, FTC is divided into two main subsets:
Passive FTC (PFTC) and Active FTC (AFTC) (Jiang and Yu, 2012). When designing PFTC,
the main focus is on robustness of the closed-loop system, while AFTC considers performance
measures as well. PFTC has a fixed structure, while AFTC has a flexible structure. This makes
AFTC more flexible toward faults and, therefore, capable of dealing with a broader range of
unanticipated faults/failures (Jiang and Yu, 2012).
According to Tafazoli (2008), actuator fault/failure has a destructive effect on the Attitude

Control System (ACS) performance. According to this reference, nearly 45% of ACS failures
have occurred due to actuator faults. Therefore, actuator fault/failure is an important problem
that deserves special attention when designing an ACS system. Recently, a review paper has
performed a literature study on fault-tolerant ACS (Yin et al. (2016)). Assuming a fixed con-
troller structure (as common with PFTCs), full-actuation and sufficient actuator redundancy
have been the main underlying assumptions of the previous works in this area.
Although it is possible to consider enough actuator redundancy to make sure that the faulty

system has enough actuation, more redundancy means more weight and cost (not desirable fea-
tures, especially for space missions). It may be possible to use controller switching in cases of
actuator failure (Jiang and Zhang, 2006). However, this approach requires an “engineering un-
derstanding” of the faulty system performance, especially when a combination of faults/failures
occurs in the actuation system (Benosman and Lum, 2009).
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In this paper, a unified AFTC framework is proposed for the spacecraft attitude control prob-
lem. This approach reduces the need for actuator redundancy and does not require controller
switching. Lyapunov’s direct method, a theorem and several constraints are used to ensure finite
time convergence of Euler angles to the reference attitude. Three objective functions are consid-
ered as performance measures and optimized using multi-objective optimization. The proposed
controller shows an acceptable performance, especially for severe actuator failures.
The rest of the paper consists of the following sections: Section 2 discusses dynamics of

the spacecraft. Dynamic equations and fault scenario are the topics of this Section. Section 3
deals with the design of the proposed active fault tolerant controller, where its subsystems are
analyzed in detail and a theorem is presented. In order to evaluate the controller performance,
several simulations are presented and analyzed in Section 4. Finally, a conclusion is presented
to sum-up the paper.

2. Dynamics of spacecraft and fault scenario

2.1. Dynamic equations

The rigid body spacecraft rotational dynamics in the principal coordinate system is described
by the following equations (Zipfel, 2007)

q̇ = −1
2
Ωq ω̇ = −J−1(ω × Jω) + J−1u (2.1)

where: q – quaternion vector, ω – angular velocity vector, J – moment of inertia matrix,
u – control moments acting on the spacecraft

qT = q0 + iq1 + jq2 + kq3 ω
T = [ω1, ω2, ω3] uT = [u1, u2, u3]

J =
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

(2.2)

Equations (2.1) are expressed in body coordinates with respect to the inertial reference frame
(Zipfel, 2007).
The reason for using quaternion-based equations is to prevent singularity. But the Euler

angles have the advantage over quaternions being more physically sensible. Therefore, Eqs. (2.3)
are used to convert Euler angles (φ, θ, ψ) (with the sequence ψ-θ-φ) to quaternions (Zipfel, 2007)
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(2.3)

In order to return the results in the form of Euler angles, the following expressions will be used
(Zipfel, 2007)

tanψ =
2(q1q2 + q0q3)

q20 + q
2
1 − q22 − q23

sin θ = −2(q1q3 − q0q2)

tanφ =
2(q2q3 + q0q1)

q20 − q21 − q22 + q23

(2.4)
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According to the separation theorem, if the center of mass is selected as the reference point,
the rotational and translational dynamics will be separated (Zipfel, 2007). On the other hand,
if the spacecraft is orbiting the earth at high altitude, the aerodynamic effects can be neglected.
Therefore, it is assumed that the translational and rotational dynamics are separated.

2.2. Fault scenario

Several factors leading to ACS failure (Tafazoli, 2008) are presented in Fig. 1.

Fig. 1. Contributing factors involved in ACS failure (Tafazoli, 2008)

This figure shows that almost 45% of ACS failure is due to actuator faults (Control moment
gyroscope (CMG), reaction wheel, and thrusters). Therefore, the actuator fault is an important
source of ACS failure.

