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The paper concerns the issue of optimum control of the strongly non-linear dynamic system,
i.e. Anti-Tank Guided Missile (ATGM). The linear-quadratic regulator (LQR) was used to
provide control capabilities. In order to use the classic LQR, the dynamics of the object
must be presented in the form of a linear-stationary model. This is not possible in the case
of the considered missile, mostly due to mass changing in time (intensive consumption of
fuel) and varying aerodynamic conditions depending on the Mach number Ma. Thus, we are
dealing with a non-stationary system. Moreover, state variables are frequently involved in
complex functions, which do not allow one to separate coefficients related to state variables
very easily. In order to linearize such a complex system, the paper uses Jacobian, as the
matrix of state, calculated at each time instant. The automatic pilot of the ATGM, using
the LQR method, determines the signals controlling the angles of flight control surfaces and
the thrust vector using continuously calculated Jacobians. The paper presents the algorithm
for the ATGM control.

Keywords: linear-quadratic regulator, Anti-Tank Guided Missile, direction algorithm, Jaco-
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1. Introduction

The linear-quadratic regulator is best suited for controlling automation objects, which can be
subjected to linearization and their point of work is fixed. In the case when dynamic equations
are strongly non-linear and non-stationary, their linearization causes significant errors or is
often simply impossible. The ATGM is a control object the parameters of which change in
time. This applies mostly to mass, moments of inertia, centre of mass location, aerodynamic
coefficients, velocity of flight, engine thrust, etc. The position angles of the velocity vector and
their derivatives with respect to time change during the flight depending on the implemented
control algorithm.

Control of manoeuvring the ATGM using variable engine thrust geometry is more and more
common. There are hybrid control systems consisting of at least two executive mechanisms,
wherein one is vectorization of thrust and the other are aerodynamic surfaces. They can be
supported with internal gasodynamic controls which are activated within the initial stage of flight
when the missile accelerates and the forces generated on the control surfaces are insufficient.
One of the ATGMs which employs control assistance using added control surfaces located at the
outlet of the engine is ”Javelin” (Fig. 1). This causes a change of the engine thrust direction.

In the paper (Harris and Slegers, 2009), the authors investigated the impact of a defect
of control surfaces and stabilizers on the control capabilities. Another example of the issue
concerning the control and stability of the ATGM as a non-stationary system is the paper by
Guo et al. (2017). Based on the analysis of the available bibliography, it seems that the ATGM
guiding algorithm using Jacobians (called the modified LQR method in this paper) has never
been used.
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Fig. 1. General view of “Javelin” — the anti-tank guided missile of the latest generation (Harris and
Slegers, 2009)

2. Controlled object

The controlled object is a subsonic, hypothetical short or medium range anti-tank guided missile,
i.e. “fire and forget” (Fig. 2a). It is controlled using a double executive control system. The
executive system consists of two pairs of aerodynamic controls in the front part of the missile and
a tilting nozzle of the engine (Fig. 2b), which changes the angular position of the thrust vector
in relation to the longitudinal axis of the missile Sx. The application of the hybrid executive
system significantly improves manoeuvrability of the missile, as presented in the paper (Nocon
and Koruba, 2017).

(a)

Fig. 2. (a) Force system acting on the ATGM within the gravitational field and Earth atmosphere
together with the accepted coordinate systems. (b) Generation of control forces while tilting
the engine nozzle

Figure 2 uses the following symbols and designations: R4 — vector of resultant aerodynamic
forces; Tgr — engine thrust; G — force of gravity; Qy, Qz — control forces; V — vector of missile
velocity; Sx,y424 — ground-fixed coordinate system; Swx,y,2, — coordinate system connected
with the flow; Sxyz — coordinate system connected with the missile; o — angle of attack; 5 —
missile sideslip angle; v and x — angles of the velocity vector (flight-path angles); p, ¢, r — angular
velocity components in the body-fixed system.

