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This paper contributes to a modified guidance scheme based on a trajectory tracking method
which is dedicated for an artillery rocket with a finite set of single use solid propellant
side thrusters. Frequency modulation of pulses was used to achieve effective firing logic.
The proposed control law is applicable in the last phase of flight when the rocket reaches
the vertex of the trajectory. A correction engine activation sequence was chosen in such a
way that possibility of rocket axial unbalance is minimized due to motors firing. Numerical
simulation results indicate that significant dispersion reduction was achieved and the number
of activated side rocket thrusters is minimized.
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1. Introduction

Rocket artillery systems have been commonly used for years on the battlefields. The main roles
of this kind of weapon are: preparation of the area before the main ground troops attack, fire
support for other types of forces and defensive tasks. The main advantages of these systems
are low unit cost and strong firepower. Among the disadvantages of unguided rockets, one may
distinguish their huge dispersion at long ranges and poor impact point accuracy, especially
when launched at low elevation angles. Generally, rocket leaves the launcher with a relative low
velocity, therefore, if some disturbances occur (e.g. wind shear) at the very beginning of the
active portion of the trajectory then the final impact point might be positioned far away from
the desired one. Due to this reason, rocket artillery is commonly used rather in a role of area
weapon than a precision one. One of the current tendencies in modern warfare development and
the significant requirement is to improve the rocket range. On the other hand, at long ranges
the accuracy could be lost. Moreover, precision hit functionality is also needed especially at
asymmetric conflicts to eliminate point targets and reduce losses among civilians.
One of the ways to improve the weapon effectiveness is to use cluster warheads. From another

point of view, in a lot of countries this kind of munition cannot be used due to law restrictions
like Convention of Cluster Munitions. One of the possibilities to achieve significant dispersion
reduction is to acquire guided capabilities. Microelectromechanical Systems (MEMS) could be
used to include a low-cost control mechanism into a rocket structure and then the unguided
rocket can be turned into a high-performance precision weapon. Various actuators like movable
fins, lateral thrusters, dual spin projectiles with forward canards and internal movable mass
elements have been implemented up to this time. With the precision guidance, the unit cost
of enemy neutralization could be decreased because the total number of rockets used per one
target is smaller.
In this paper, a control system based on single use lateral thrusters is proposed in order to

reduce rocket dispersion. There exist a lot of problems while this type of control is utilized. In
the case of aerodynamic fins, the task is much easier due to the fact that the rocket trajectory
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could be changed in a continuous manner. When the pulse jet mechanism is used, there is no
possibility to control rocket motion continuously. There exists only a finite number of control
pulses which can be generated by lateral thrusters to influence on rocket trajectory. It was
decided that to overcome these tasks, a new guidance scheme should be investigated.

2. State of the art

Different kinds of control methods have been published so far. The simplified trajectory tracking
scheme was proposed in (Jitpraphai and Costello, 2001). The influence of specific parameters
of lateral thrusters and the control system like total impulse and tracking window size on the
accuracy were investigated. A significant dispersion reduction was achieved with this kind of
method but no analysis about time between two pulses was presented. Next, the trajectory
tracking guidance scheme with proportional navigation and with parabolic proportional guidance
was compared in (Jitpraphai et al., 2001). The authors of that work concluded that proportional
navigation allows achieving the least dispersion reduction when compared to two other methods.
The trajectory tracking method generated low dispersion and was easily implementable on an
onboard computer. In (Pavkovic et al., 2012), the method of calculating the time between two
consecutive pulses was described. A simple active damping method, which allows counteracting
the effects of disturbances at the beginning of the active portion of the trajectory was proposed
in (Pavkovic, 2012). A flight path steering method, which was based on a pitch autopilot and
control fins, was described in (Mandić, 2009). In (Cao et al., 2013) the authors proposed to use
a lateral thrusters correction kit and laser seeker for a 120mm projectile. They concluded that
the trajectory errors were reduced by impulse thrusters. A roll autopilot design methodology for
a canard controlled 122mm artillery rocket using state-dependent Riccati equation method was
presented in (Siddiq et al., 2012). A set of control laws based on proportional navigation with
a pulse jet control mechanism was investigated in (Pavic et al., 2015). The authors achieved
a drastic reduction of the mortar munition dispersion. An influence of basic control system
parameters in the trajectory tracking guidance scheme was discussed in (Gupta et al., 2008).
An optimum control scheme for a thruster-based correction kit was considered in (Gao et al.,
2015).
It is possible to utilize some standard methods which are suitable for this kind of problem.