It is assumed that the post-fault actuator performance region is given as

satn(ui) =















ui if −umax,n ¬ ui ¬ umax,n
umax,n if ui > umax,n

−umax,n if ui < −umax,n
(2.5)

where umax,n is the maximum control moment that can be produced after the occurrence of
a fault in the actuators. The relation between umax,n and umax (pre-fault maximum control
moment) is given by

umax,n = aumax 0 ¬ a ¬ 1 (2.6)

For a healthy and failed actuator, a is 1 and 0, respectively (Miksch and Gambier, 2011).

3. Active fault tolerant controller design

A block diagram of the closed-loop control system is shown in Fig. 2.

The fault detection and diagnosis (FDD) unit detects the plant of the post-fault system and
the reconfiguration mechanism receives this information immediately. Then, the reconfiguration
mechanism produces modified reference inputs and adjusts controller parameters. The objective
of this reconfiguration is to satisfy the post-fault requirements of the mission. It should be noted
that angular velocity feedback is sufficient to close the control loop, Eq. (3.1).
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Fig. 2. Block diagram of the closed-loop control system

Note 1: The pre-fault (healthy) system should be able to track the reference inputs, e.g. expo-
nentially or asymptotically, posed by the mission requirements. However, after the occur-
rence of a severe fault/failure, such a requirement may not be satisfied. Therefore, modified
reference inputs are designed such that the faulty system response (in terms of the Euler
angles) would converge to the reference inputs in a finite time.

3.1. Reference input management and controller

Feedback control laws are considered as

u = −JK(ω −ωm) + Jω̇m +ω × Jω (3.1)

where

K =







k1 0 0
0 k2 0
0 0 k3






k1, k2, k3 ∈ R+

where k1, k2, k3 are the controller coefficients and ωm is the modified reference input vector. It
can be easily shown that considering Eqs. (2.1)2 and (3.1), the closed-loop system for angular
velocities will be

ω̇e = −Kωe ωe = ω − ωm (3.2)

showing exponential convergence of ωe to zero, or equivalently, ω to ωm. According to Eq.
(2.1)1, the spacecraft attitude is a function of the angular velocity. Therefore, in order to adjust
the attitude, the spacecraft should perform the appropriate angular velocity maneuver. In other
words, by producing an appropriate ωm, the spacecraft will be able to perform the corresponding
attitude maneuvers.

In order to ensure exponential convergence of the Euler angles φ, θ, ψ to the modified
reference inputs (φm, θm, ψm), the following quadratic Lyapunov function is considered

V = e2φ + e
2
θ + e

2
ψ (3.3)

where

eφ = φ− φm φm = φr + φm0

eθ = θ − θm θm = θr + θm0

eψ = ψ − ψm ψm = ψr + ψm0

(3.4)
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The three variables φm0 , θm0 , ψm0 are modified by the reconfiguration mechanism. φr, θr, ψr
are the three reference inputs that the post-fault system outputs (φ, θ, ψ) should converge to.

According to Lyapunov’s second method for stability (Khalil, 2014), if the time derivative
of Lyapunov function (3.3) satisfies the equation

V̇ = −kV k > 0 (3.5)

the conditions of Lyapunov’s second method for stability will be satisfied and the post-fault
system outputs (φ, θ, ψ) will converge to the modified reference inputs (φm, θm, ψm) with an
exponential rate k.

The numerical derivative of Lyapunov’s function may not be accurate. Therefore, Eq. (3.6)
will be used instead of Eq. (3.5)

V = V (0)e−kt k > 0 (3.6)

Equation (3.6) is the solution to Eq. (3.5). To make sure that the Lyapunov function and its time
derivative become zero at the final time (finite time convergence), the following final time tf
constraint is considered

V (t = tf ) = 0 (3.7)

3.2. Reconfiguration mechanism

The reconfiguration mechanism uses constrained optimization to solve the optimal control
problem defined as follows.