Deviation of the engine thrust vector from the longitudinal axis of the ATGM by the angles
dy, 0, (Fig. 2b) provides control forces in both planes. In the vertical plane, the flight height
control force is generated TY, in the horizontal plane, the flight direction control force is gener-
ated T% (Koruba and Nocoii, 2016b).

It is assumed that TE is the thrust projection on the vertical axis Sy:; T% — thrust projection
on the horizontal axis Sz; Tﬁ — thrust projection on the longitudinal axis of the ATGM Sz.
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The following thrust vector deviation angles are adopted: d, — control angle in the horizontal
plane; J, — control angle in the vertical plane.

The trigonometry shows that: Tf{ = é(Z cos 0, Tg = ngz sind, — in the horizontal
plane Sxz; T}){( =T 1){( Y cos 0y, TY = T}){(Y sind, — in the vertical plane Sxy. The control forces
T, and T% are derived in detail in the article (Koruba and Nocofi, 2016b), they are equal to

T2 cos2 §, sin? §
T}}%/: ’TE‘ = Sgn(5y) = ) = ) S %TR‘S?J
1 —sin” ¢, sin” J, 2.1)
T2 cos? 6, sin? § .
TZ = |T%| = b) B Y 2 ~Tgré
i = [Tkl = sen( Z)\/l — sin? 6, sin® 0y R

Aerodynamic Controls (AC) are located at the missile front. The light composite construction
of AC (Chatys, 2013) provides a quick response to control signals. In the case of small deflections
of AC ay, az (Nocon, 2017) carrying and side (control) forces Qy, )z generated on the AC,
adopt simplified form (2.2). The pair of AC in the front part of the missile can be described
using the following formulas

V2 V2
Qy = 20zy55p7 Qz = 2aZSSp7 (2.2)

where: Sg — area of surfaces (Sg = 0.009m?), p — air density (p = 1.225 kg/m?).

The controlled object is guided to a target using an optical scanning seeker (Gapinski et al.,
2014) or, in the case of medium range, using a television head which enables operation such as
“fire, observe, correct”. It is assumed that the guided missile operates correctly and the data
on missile location versus its target is known. Moreover, it is assumed that the AGTM does not
make any rotational motion in relation to axis Sx. Simplifying assumptions are also made, which
slightly affect the errors in simulation calculations. Initial studies are performed on a physical
model in the vertical plane (Fig. 2), and it results that the angle of attack is & = © —~, @ — pitch
angle.

It is assumed that the ATGM mass changes due to consumption of the engine fuel. Thus,
the center of mass moves and moments of inertia change. These changes are described using
time-dependent linear functions.

Calculations shown in Fig. 3 are made for: mgy — initial mass of the ATGM is 13.287 kg,
my — mass of the ATGM after consumption of fuel is 8.7 kg, x50 — initial position of the center
of mass of the ATGM = 0.5705m (when viewed from the front of the ATGM), x4,1 — position
of the center of mass of the ATGM after consumption of fuel is 0.434 m (when viewed from
the front of the ATGM), I,o — initial moment of inertia of the ATGM in relation to z axis is
0.0396 kgm?, I,; — moment of inertia of the ATGM in relation to x axis after consumption of
the fuel is 0.026 kgm?, I, = I,0 — initial moment of inertia of the ATGM in relation to the
transverse axis is 1.7823 kgm?, I,1 = I.,; — moment of inertia of the ATGM in relation to the
transverse axis after consumption of the fuel is 1.2078 kgm?.

