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Considering bearing clearance, time-varying mesh stiffness, time-varying transmission error
and shaft flexibility, a coupled gear-shaft-bearing dynamic model for a helical gear transmis-
sion is established. The influences of rotating speed, input torque load and bearing clearance
on the dynamics are studied. Results show that the frequency and the magnitude of the peak
response increase with the increase of load. As the bearing clearance increases, the amplitude
of the dominant mesh frequency is significantly increased. Under lower speed, the clearance
has a limited effect on the dynamic mesh force. However, under moderate and high speeds,
the main peak response frequency of the dynamic mesh force is decreased as it increases.
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1. Introduction

With the high speed operation requirements of mechanical equipment, the gear transmission
system has become a main source of noise. The gear noise problem is a system-level problem. In
the previous studies, the bearing is usually considered to be of constant stiffness in the dynamic
modeling of the geared rotor system. It is difficult to completely reveal the dynamic interaction
between the gear and the bearing sub-systems. Therefore, this paper aims at studying the coupled
dynamics of the gear-shaft-bearing system.

For a long time, gear and bearing dynamics are studied separately. Gear dynamics researchers
usually take the meshing gear pair as the research object, simplify the bearing by equivalent
spring-damper elements, and focus on the impact of gear mesh excitation and other factors.
For example, the coupled dynamics model of an electric vehicle reducer was established by con-
sidering gear mesh stiffness, transmission error, and tooth side clearance, which can accurately
predict the system dynamic response (Yu et al., 2015). The study combined the gear with the
shaft to build the overall dynamic model of the system (Lee et al., 2003). The influence of
non-linear factors on the system dynamic response was analyzed (Moradi and Salarieh, 2012).
The vibration characteristics of the electric vehicle deceleration housing through finite element
calculation were extracted, and it was verified through modal experiment (Chen et al., 2013). A
finite element elastoplastic contact model was established to study the effect of residual stress
of a carburized gear on rolling contact fatigue (Wang et al., 2019). The study developed a
dynamic model for a single-stage gear reducer considering time-varying characteristics of gear
meshing stiffness, and analyzed the influence of the speed and load on the vibration and noise
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of the reducer (Zhou et al., 2013). The effects of work holding equipment errors on mesh be-
havior and gear flank geometry of a face-hobbed hypoid gear were studied (Liu et al., 2019).
The dynamics of the herringbone gear dynamics model was studied in (Kang and Kahraman,
2016). A nonlinear vibration response caused by manufacturing errors for spur gears, taking
into account the impact of clearance and time-varying mesh stiffness, was analyzed in (Bonori
and Pellicano, 2007). The dynamic characteristics of a multi-degree-of-freedom gear system con-
sidering friction, flank clearance and a time-varying stiffness factor were analyzed by Chen et
al. (2011). The study considered gyroscopic moments of the shaft and established the coupled
dynamics model of the hypoid gear and the shaft (Wang et al., 2016). The research shows that
the combined influence of the gear and the shaft and the gyroscopic behavior have considerable
influence on the system dynamic behavior. To quickly extract fault signals of rotating parts, a
new method based on the orthogonal matching pursuit and a one-dimensional K-SVD algorithm
was proposed (Qin et al., 2019). A gear transmission dynamic model in non-inertial systems was
established, and the effects of non-inertial effects on system vibration was studied (Zhang et al.,
2019). With the increasing requirements of bearing precision, performance life and reliability
in the mechanical industry, the research on bearing dynamic characteristics is particularly im-
portant. A 6 degrees-of-freedom (DOF) ball bearing dynamic model considering Hertz contact
deformation, elastohydrodynamics, radial clearance, ring waviness and local defects was pro-
posed by Sopanen and Mikkola (2003). Considering the influence of ball-groove contact stiffness
and body deformation, a planar multi-body dynamics model for a deep groove ball bearing with
clearance was established (Xu and Li, 2012; Xu et al., 2012). The study proposed a bearing
dynamic model to investigate dynamic characteristics of the bearing-rotor system considering
the internal clearance and waviness of the bearing (Bai and Xu, 2006). Considering the influence
of the rotor unbalance force on the bearing-rotor system, structural vibration of a high-speed
rotor supported by bearings was investigated (Harsha, 2005, 2006). A two-rotor model of an
aero-engine with bearing clearance, nonlinear Hertz contact force between rolling elements and
rings, and variable flexible vibration was developed (Chen, 2008a,b).