The first group of control algorithms is based on the reference trajectory tracking. In this method,
the rocket is moving along a prespecified curve. The second group of algorithms is based on
the impact point predictors. In this approach, the instantaneous impact point to the ground
is predicted during the flight, and the trajectory corrections are made. Sometimes these two
types of control are mixed to achieve the best accuracy. Both methods could be also used at
different flight phases to achieve the best possible performance (for example M270 Multiple
Launch Rocket System uses the trajectory tracking scheme until the apogee and impact point
prediction at the descent portion of the trajectory).

3. Modified trajectory tracking guidance

In this Section, the developed method is described. At the beginning, the main factors influencing
the rocket accuracy are considered. Next, a test platform is described shortly. Finally, a control
law is proposed.

3.1. Dispersion factors

One of the most current requirements for rocket artillery is to achieve the maximum range
with a minimum dispersion. These two issues are contradictory. The longer the rocket range,
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the lower accuracy it achieves. The dispersion is influenced and generated by a huge set of
disturbances, which acts on the rocket during the whole flight. The most significant factors at
the launch phase are: initial elevation and azimuth launch angles of the launch tubes, launcher
vibration while the rocket moves along a tube, the firing order from launch tubes, tubes location
axial misalignments and the time between two consecutive firings. Furthermore, the total im-
pulse variation of the rocket motor is the main factor which influences the longitudinal dispersion
and achieved range. This factor could be reduced only at the manufacturing stage. Thrust mis-
alignment effects are partially mitigated due to rocket spinning around their longitudinal axis.
A lot of artillery rockets are stabilized with the aim of deployable fins. Fin angles uncertainties
could influence the maximum spin rate along longitudinal axis and decide about lateral disper-
sion. Surface properties of the rocket fuselage (surface roughness) could be taken into account.
Finally, the wind during the flight determines the achieved dispersion.

3.2. Test platform and simulation model

The geometric and mass data of one of the existing artillery rocket were used as an input for
numerical simulations. The rocket diameter was 128mm and the length was equal to 2.6m. The
rocket mass, center of mass location measured from tail, axial and transversal moments of iner-
tia were assumed to be approximately 60.75/38.55 kg, 1.44/1.65 m, 0.14/0.09 kgm2, 38/29 kgm2

before and after the burnout, respectively. The rocket has four wrap-around fins at the tail. The
maximum range was more than 47 km when launched on high elevation angles. It was proposed
to use the trajectory correction only when the axial spin frequency was smaller than 12Hz.
For the purposes of numerical experiments, a 6 degrees of freedom (6-DOF) mathemati-

cal model has been used to investigate the rocket behavior (McCoy, 2004; Zipfel, 2014; Żugaj
and Głębocki, 2010). The nondimensional forces and moments aerodynamic coefficients were
obtained with the aim of semi-empirical engineering methods (Moore, 1993). Next, the aero
database was validated using FLUENT CFD code. A lookup-table procedure was used to con-
struct the aero database. The main rocket motor characteristics were obtained for three different
temperatures (−40◦C, +20◦C and +50◦C) on a test stand. The base drag connected with the
main engine state (on or off) was also included in the model. The time of the main rocket motor
burnout was approximately 3.7 s. The total impulse of the engine was assumed to be 60 000Ns.
It was assumed that the information about rocket position and angular rates was available

from a Strapdown Inertial Navigation System (3 accelerometers, 3 gyroscopes and magnetome-
ter) integrated with a sun sensor (photodiode). No disturbances from sensors were considered
in numerical simulations.
The control system is composed of 30 solid propellant small rocket motors (Fig. 1). The

lateral thrusters system consists of a ring of small thrusters mounted in the nose section. The
motors are equally spaced around the fuselage. The guidance kit is mounted approximately 2 m
from the rocket tail, before the center of gravity of the rocket. The angle between two engines
is 12◦. Every motor can be used only once, what is the basic constraint on the control algorithm.
The total impulse of the lateral thruster and time of its work are also fixed. The most important
parameter which can be modified after launch is the time between two consecutive pulses. The
influence of igniter is also included in the model. The operation time of the single thruster is
0.02 s with standard deviation equal to 0.003 s while the maximum available thrust is 900N.