Full dynamic equations of spatial flight of any flying object as a rigid solid body can be
found, among others, in the papers (Koruba and Nocon, 2016a; Nocon and Stefanski, 2016;
Baranowski 2013). For the purpose of the analysis of the modified LQR method algorithm,
dynamic equations of the ATGM considered herein have been simplified to the vertical plane,
making the following assumptions

p=0 g=0 r=0 (2.3)
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Fig. 3. (a) Mass change, (b) center of mass change, (c) moments of inertia change, (d) moments of
inertia change

Then, these equations have the following form

mV = Trcosa — Gsiny — mA, V2
mVy =Tgrsina — Gcos~vy + m)\yV2a + Qy + T}{
Qy —|—ng
I, I,

(2.4)

6 = —DlLiW — DoV —D3VO +e
P

where: Tk — engine thrust, e = xg,, — rg, f = ©5m — Lp — distance from the center of mass of
AC and outlet gas nozzles, correspondingly, z; — coordinates of AC center (when viewed from
the front of the ATGM), Lp — length of the ATGM body, I, — moments of inertia in relation
to the axes of the related system, m = m(t) — mass of the missile, © — pitch angle, A\x, Ay,
D; = C;Lp/I, — relative aerodynamic factors of forces and moment, Cy — lift and drift moment
factors, Cy, C3 — damping moment factors from the ATGM body angular velocities (constans
values were adopted) (Koruba and Osiecki, 2006).

It is assumed that the deflection angle of the AC and engine nozzle have the same values

but opposite directions. In the vertical plane, we have ay = —d, which results in the following
equations
Qy = ayPS T}{ ~ —TRay (2.5)

where: Pg = 2S5pV?/2.

3. The control algorithm in the modified LQR method

The general idea of the programmed trajectory is derived from the paper (Koruba and Nocon,
2016a). Determining the programmed (set) trajectory consists in finding a polynomial function
of the third degree that binds the initial and final point of the flight trajectory section. These
points are called flight points. There can be a few such trajectory sections. The last section
connects the ATGM with a target. The suitable control angles are selected so that the ATGM
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flight could correspond to the programmed trajectory — this is an essential control task. The
modified linear-quadratic regulator is used for this purpose.

The dynamic equations of the AGTM flight in the vertical plane are strongly non-linear,
and their linearization is practically impossible due to significant errors resulting from major
simplifications. In the paper (Koruba and Nocon, 2016b), it was proven that a linear-quadratic
regulator may be used to regulate this type of objects, however with time-fixed states matrices A
and control matrices B, the mathematical model is far from the current one. The modified
LQR method solves this problem. It determines the control angle oy = —9, for non-linearized
flight dynamics equations (2.4). The control signals determined by this method are the angle of
deflection of the AC and the nozzle of the engine.

Within the determined state, at a given point of work, the dynamic equations assume the
form of a linear function. In the case considered by us, the ATGM point of work is any consecutive
point of the missile flight position during guidance to the target (implementation of the firing
task). The linearization of the dynamic equations is performed at any time instant — around the
next point of work.

For the purpose of developing the control with the modified LQR method, dynamic equations
(2.4) have been narrowed down to the equations of state

v Tg . 2
el cos(@ — ) — gsiny — A\, V
dy _ Tg g Qy
or _ IR _A) -2 by _ hi2d
il v sin(© — ) Vcos'y+ y(@ =7V + —V —I— V
(3.1)
de _6
dt
B} o — )
©=-D; TV2 _DoV(O —4) — DsVO + eQY + f

P

Assuming that the system of dynamic equations (3.1) is linearized at any time instant, it
can have the form of a vector-matrix equation

Ax(t) = J(t) Ax(t) + Bu (3.2)

where: x(t) = [V,%,0,0]T; Ax(t) = x(t) — xz(t) — vector of state variables deviations from
the required value; x(t) = [V,~, 0, @]T — vector of actual state variables; xz(t) — vector of state
variables at the point of work, i.e. vector of required values of state variables; u(t) = [ay] —
vector of forcing (control of) the system; J — Jacobian, system state matrix, calculated within
each sample time; B — control matrix.

It must be emphasized that calculation of Jacobian at each time instant allows one to shift
the point of work to a place where the ATGM is currently present. The data necessary for
adjustment using the LQR method derives directly from the mathematical model given in the
form of dynamic equations described with formulas (2.4). At each time instant for the LQR, a
new Jacobian J and control matrix B is calculated, so is the matrix of amplification K.