Determine the modified reference inputs, controller parameters and the parameter k to min-
imize the following performance measures, simultaneously

PM1 = φ
2
m0
+ θ2m0 + ψ

2
m0

at t = tf

PM2 = φ̇
2
m0
+ θ̇2m0 + ψ̇

2
m0

at t = tf

PM3 =

t=tf
∫

t=tfault

(u21 + u
2
2 + u

2
3) dt

(3.8)

subject to the following nonlinear constraints:

1) Dynamics and actuation: Eqs. (2.1)-(2.6)

2) Stability and control: Eqs. (3.1)-(3.4), (3.6) and (3.7).

A block diagram of the reconfiguration mechanism is shown in Fig. 3.

The numbers show the order of execution in the optimization. In the following, each block
is described in detail:

1 – The optimization parameters (controller coefficients, parameter k, and modified reference
inputs) are determined using cubic interpolating splines (Boor, 1978), in the fixed intervals
of time δt1.

2 – Splines are constructed.

3 – The closed-loop system is simulated from tfault to tf , based on the information provided
by the FDD.

1A large/small value of this parameter reduces/increases the optimization time and reduces/increases
the chances of obtaining the best solution.
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Fig. 3. Block diagram of the reconfiguration mechanism

4 – Performance measures and constraints are evaluated.

5 – Stopping criteria, e.g. the number of simulations is checked. If the stopping criteria are
satisfied, the process finishes and, otherwise, continues.

Note 2: Due to the presence of three performance measures, the optimization problem is multi-
-objective. Physically, these performance measures are competitive, i.e. they increase in
opposite directions. The result of this kind of optimization problem is a Pareto front, i.e.
a set of optimal solutions (a single solution does not exist) (Marler and Arora, 2004).

3.3. Theorem: Convergence of Euler angles to reference inputs

Under the given constraints, minimizing PM1 and PM2 will lead to the convergence of Euler
angles to the reference inputs.

Proof

In order to prove this theorem, it is sufficient to prove that

lim
t→tf
rm0(t) = 0 rm0 = [φm0 , θm0 , ψm0 ] (3.9)

Consider the following equation

ṙm0(tf ) = lim
∆t→0

rm0(tf )− rm0(tf −∆t)
∆t

(3.10)
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where ∆t is defined as follows

∆t = tf − t (3.11)

According to Eqs. (3.8)1,2, the minimum value of PM1 and PM2 is zero, where equivalently

φm0(tf ) = θm0(tf ) = ψm0(tf ) = 0 → rm0(tf ) = 0
φ̇m0(tf ) = θ̇m0(tf ) = ψ̇m0(tf ) = 0 → ṙm0(tf ) = 0

(3.12)

Considering Eqs. (3.10) and (3.11) will result in

ṙm0(tf ) = lim
∆t→0

rm0(tf −∆t)
∆t

= 0 (3.13)

Substituting Eq. (3.11) into Eq. (3.13) will result in

lim
t→tf

rm0(tf − tf + t)
tf − t

= 0 (3.14)

In order for Eq. (3.14) to be satisfied, the numerator should converge more rapidly than the
denominator to zero, therefore

lim
t→tf
rm0(t) = 0 (3.15)

This statement shows that if PM1 and PM2 are minimized, rm0 will converge to zero as t reaches
the final time. Therefore, according to Eq. (3.4)

lim
t→tf

φm = lim
t→tf

φr + lim
t→tf

φm0 = lim
t→tf

φr

lim
t→tf

θm = lim
t→tf

θr + lim
t→tf

θm0 = lim
t→tf

θr

lim
t→tf

ψm = lim
t→tf

ψr + lim
t→tf

ψm0 = lim
t→tf

ψr

(3.16)

Equations (3.16) show the convergence of the modified Euler angles to the reference Euler angles.
Since it was shown that the Euler angles (φ, θ, ψ) would converge to the modified Euler angles
(φm, θm, ψm) with an exponential rate k, it can be concluded that the Euler angles will converge
to the reference inputs, provided that the given constraints are satisfied.
This completes the proof of the theorem.