Fig. 1. Lateral thrusters location



614 R. Ożóg et al.

The vast majority of flight control solutions can generate lateral control forces in a continuous
way. The analyzed solution fall into category recognized as the pulse control systems.

3.3. Control system

The control system is composed of two subsystems: the control law subsystem and firing-
-logic subsystem. The main task of the control system is to decide whether or not the trajectory
should be changed. This subsystem generates the initial pulses one by one. The firing-logic circuit
decides which pulse jet should be used firstly. The main task of this system is to decide which
thruster should be fired.
In “state of the art” Section, only one author from cited works taking in advance the thrusters

firing sequence. Most of the authors ignore this important issue and assumed that the neighboring
motors are fired one by one in a sequence. When a lot of engines are fired only from one side
of the rocket, the object might fall into axial unbalance which can lead to rocket destruction
due to intensive vibrations. To prevent this scenario, a firing logic was developed (Fig. 2). It is
assumed that at the very beginning, engine number 1 is fired. In the next, step engine 2 at the
opposite side of the fuselage is activated and the whole sequence is repeated until all engines are
consumed.

Fig. 2. Lateral thruster firing order sequence

It is assumed that the thrust force of each lateral thruster is defined in the manufacturing
stage and cannot be modified during the flight. Furthermore, the time of the work of the single
thruster is constant. Therefore, the only possibility to influence rocket motion is to modify
the time τ between two consecutive pulses. The proposed algorithm is based on the trajectory
tracking method. One of the most significant issue is to perform a proper reference trajectory
generation scheme. In this work, a simplified method was used and it was assumed that the
reference trajectory is generated for a rocket without any disturbances (nominal main motor
specific impulse, no thrust misalignment, etc.). This set of reference trajectory data can be
implemented into the onboard computer before the rocket launch.
The error between the reference trajectory and actual position on the flight path has been

estimated as a difference between coordinates of a point for a given time t which has passed from
the rocket launch. Next, the error is transformed to the body coordinate system (Jitpraphai and
Costello, 2001)






enx(t)
eny(t)
enz(t)






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where

T bn =




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




(3.2)

and Φ, Θ, Ψ are roll, pitch and yaw angles, respectively. The main disadvantage of this simplified
method is that there exists a longitudinal error between the position on a reference path at the
current time t and the actual position of the rocket. In other words, the rocket could be in front
of or behind the point in which should it be at the time t. It is possible to calculate directly the
perpendicular distance to the desired rocket path but this procedure might be time consuming
and leads to undesirable high requirements for the onboard computer, which increases the total
guidance unit cost.
It is assumed that the error location of the rocket due to the reference trajectory will be

expressed in polar coordinates in the plane perpendicular to the longitudinal axis of the rocket.
Next, two pieces of information are needed to specify the rocket position base on the reference
trajectory: amplitude and phase of the error location. The amplitude error Γ is defined as

Γ =
√

e2ny + e2nz (3.3)

The Γ gives information how far from the reference trajectory the rocket is. The phase error γ
expresses the angular position of the rocket in relation to the reference path

γ = mod
(

− arctan 2
eny

enz
, 2π
)

(3.4)

In a general case, the thruster system can consists of M rings of motors with N thrusters in
each ring. The matrix S is introduced to describe which from the lateral thrusters have already
been fired. The matrix is defined as

S =







S1−1 · · · S1−M
...

. . .
...

SN−1 · · · SN−M






(3.5)

The number of rows in this matrix is equal to the number of lateral thrusters in each ring, and
the number of columns is equal to the number of motor rings. Each element Si−j corresponds
to the i-th engine in the j-th layer and could take two values: 0 – engine not already fired or
1 – engine already fired. In the analyzed case, the dimension of this matrix is 30×1. After engine
burnout, the Si−j value is changed instantaneously from 0 to 1.
Next, a set of conditions in which the lateral thruster should be activated are introduced.