The Jacobian of the system described with equations (3.1) is presented in the following form
[OV 9V oV 9V
v oy 99 99
oy Oy 0y 0¥

v oy 00 9O

I=1%6 00 06 90 (3:3)
oV oy 09 0g
00 00 060 00
LOV 9y 00 9o ]

o
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The matrix J is a Jacobian of simultaneous equations (3.1) and consists of partial derivatives
calculated at each point of work z¢(Vp, 0, G, Op).

The mentioned partial derivatives have the following forms

dv dV  Tg

v =22 Vo dfy = sm(@o — ) — g coso
v Tg . dv
10 = —ER sin(Gp — o) 0
& (Tr . 1 dy _
v _(E sin(@p — 7o) —QCOSVO)V—OQ + Ay(€o —0) 0 =0
& Tr g &y Tg
o = o cos(@g — 7o) + Vo sinyp — Ay Vo 6 = mv cos(@p —70) — Ay Vo
e _, @ _, e _, 4o _
av dry de de
dé D :
v —QL—l(Qo —70)Vo — D200 + 2D5 VoA (€g — 7o) — D36y
& D T,
— = —1V02 — DQ_R cos(@p — o) + Dagsinyg — DaVEN,
d’)/ Lp
dé Tr dé
& D, E - D & _DyVo-D
0= LPVO + Dy I cos(@y — 7o) + DaVEN, 20 2Vo — D3V
However, the control matrix B has the following form
0
Ps _Tr
B— mV 0 mV (3.4)
D> P P, D T

J.
The right control u = u(t) has been determined, which minimizes the square index of quality

tk
1

J=3 / xT()Qx(t) + u (H)Ru(t) dt (3.5)

0

where: Q — symmetrical matrix positively semi-definite; R — symmetrical matrix positively
definite.

Based on the dynamic equations, the gain matrix of the LQR has been determined
K =R 'B'S (3.6)

each of them allows for minimization of square quality index (3.5). The minimization process
includes solution of the algebraic Riccati equation which can be determined using the function
in Matlab (Tewari, 2002).

The matrices Q, R are selected for two time intervals. The first time interval is the time
when the launch motor is on (0s < ¢ < 0.5s) and the thrust is 4.3kN. The second interval is
when the main engine is on (0.5s < ¢ < 7.5s) the thrust of which is 280 N
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[0.474 0 0 0
0 16 0 0
Qco5s=1| o o 706 0 Ri<05s = [0.082]
0 0 0 0.00521
- (3.7)
0.001 0 0 0
0 001 0 0
Qoss<t = 0 0 0.01 0 Ross<t = [0.0391]
0 0 0 0.151

It is assumed that the linear system is in balance. The purpose of the control is to maintain it
within a set point of work, despite the interruptions affecting it. In this case, the AGTM moves
and the point of work is not fixed. The balance state depends on the deviation x(t) —xz(¢). The
optimum control can have the following form

u(t) = —K[x(t) = xz(t)] (3.8)
When substituting equation (3.8) to (3.2), one gets
Ak(t) = (3 - BR)x(t) - x2(1)] (3.9)

The vector of the set state variables xz(t) = [Vo,7°+7z, On, Og|" is derived from data calculated
based on the programmed trajectory.

The programmed flight trajectory in the vertical plane is a polynomial of the third degree v,
based on which the set flight height control angle v is calculated

vz = arctan(3a,z” + 2b,x + ¢;) (3.10)

Moreover, height correction in the form of an angle is introduced into the vector of set
variables. Angular correction of the position results from trigonometry. The form is as follows
Ay cosvyy

Ax
where: ay,by,c, — polynomial coefficients calculated according to the control algorithm (Ko-
ruba and Nocon, 2016a); Ay = yz — y; yz — programmed trajectory coordinates; y — real

ATGM coordinates; Az — projected distance necessary to correct the ATGM flight — assumed as
Ax = 10m.