4. Simulation

In order to show the performance of the proposed controller, several simulations have been
carried out, and the results are illustrated in this Section. The initial conditions are considered
to be: φ(0) = 15, θ(0) = 10 and ψ(0) = −5 all in deg.
It is assumed that the initial conditions for angular velocities are small. This assumption

can be easily satisfied using angular velocity stabilization methods (Moradi et al., 2017). The
principal moments of inertia are considered to be: J1 = 449.5, J2 = 264.6, J3 = 312.5 all in
kgm2. The spacecraft physical parameters are directly selected from the data provided by Wang
et al. (2013).
The lower and upper bounds and initial values for the optimization variables are given in

Table 1.
The parameters in Table 1 are adjusted by the reconfiguration mechanism. For example, after

the occurrence of a fault/failure, the reconfiguration mechanism decides to modify ωm(t = 0).
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Table 1. Lower and upper bounds and initial values for the optimization variables

Variables Bound Initial value

rm0 ±30 deg 0 deg

ω̇m ±10 deg/s2 0 deg/s2

ωm(t = 0) ±10 deg/s 0 deg/s

k1, k2, k3 [0.5, 2] 1

k [0.5, 10] 5

This parameter (and maybe the other parameters in Table 1) changes until the constraints
and stopping criteria are satisfied. This process occurs as shown in Fig. 3. Instead of ωm, ω̇m
and ωm(t = 0) have been chosen as the optimization variables (to avoid the difficulties with
numerical derivative) and δt is taken as 1 s (refer to Fig. 3).

The reference inputs are given as (in deg)

φr = 0.1t θr = 0.1t ψr = 0.1t (4.1)

These references are specified according to the mission specifications. Such specifications can be
varied form mission to mission.

Table 2 illustrates the actuator effectiveness coefficients, corresponding to three cases.

Table 2. Actuator effectiveness coefficients for three cases

a1 a2 a3

First case (without fault) 1 1 1

Second case 1 1 0.1

Third case (actuator failure) 1 1 0

According to Table 2, in the first case, all of the actuators are healthy. In the second case,
the actuator fault leads to 90% degradation in the moment that can be produced about the
third body axis (according to Eq. (2.6). In the third case, it is assumed that actuator failure
leads to 100% degradation in the moment about the third body axis. Therefore, in this case, it
is not possible to produce any moment about the third axis.

The maximum control moment umax that can be produced by healthy actuators is assumed
to be 50Nm.

The simulations are carried out in three Sections. In Section 4.1, the actuator failure corre-
sponds to the case three of Table 2. However, no action is taken to compensate for the effect of
this failure. In Section 4.2, the actuator fault/failure corresponds to cases two and three of Ta-
ble 2. The proposed method is employed to compensate for the effect of this fault/failure. Finally
in Section 4.3, the robustness of the proposed controller toward uncertainties and disturbances
is determined via Monte Carlo simulation.

4.1. No action is taken to compensate for the effect of actuator failure

In order to see the consequences of uncompensated faults on the controller performance, the
third case of Table 2 (actuator failure) is considered without reconfiguring the controller. The
controller coefficients k1, k2 and k3 are considered to be equal to the initial values presented in
Table 1. The response errors corresponding to the uncorrected system are illustrated in Fig. 4.
In this figure: eφ = φ− φr, eθ = θ − θr, eψ = ψ − ψr.
According to Fig. 4, eψ has not converged to zero. The reason is contributed to the fact

that the control input corresponding to ψ has failed (u′3 = 0). This figure shows that mission
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Fig. 4. Response errors (uncompensated system)

Fig. 5. Control moments (uncompensated system)

objectives will fail if the effect of actuator failure is not compensated. Therefore, at least in this
case, system recovery is a necessary task. The control moments are illustrated in Fig. 5.

In comparison to the results obtained in the next Section (Figs. 8 and 9), the control moments
are smaller. The reason is simply the fact that the controller does not exploit the available control
moments to compensate for the effect of actuator failure.

4.2. Employing the proposed method to compensate for the effect of actuator fault/failure

In this case, the proposed AFTC is used to compensate for the effects of faults presented in
Table 2. It will be shown that the proposed method has a great effect on the improvement of
the faulty system performance.

Figure 6 shows the result of employing the proposed AFTC as three Pareto fronts (cor-
responding to three scenarios in Table 2). As the faults become larger, the two performance
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measures increase and move to the upper-right corner of the performance space. It should be
noted that these Pareto fronts are illustrated for the case PM2 = 0 (the minimal value of PM2)
and, therefore, PM2 is not illustrated in Fig. 6.