The conditions proposed by some authors, who were cited at the beginning of this article, are
similar. Here, additional conditions when the control system should be activated are introduced.
They are as follows:
• The lateral thruster i− j has not been already fired, so the Si−j is equal to zero.
• The error Γ is bigger that a certain specified threshold value.

Γ ­ rthres (3.6)

where rthres is the tracking window size. The above mentioned condition means that when
the rocket is inside the corridor of radius rthres, no control action is performed. A set of
some small values (order of several meters) of this parameter is investigated to choose the
best accuracy. For rthres → 0 control action is required even if the real distance error Γ
is very small, which can lead to undesirable thruster consumption. On the other hand, for
rthres →∞, the control system is practically inactive during the whole trajectory.
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• The time from the previous rocket engine firing is longer than τ

t− tprev ­ τ (3.7)

where t is the actual flight time, tprev is the last moment in which one of the thrusters
has been fired and τ is the threshold parameter which could be tuned during the flight to
achieve the best possible control quality.
• The thruster which should be fired as next is located exactly in the opposite direction of
the fuselage than the desired lateral rocket movement (Fig. 3)

|γ − Φi−j − π − P (τd + τsk)| ¬ ε (3.8)

where Φi−j is the angle of the i− j-th engine, γ is the error defined by equation, P is the
rocket roll rate, τd is lateral thruster igniter delay and τsk is a half of pulse duration. The
ε is the activation threshold, and its values should be of an order of a fraction of a degree
to several degrees. The Φi−j angle is changed after each rocket firing. The term P (τd+τsk)
describes the delay of the thruster initiator.

Fig. 3. Definition of roll angles (view from the rocket nose)

• The global condition in which the flight phase control system should be active could
be mathematically expressed as a time after which the system is activated. The other
possibility is to constraint the work of the system with the roll rate. The lateral thruster
cannot be fired when the rolling rate is too high due to its effectiveness. The maximum
roll rate of the test platform was approximately 25 rev/s. It was decided that the thruster
would be fired only when the angular rate would be smaller than 10 rev/s. The other limit
could be formulated with the aim of the rocket pitch angle Θ for which the control system
was activated. Finally, it was decided that the lateral thrusters would be activated only
when the rocket pitch angle Θ was smaller or equal to a prespecified threshold Θg value,
i.e.

Θ ¬ Θg (3.9)

It means, that up to this time, there will be no control action. The control law based only
on the above mentioned conditions has tendency to track precisely the predefined trajectory
rather than to steer the rocket in the direction of the target which can lead to unnecessary
thruster consumption. This is illustrated in Fig. 4. The passive portion of flight starts at the
point A. Up to the point B no control is used, because the pitch angle Θ is bigger than the
threshold value Θg. Starting from the point B, when all activation conditions are satisfied, the
lateral thrusters are fired and the rocket is steered to the reference trajectory, so the tracking
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error decreases to the point C. When the control is continued in this way, the error Γ still
decreases and hit the horizontal line in the point F . Then, the error might increase again, and
there is possibility that the target E will be not eliminated. To prevent this effect, the nature
of the control algorithm operation should be changed immediately when the point C is reached.
Between the points C and E it is much more important to steer the rocket in such a way that
the tracking error curve should hit the point E at the end of the flight. So, the error should be
eliminated just before target hitting rather than in the whole time range.