A
tan ,_YO = — ")/O = arctan(A—y COS "YZ) (311)

X

4. Results of computer simulation

The simulation has been performed for a hypothetical missile, equation (2.4), controlled using a
modified LQR. The executive system of the control is a double system consisting of aerodynamic
surfaces in the front part of the missile and variable geometry of engine thrust. Geometrical
and mass properties of the ATGM and the remaining parameters were selected as follows:
Lp = 12m, 2z, = 02m, D; = 0.081m~', D, = 0.0821m™', D3 = 0.00041m~!,
Az =0.000171m™*, A, = 0.051m™".

The simulation has been performed for the following initial conditions.

The point of start of the ATGM is located at the beginning of the coordinate system Ox4y,zg,
initial velocity of the ATGM V) = 50 m/s, sample time dt = 0.001 s, pitch angle of starting © = 0.

Simulation of guiding the ATGM to a target has been carried out at velocity Vp = 30m/s
and angle of target velocity vector v = 10°, spaced from the shooting position by 750 m, located
at a height of 2m in relation to the missile. The flight point of the ATGM has the coordinates
P;(400; 10).

The simulation has been performed for the target moving at velocity Vr = 30 m/s and angle
~r = 10°, spaced from the shooting position by 2300 m, located at a height of 1 m. The points
of flight of the ATGM are P;(400;10), P»(750;2), P3(1200; 20).
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Fig. 4. Set and implemented ATGM flight path and the path to a target in a vertical plane. The
implemented flight of the ATGM is calculated based on the flight dynamic equations, however, the set
trajectory results from the control algorithm. The point of flight is P;(400; 10)
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Fig. 5. (a) Implemented deflection angles of aerodynamic surfaces ay and nozzle deflection ¢, for the
height control channel. (b) Flight height control forces generated on aerodynamic surfaces Qy and using
the engine nozzle T}{ in function of time
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Fig. 6. Implemented angle of attack a (a) and velocity of the ATGM (b) in function of time

5. Final conclusions, direction of further studies

The initial studies have been performed on a mathematical model of the ATGM motion in a
vertical plane. The algorithm of a modified LQR method using Jacobian for the ATGM control



Modified linear-quadratic requlator used for controlling... 731

L] p— From dyn. equat.

501 ———- Programmed 52.46 e
.............. Target 5244 e e / /

40 [T /
52.42

30 /

2591.9  2592.0  2592.1 /
20 .
10
0 ;
0 500 1000 1500 2000 2500 1)

Fig. 7. Set and implemented ATGM flight path and the path to a target in a vertical plane. The
implemented flight of the ATGM is calculated based on the flight dynamic equations, however, the set
trajectory results from the control algorithm. The points of flight are P;(400;10),
P,(750;2), P5(1200;20)
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Fig. 8. (a) Implemented deflection angles of aerodynamic surfaces ay and nozzle deflection ¢, for the
height control channel. (b) Flight height control forces generated on aerodynamic surfaces Qy and using
the engine nozzle T¥ in function of time
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Fig. 9. Implemented angle of attack a (a) and velocity of the missile (b) in function of time
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presented in the paper works correctly. The missile mirrors the set trajectory with deviation not
exceeding 0.4m. The target is hit with an accuracy of 0.2 m. The modified regulator develops
control signals (deviation angles of the aerodynamic surface and the vector of engine thrust)
based on dynamic equations. It must be underlined that the algorithm considers limitations
related to the aforementioned controls - values of deviation angles do not exceed 15 degrees.

Application of time-variable elements of the matrix J(t), B(¢) allowed for linearization of
the flight dynamic equations within a subsequent sample time. The dynamic character of flight
equations has been thus maintained. In practice, Jacobian is applied as a matrix J — matrix
consisting of partial derivatives. It results in an option to control a strongly non-linear and
non-stationary object using LQR.

Satisfactory results of the application of the modified LQR for the control of an anti-tank
guided missile in a vertical plane encourage further studies of the full spatial model. Moreover,
in the case of lack of access to all state variables, it will be necessary to use a proper state
observer, and in the case of random interferences — Kalman filter.
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