Fig. 6. Pareto fronts for three cases considered in Table 4

In order to show the performance of the controller, the response errors corresponding to the
faulty system (design points 1 and 2 in Fig. 6) are illustrated in Fig. 7.

Fig. 7. Response errors (compensated system)

For better comparison, the errors are illustrated for the time interval [8, 10] seconds. Com-
pared to Fig. 4, these results show a great improvement in the controller performance. The results
also show that the error corresponding to design point 2 is smaller than the error corresponding
to design point 1. As will be seen in the next figures, the energy consumption corresponding to
design point 2 is higher than point 1, which is physically sensible. The corresponding control
moments are illustrated in Figs. 8 and 9.
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Fig. 8. Control moments (compensated system)

Fig. 9. Control moments (compensated system)

In comparison to Fig. 5, Figs. 8 and 9 show that compensating for the effect of actuator
failure requires more energy. Figure 8 corresponds to design point 1, where the faulty system
uses less control effort and, therefore, the controller performance decreases. On the other hand,
Fig. 9 corresponds to design point 2, where more energy is used to increase the quality of the
response, leading to saturation of the controller.

4.3. Monte Carlo simulation

At the end of the simulation Section, a Monte Carlo analysis is presented to analyze the ro-
bustness of the proposed controller toward uncertainties and disturbances. Before demonstrating
the Monte Carlo results, models of uncertainties and disturbances are explained.
The moment of inertia matrix for the real system is considered as

Jreal = J+ δJ =







J1 0 0
0 J2 0
0 0 J3






+ δJ (4.2)
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where δJ is the uncertainty in measuring the moment of the inertia matrix. This parameter is
defined according to the following relation

δJ = δJlb + rand(δJub − δJlb) (4.3)

where δJlb and δJub are the lower and upper bounds of δJ, respectively. Their values are consid-
ered to be ±10% of J for diagonal and δJlb = −10, δJub = 0 in kgm2 for non-diagonal elements
(engineering orders). The operator “rand” is a random number generator between 0 and 1.
Sensor noise is also considered in the robustness analysis. For this purpose, the noise is

considered to be of Gaussian white noise type

w(t) =
1

σN
√
2π
exp
(

−(t− µN )
2

2σ2N

)

(4.4)

where µN and σN are the mean and standard deviation, respectively. It is assumed that this
noise is added to the angular velocity sensor output, and the sampling time is equal to 0.1 s.
µN is considered to be zero and σN is assumed to be 0.0001 rad/s.
The disturbance moments are assumed to be sinusoidal functions of time

Td =







0.01 sin(0.7t)
0.02 sin(0.8t)
0.001 sin(0.1t)






Nm (4.5)

which is equivalent to the disturbances in a circular orbit with 400 km height, for the considered
spacecraft (Wang et al., 2013).
50 simulations have been carried out to perform the Monte Carlo analysis. The error of Euler

angles eφ = φ − φr, eθ = θ − θr, eψ = ψ − ψr at t = tf are obtained for every simulation and
then, their mean and standard deviation are calculated. According to these values, the normal
probability density function is calculated according to the following equation

P = f(x|µ, σ) = 1

σ
√
2π
exp
(−(x− µ)2
2σ2

)

(4.6)

In this equation, the vectors x and P are the final values of Euler angle errors and the corre-
sponding probability distribution, respectively.
The robustness of controller in design point 2 (Fig. 6) is considered and the probability

distributions for the final values of Euler angle errors are illustrated in Fig. 10. According to
Fig. 10, the mean value of eψ at t = tf is 1 degree, which is larger than the mean values of eφ
and eθ at t = tf .
Finally, it should be reminded that pure control moments have been considered in the con-

troller design. The selection of actuation system is another topic that should be considered
separately.

5. Conclusion

An active attitude fault tolerant controller was proposed for the attitude control problem. The
attitude control problem is of importance in many space-based applications. Severe actuator
fault/failure and finite time convergence were especially emphasized as two important chal-
lenges. These two challenges, especially the first one, are important. This is due to the fact that
the occurrence of fault/failure degrades the performance of the controller. Lyapunov’s direct
method and a theorem were used to resolve these challenges to some extent. Simulation results
demonstrated the capabilities of the proposed controller to make the faulty system response
converge to the reference attitude.
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Fig. 10. Probability distributions for design point 2
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