Fig. 4. Trajectory tracking error

In order to realize this concept, an additional condition was introduced. At first, the time-to-
-go t2go was calculated as a difference between the total time of flight tref and the time t which
lasted from the beginning of flight

t2go = tref − t (3.10)

Next, using the trigonometric function, the slope of the error curve Γ in the point C was defined
in the form

αΓ = − arctan
dΓ

dt
(3.11)

The minus sign in the above formula results from the fact that the positive value of αΓ was de-
fined for the negative line slope, when the error amplitude decreased. In this way, (3.3) describes
the error amplitude, and (3.11) takes into account steepness of the error curve Γ . From another
point of view, the angle αt2go between the time axis and line segment CE was calculated as

αt2go = arctan
Γ

t2go
(3.12)

The maximum value of this angle might be 90◦. Lateral thrusters should be used only when the
absolute value from difference between (3.12) and (3.11) is greater than or equal to a certain
threshold

|αt2go − αΓ | ­ αΓ thres (3.13)

where αΓ thres is some small value, for example 0.1◦. If αΓ ¬ αt2go, then the rocket is steered
to the reference trajectory. Similarly, when αΓ > αt2go, then the control system tries to move
the center of mass of the rocket away from the reference path to prevent the situation as in the
point F .
The above set of conditions were implemented into numerical simulation and tested to obtain

its performance.
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4. Simulation results

In this Section, the results of numerical experiments were described. The 6-DOF mathematical
model of the rocket was implemented into a MATLAB/SIMULINK software. The fixed-step
ODE3 (Bogacki-Shampine) solver was used to integrate the equation of motion of the rocket
numerically with the step size 0.0001 s. Simulations were carried out on a standard desktop PC
(Intel i7, 16GB RAM).
Three kinds of simulations were considered. The first type was the nominal command tra-

jectory which could be implemented in the onboard computer, and this trajectory should be
followed by the guided rocket. The second type was an unguided flight path. In this experiment,
the initial error in launching conditions was introduced to model the effect of rocket dispersion.
No lateral motors were fired in this case. The initial launch parameters (Table 1) were assumed
using data from the literature for similar objects (Gupta et al., 2008; Jitpraphai et al., 2001).
The muzzle velocity was assumed to be decreased by 0.4m/s relative to the nominal case. The
initial roll rate was also disturbed by 12◦/s. The initial elevation of the launch tube was set
to 20◦. This case was chosen to simulate the control effectiveness at low elevation angles, which
is critical in the case of rocket artillery. The initial disturbances were 0.1◦ in the launch tube
elevation and 0.3◦ in its azimuth. The total impulse of the rocket main motor was disturbed by
0.2% as well.

Table 1. Nominal and disturbed initial parameters used in simulations

Parameter Nominal Disturbed Unit

Initial velocity 32 31.6 m/s
Roll rate 812 800 ◦/s
Pitch rate 0 0.01 ◦/s
Yaw rate 0 0.007 ◦/s
Launch tube elevation 20 20.1 ◦

Launch tube azimuth 0 0.3 ◦

Total impulse 100 99.8 %

In the third case, the controlled path was the rocket trajectory when the lateral thrusters
were fired to align the actual path to the desired. Due to rocket dynamical properties (relatively
low stability margin), the control system was activated only in the descending portion of the
rocket trajectory. The side motor thrust force was modeled as a rectangular pulse with time
duration 0.02 s and amplitude 900N. The trajectory tracking window size rthres was 1m and
αΓ = 2◦. The controlled trajectories were generated for various angles Θg.
Figures 5 and 6 show trajectories of the rocket center of gravity during its motion in horizontal

and vertical planes, i.e.: reference trajectory (blue solid line – “Reference” in figure legend),
disturbed unguided (red dashed line – “Disturb. unc.”) and disturbed guided (other lines).
The black star at the reference trajectory means the rocket apogee. The achieved range was
approximately equal to 24 km. Up to 15 km, there was no control action. The control system
was activated immediately after reaching the prespecified Θg.
The unguided rocket deviation was 110m from the desired hit point. The curvature of the

trajectory was high in the first correction stage, but later the flight path projection on the
horizontal plane was nearly linear. For Θg = −5◦, the initial control action was very intensive
and before the target hitting control system had to move away the rocket from the nominal path
to reach the target. Using the control law the lateral impact error was reduced to the order of
single meters. The proposed method was able to reduce the lateral error even if the correction
started at the final stage of flight.
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Fig. 5. Rocket trajectories in the horizontal plane

Fig. 6. Rocket trajectories in the vertical plane

The maximum height of flight was 2.8 km and occurred when the rocket traveled distance
equal to 15 km in the horizontal plane. It may be observed that the disturbed trajectories were
slightly above the nominal one. The disturbance in the initial pitch plane was chosen to be 0.1◦,
but even for such a small value all the corrected rockets hit the target with the accuracy of
several meters.