More recently, the research of a gear-rotor-bearing coupled system has received attention
by some scholars. The impact of time-varying bearing stiffness on gear system dynamic charac-
teristics was analyzed (Liew and Lim, 2005). The researchers developed a dynamic model of a
bevel gear transmission system considering an oil film bearing, and analyzed the nonlinear dy-
namic behavior under equilibrium and non-equilibrium conditions by a numerical method (Li,
2008). By using the finite element software ANSYS/LS-DYNA, a coupled dynamic model for a
gear transmission system with multi-gaps was developed, and its nonlinear dynamic behaviors
were analyzed (Chen et al., 2010). Researchers developed a nonlinear bending-torsional coupled
vibration model of the gear-rotor-bearing system considering time-varying meshing stiffness,
backlash, bearing clearance and comprehensive transmission error, as well as other nonlinear
factors between the gears (Sheng et al., 2014). To summarize, most of the aforementioned stud-
ies considered the gear and bearing separately in the modeling. Although lots of research were
conducted on the gear transmission system, the coupled interaction between the gear and bear-
ing was rarely considered. In this paper, a single-stage gear transmission system is taken as
the research object. A complete coupled gear-shaft-bearing vibration model is developed by the
finite element and the lumped parameters methods. Then, the effects of different speeds, load
changes and bearing clearances on the system dynamic behavior are investigated.

2. Dynamic modeling of gear-shaft-bearing coupled system

The gear transmission system consists of three main components: gear, shaft and bearing. For
the modelling, the finite element method and lumped parameters method were used to divide the
three types of components into different types of elements. The shaft was divided into a series of
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nodes. Figure 1 shows the overall coupled dynamic model. x, y, z are transverse displacements,
and θx, θy, θz are torsional vibration displacements. Fb,Mb are the nonlinear bearing force and
torque, respectively. L is length of the shaft element. The subscript number i (i = 1, 2, . . . , 12)
is the i-th node; s is the shaft; b is the bearing; p is the driving gear; g is the driven gear. cm is
the mesh damping. km(t), e(t) are the mesh stiffness and internal error excitation, respectively,
which can be represented by

km(t) = k0 + ka sin(2πfmt+ ϕ)

e(t) = ea sin(2πfmt+ ϕ)
(2.1)

where k0, ka are the mesh stiffness mean and amplitude, respectively; ea is the transmission
error excitation amplitude; fm is the mesh frequency; ϕ is the initial phase angle.

Fig. 1. Dynamic model of the single-stage gear coupled system

By matching the node number of each element, the stiffness matrix, load matrix, damping
matrix and mass matrix of each element are assembled into the overall model. Each node has
6 DOF and the overall model has 12 nodes with 72 DOF. Since the bearing only has 5 DOF,
it is substituted into a 6 DOF matrix by filling the zero with the remaining degrees of freedom.
Then its transition term is put into the load array. The assembly of the stiffness matrix and
load array are shown in Figs. 2a and 2b. Also, the mass matrix and the damping matrix can be
obtained by the similar assembling method.

So, the systematic dynamic model is shown as follows

(Mb +Ms +Mg)q̈+ (Cb +Cs +Cg)q̈+ [Ks +Kg(t)]q = Fg(t) + Fb(t) +T (2.2)

where q is the displacement array.Mb,Ms,Mg are the bearing mass matrix, shaft mass matrix
and gear mass matrix, respectively; Cb, Cs, Cg are the bearing damping matrix, shaft damping
matrix and gear damping matrix, respectively; Ks, Kg(t) are the shaft stiffness matrix and gear
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Fig. 2. (a) Overall stiffness matrix, (b) overall load array

stiffness matrix; Fb(t) is the bearing force column matrix; Fg(t) is the gear internal excitation
column matrix; T is the external torque column matrix.
The shaft stiffness matrix Ks and shaft mass matrix Ms are obtained according to the

reference (Stringer, 2008). And the damping matrix Cs is calculated according to Rayleigh
formula

Cs = αMs + βKs (2.3)

where α and β are the mass and stiffness proportionality coefficients, respectively.
The gear stiffness matrix Kg(t) and the internal excitation force of the gear pair Fg(t) are

obtained by the following method.
The total deformation of the gear along the mesh line is denoted by δ and it can be obtained

by

δ = (−xp + xg) sinα cos βb + (−yp + yg) cosα cos βb + (zp − zg) sin βb

+ (rbpθpx + rbgθgx) sin βb sinα+ (rbpθpy + rbgθgy) sin βb cosα

+ (rbpθpz + rbgθgz) cos βb

(2.4)

The internal excitation force along the gear mesh line fg(t) can be represented by

fg(t) = km(t)e(t) + cm(t)ė(t) (2.5)