In Fig. 7, the errors between the reference trajectory and the disturbed controlled and un-
controlled as a function of time were presented.

The longitudinal error was no bigger than 10m and had opposite sign than in the disturbed
uncontrolled case. Both errors, lateral and height, tended to zero when the control system was ac-
tivated. When the lateral thrusters were activated too late, the last error was approximately 9m.

In Fig. 8, the distance errors, defined by equation (3.3), were compared. It is clearly visible
that the control actions were performed after 15 s, when the rocket reached the apogee point.
By applying the proposed control law, the error was decreased smoothly, and at the impact
time its value was smaller than 3.5m. In comparison with, for example, pure trajectory tracking
guidance, which was mentioned in the “state of the art” Section, no oscillations were observed,
which is desirable from the effectiveness point of view.

In Fig. 9, the number of thrusters firing as a function of time was presented. The total
available number of thrusters was set to 30.
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Fig. 7. Comparison of tracking errors

Fig. 8. Tracking error for various angles Θg

Fig. 9. Firing sequence of the pulsejet for a controlled trajectory

The control scheme worked in two operation modes. Before aiming the rocket to the target,
the lateral thrusters were consumed as fast as possible with the prespecified tmin. Next, the
rocket was steered to the target with the use of single pulses. This effect was achieved while
using the idea from Fig. 4. When Θg was equal to zero, 18 thrusters were consumed. The later
the thrusters were activated, the bigger number of them was used. For Θg = −5◦, all motors
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were consumed because at the beginning of guided phase the curvature of the tracking error was
quite big due to too intensive control. It is worth nothing that the rocket was fired at a very
low elevation angle, so at higher angles much more thrusters might be consumed due to longer
flight time.

Finally, Monte-Carlo simulations were performed to determine the dispersion reduction capa-
bilities of the proposed control scheme. 200 samples were used to generate dispersion patterns.
Based on the data from (Pavic et al., 2015) and (Jitpraphai and Costello, 2001) the Gaus-
sian distribution was used to introduce the uncertainty in each model parameter (Table 2).
Marsenne-Twister algorithm was used to generate pseudorandom numbers. The CEP (Circular
Error Probable) was used as a measure of dispersion. The CEP is a radius of a circle centered
on the target for which the probability of failing of the projectile inside this circle is 50%. A
nonparametric median estimator of the CEP has been applied.

Table 2. Parameters used in Monte-Carlo simulations

No. Parameter Mean value Std. deviation Unit

1 m0 60.75 0.05 kg
2 mk 38.55 0.05 kg
3 Ix0 0.137 0.01 kgm2

4 Ixk 0.091 0.01 kgm2

5 U 32 0.9 m/s
6 V 1 0.5 m/s
7 W 1 0.5 m/s
8 P 1356 12 ◦/s
9 Q 0 1 ◦/s
10 R 0 1 ◦/s
11 Φ 0.0 0.2 ◦

12 Θ 20 0.2 ◦

13 Ψ 0 0.2 ◦

Figure 10a and 10b present a hitting pattern for the uncontrolled and controlled rocket,
respectively.

Fig. 10. Impact point dispersion of the rocket (a) unguided (b) with the control law for Θg = 0◦

The dispersion radius for the guided rockets was 5.9 times smaller than in the ballistic case.
The Mean Point of Impact nearly coincided with the target when the control law was applied.
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5. Conclusion

In this paper, the firing logic for the rocket artillery was described. With the aim of numerical
simulations, it was proved that the proposed method allows one to achieve a significant reduction
in the dispersion of rocket impact points. The thruster firing order should be taken into account
to prevent the rocket from the axial unbalance. The numerical experiments were conducted for
a low elevation angle. The developed algorithm is quite sensitive to parameter variations like
the minimum allowable time between two consecutive thruster firings and tracking window size.
Monte-Carlo simulations proved that the main advantage of the proposed control law is the
ability to significantly reduce dispersion of the rocket artillery.
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