Based on the Lagrange energy method, the systematic equations of motion can be obtained
as follows

Ipxθ̈px + (km(t)δ + cmδ̇)rbp sin βb sinα = −fg(t)rbp sin βb sinα

Ipyθ̈py + (km(t)δ + cmδ̇)rbp sin βb cosα = −fg(t)rbp sinβb cosα

Ipzθ̈pz + (km(t)δ + cmδ̇)rbp cos βb = −fg(t)rpb cos βb

mpẍp − (km(t)δ + cmδ̇) cos βb sinα = fg(t) cos βb sinα

mpÿp − (km(t)δ + cmδ̇) cos βb cosα = fg(t) cos βb cosα

mpz̈p + (km(t)δ + cmδ̇) sin βb = −fg(t) sin βb

Igxθ̈gx + (km(t)δ + cmδ̇)rbg sinβb sinα = −fg(t)rbg sin βb sinα (2.6)

Igyθ̈gy + (km(t)δ + cmδ̇)rbg sin βb cosα = −fg(t)rbg sin βb cosα

Igz θ̈gz + (km(t)δ + cmδ̇)rbg cosβb = −fg(t)rbg cos βb

mgẍg + (km(t)δ + cmδ̇) cos βb sinα = −fg(t) cos βb sinα

mgÿg + (km(t)δ + cmδ̇) cos βb cosα = −fg(t) cos βb cosα

mg z̈g − (km(t)δ + cmδ̇) sin βb = fg(t) sin βb
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where mp, mg, Ipx, Ipy, Ipz, Igx, Igy, Igz are masses and moments of inertia of the driving and
driven gears; rbp and rbg are the basic radius of the driving and driven gear, respectively; βb and
α are the base helix and the pressure angles, respectively. So Kg(t), Fg(t) can be obtained by
Eqs. (2.6). The nonlinear bearing force Fb is obtained by the following method (Lim and Singh,
1990).

Figure 3 shows the structure diagram of the bearing. Oi, Oe are the curvature centers of the
inner and outer race groove. Aie is the relative distance between Oi and Oe. 5 degrees of freedom
of the center of the inner race and a fixed outer race are considered.

Fig. 3. Rolling bearing structure diagram

Assuming that the bearing has N rolling elements, then in the process of bearing rotation,
the azimuth angle of the j-th rolling element at any time is (Liew and Lim, 2005)

ϕj =
2π(j − 1)

N
+
1

2

(

1−
rb

RC
cosα0

)

wit j = 1, 2, . . . , N (2.7)

where α0 is the unloaded contact angle (α0 = 0 for deep groove ball bearing), rb is the element
radius, RC is the inner race curvature center radius, wi denotes the angular velocity, t denotes
time. Then, the bearing passing frequency VC can be calculated by

VC =
1

2π

[1

2

(

1−
rb

RC
cosα0

)

wiN
]

(2.8)

Fig. 4. Displacement-deformation relation
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Bearing deformation mainly means contact deformation between the rolling elements and
the inner and outer races. Figure 5 shows the displacement and deformation relationship of the
j-th rolling element. Since the model assumes that the outer race is stationary and the inner
race vibrates, the curvature center Oi of the inner race groove moves to point O

′

i under the
applied load. Then the deformation δb(ϕj) can be calculated by

δb(ϕj) =

{

A′ie(ϕj)−Aie for δb(ϕj) > 0

0 for δb(ϕj) ¬ 0
(2.9)

and

A′ie(ϕj) =
√

(Xaj)2 + (Xrj)2

Xaj = Aie sinα0 + zb +RCθbx sinϕj −RCθby cosϕj

Xrj = Aie cosα0 + yb sinϕj + xb cosϕj − rl

(2.10)

where Aie and A
′

ie are the unloaded and loaded relative distances between Oi and Oe, respec-
tively; rl is the radial clearance of the bearing. Therefore, according to Hertz contact theory, the
relation between the bearing force and displacement at the j-th rolling element can be written
by

FBj(ϕj) =

{

Kn

√

(δb(ϕj))3 for δb(ϕj) > 0

0 for δb(ϕj) ¬ 0
(2.11)

where Kn is the Hertz contact stiffness coefficient.
The contact angle of the rolling bearing will change after loading. According to Fig. 4, the

contact angle after loading is

α′Bj(ϕj) = arctan
Xaj

Xrj
(2.12)

The nonlinear bearing force Fb(t) for N rolling elements can be represented by

Fbx =
N
∑

j=1

FBj(ϕj) cosα
′

Bj cosϕj Fby =
N
∑

j=1

FBj(ϕj) cosα
′

Bj sinϕj

Fbz =
N
∑

j=1

FBj(ϕj) sinα
′

Bj

Mbx =
N
∑

j=1

RCFBj(ϕj) sinα
′

Bj sinϕ Mby = −
N
∑

j=1

RCFBj(ϕj) sinα
′

Bj cosϕ

(2.13)

3. Dynamic characteristic analysis

The Runge-Kutta method is applied for solving the coupled model. The structural parameters
and loading conditions of each element of the system are shown in Tables 1-4.
By solving the model, the dynamic transmission error and the mesh force at different speeds

are obtained under 120Nm torque load conditions as shown in Figs. 5a and 5b. Figure 5a shows
that the dynamic transmission error is prone to peak responses when the input speed is roughly
3360, 5000, 6720 and 11990 r/min, and vibration is severe at 3360 r/min. From Fig. 5b, as the
speed increases from 10 r/min to 3355 r/min, the mesh force fluctuation value first decreases and
then increases rapidly. Due to the weakening effect of the flexible shaft on high-speed vibration,
the obvious response peaks are roughly distributed at input speeds 3355 r/min, 5000 r/min,
6715 r/min and 11980 r/min with little difference in the response amplitudes. Figure 6 shows the
dynamic bearing force for the left bearing on the driving shaft at different rotating speeds.
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Table 1. Basic parameters of the system load condition

Torque [Nm] Speed [rpm]

Normal load 120 4400

Peak load 215 3754

Peak speed 81 9000

Table 2. Gear geometric parameters

Parameters Driving gear Driven gear

Number of teeth 19 87

Tooth width [mm] 24 28

Normal modulus [mm] 2

Pressure angle [◦] 14.5

Helix angle [◦] 30 −30

Mass [kg] 0.09 1.616

Moment of inertia Ix, Iy [kgm
2] 2.555 · 10−5 7.26 · 10−2

Moment of inertia Iz [kgm
2] 4.017 · 10−5 1.437 · 10−1

Table 3. Geometric parameters of each shaft element

Shaft element
Outer diameter Inner diameter Length
[mm] [mm] [mm]

Driving
shaft

L1 30 12 12
L2 38.9 12 68
L3 30 12 64
L4 30 10 30
L5 25 4 33

Driven
shaft

L6 50 18 12.7
L7 52.3 18 38.7
L8 252.3 18 33.7
L9 50 18 19.9
L10 40 18 13

Table 4. Basic parameters of bearing SKF6306 and SKF210

Type SKF6306 SKF210

Inner race curvature center radius [mm] 26.2 35.2

Radial clearance [µm] 12.5 14.5

Number of elements 8 16

Element diameter [mm] 12.303 12

Relative distance between inner and outer
0.4921 0.48

race groove curvature centers [mm]

Mass [kg] 0.2125 0.3422

Moment of inertia Ibx, Iby [kgm
2] 7.1825 · 10−5 2.0960 · 10−4

Moment of inertia Iz [kgm
2] 1.4365 · 10−4 4.1920 · 10−4

As seen in Fig. 6, the bearing force fluctuation in the directionX, Y , θx, θy gradually increases
and reaches its maximum peak at 7925 r/min. Moreover, at the same speed, the dynamic bearing
forces in the Y and θx directions fluctuate more obviously than the response in the X and θy
directions. Figure 7 shows the displacement responses of nodes 1 and 6 located on left and right
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Fig. 5. (a) Dynamic transmission error, (b) dynamic mesh force

Fig. 6. Bearing force of the driving shaft left bearing with different speeds: (a) in the X , Y direction,
(b) in the θx, θy direction

Fig. 7. The displacement response of the driving shaft left and right ends (namely nodes 1, 6):
(a) X displacement of node 1 and 6, (b) Y displacement of node 1 and 6

ends of the driving shaft. From Fig. 7, the responses at the right end are significantly larger
than the responses at the left end, because the torque input is applied to the right end of the
driving shaft.

3.1. Load impact on dynamics

Figure 8 shows the influence of torque load on the dynamic bearing force of the left bearing
located on the driving shaft.
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Fig. 8. Influence of torque load on the bearing force: (a) X bearing force, (b) Y bearing force,
(c) θx bearing force, (d) θy bearing force

From Fig. 8 one can see that the main response peak of bearing force increases and the
excitation frequency corresponding to the main response peak also increases obviously with the
increase of load. The main reason for the increase of the response amplitude is that mesh stiffness
and transmission error are increased due to torque load increment, as shown in Table 5.

Table 5. Meshing stiffness and transmission error for different load conditions

Torque Mesh stiffness Mesh stiffness Transmission error Initial phase
[Nm] mean [N/m] amplitude [N/m] amplitude [m] angle [◦]

60 4.817 · 108 6.768 · 105 3.27 · 10−7 −117.49

120 5.059 · 108 6.077 · 105 3.50 · 10−7 −117.49

180 5.059 · 108 6.077 · 105 3.63 · 10−7 −117.49

240 5.059 · 108 6.077 · 105 3.75 · 10−7 −117.49

3.2. Bearing clearance impact on dynamics

From Table 4, the bearing types on both sides of the driving shaft and the driven shaft are
SKF6306 and SKF210, respectively. According to the ISO Standard, the standard radial clear-
ance of bearing SKF6306 and SKF210 are 12.5µm and 14.5 µm, respectively. With a constant
torque of 120Nm and rotating speed of 4400 r/min, the impacts of different bearing clearances
6.5µm, 9.5µm, 12.5 µm, 15.5µm and 18.5 µm for the driving shaft on the dynamic mesh force are
shown in Fig. 9. In order to maintain the quantitative relationship between the input and out-
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Fig. 9. Dynamic mesh forces with different bearing clearances: (a) 6.5µm, (b) 9.5µm, (c) 12.5µm,
(d) 15.5µm, (e) 18.5µm
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put shaft bearing clearances, the driven shaft bearing clearances were set at 7.54µm, 11.02 µm,
14.5 µm, 17.98 µm and 21.46 µm. Figure 9 shows dynamic mesh forces with different bearing
clearances at 4400 rpm. For the speed 4400 rpm, the gear mesh frequency is 1425Hz, the driving
shaft bearing passing frequency VC1 is 229Hz and the driven shaft bearing passing frequency VC2
is 108Hz.

As Fig. 9 shows, the dominant peak frequency of the dynamic mesh force is the gear mesh
frequency fm, and its amplitude increases significantly as the radial clearance increases. Secondly,
when the radial clearance is 9.5 µm, the dynamic mesh force shows side frequencies 1196Hz
(fm − VC1) and 1654Hz (fm + VC1). When the clearance is 15.5 µm, the dynamic mesh force
shows side frequencies 1317Hz (fm − VC2) and 1533Hz (fm + VC2).

With a constant torque of 120Nm, the influence of bearing clearance on the dynamic mesh
force is further analyzed. As Fig. 10 shows, when the speed is less than 3600 r/min, the radial
clearance has a small impact on the dynamic meshing force. However, when the speed exceeds
3600 r/min, the excitation frequency corresponding to the main response peak decreases with
the increase of the clearance, which is mainly due to the decrease of bearing stiffness resulted
from the increase of bearing clearance.

Fig. 10. Sweep frequency analysis for the dynamic mesh force

Figures 11 and 12 show the impacts of bearing clearance on the displacement in the X and Y
directions for the left and right ends of the driving shaft. Figures 11 and 12 show that with the
increase of bearing clearance, the main response peaks in the X and Y directions for the left
and right ends of the driving shaft increase, but the increasing speed gradually decreases.

Fig. 11. X displacement response of the driving shaft left (node 1) and right ends (node 6) with
different clearances: (a) X displacement of node 1, (b) X displacement of node 6
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Fig. 12. Y displacement response of the driving shaft left and right end with different clearances:
(a) Y displacement of node 1, (b) Y displacement of node 6

4. Conclusions

• In this paper, a coupled dynamic model of a gear-shaft-bearing system is developed and the
influence of rotational speeds, input torque loads and bearing clearances on the dynamic
behavior is studied.

• As the rotational speed increases, the dynamic mesh force, dynamic transmission error
and dynamic bearing force fluctuates. The radial displacement response between the left
and right ends of the driving shaft varies greatly. The main peak response shifts to a
higher frequency and its magnitude also increases with the increase of load. Under the
same speed, the bearing forces along the Y and θx directions fluctuate more severely than
the bearing forces along the X and θy directions.

• The change of bearing clearance generates side frequency components for the dynamic mesh
force. As the bearing clearance increases, the amplitude of its dominant mesh frequency
is obviously increased. At a low speed, the increase of bearing clearance has little effect
on the dynamic mesh force. However, for moderate and high speeds, with the increase of
bearing clearance, the peak response frequency of the dynamic mesh force is decreased.
Therefore, when the gear transmission system is running at moderate and high speeds,
it is necessary to pay attention to the influence of the clearance on the system dynamic
characteristics.
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