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To analyze the variation rule of the critical instability time-delay of the semi-active ISD
suspension, a general solution was proposed and applied into two three-element-structure
ISD suspensions. The dynamical response and the performance of the semi-active ISD sus-
pension in various time-delays indicated that different structures had different suspension
performance. The time-delay deteriorated the performance of all of the suspensions which
were analyzed. The stability of the semi-active ISD suspension would seriously weaken with
the critical time-delay. This paper provided a general solution for parameters selection in
semi-active ISD suspension design to avoid the negative effect of the time-delay.
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1. Introduction

The semi-active suspension, consisting of adjustable stiffness spring or adjustable damping, is
a form of controllable suspension (Yin et al., 2016; Sapiński, 2005; Sun et al., 2016; Zuo and
Slotine, 2005; Kęcik and Warmiński, 2011). This suspension can adjust the spring or damping
parameters according to different driving conditions. So, a best trade off between comfort and
safety can be met at a given time. Semi-active control adapts to different driving conditions,
which can better take into account different requirements of ride comfort and safety. However,
the damper or stiffness adjustable semi-active suspension, like the traditional passive suspension,
is a spring-damper (SD) structure which is based on the classical vibration isolation theory. This
structure limits further improvement of the suspension performance.
The proposal of an inerter and a structure of the inerter-spring-damper (ISD) suspension

break through the limit of the traditional spring-damper structure (Smith, 2002; Jiang and
Smith, 2015; Chen and Smith, 2015; Gonzalez-Buelga et al., 2015; Shen et al., 2017; Hu et al.,
2018). The inerter is a two-terminal device in which the forces applied at the terminals are
equal, opposite and proportional to relative acceleration between the nodes. As for the structure
of inerter-spring-damper is more complex than the traditional spring-damper structure, there
are different kinetic features for manifold ISD suspension structures (Chen et al., 2017). With
the addition of control (Hu et al., 2016), the time-delay of the semi-active ISD suspension will
be non-negligible. Stability is the most important issue with control systems and the primary
requirement of a qualified system. The time-delay is mainly caused by the measurement delay of
the sensor, the calculation delay of the control law and the delay of the actuator. The negligence
of the time-delay may worsen the control ability. Luckily, the inertial force control has more
advantages than the damping force control. The damping force control requires a speed signal
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for controlling. However, the inertial force control is only related to acceleration. In most practical
systems, the speed signal cannot be directly obtained, but acquisition of the acceleration signal
is direct and accurate (Estrada et al., 2014). Therefore, inertial force control is simpler and
accurate than damping force control.

In recent years, the analysis and design of time-delay systems becomes a research boiling
spot in the research community. A large number of new academic fruits are obtained in the
application as well as theory fields. For example, Han et al. (2017) analyzed a non-linear active
suspension with an executive body in time-delay. It is a SD structure which is fixed, so the
time-delay only has one possibility. Eller et al. (1969) proposed an optimal strategy to reign a
linear time-delay system. Sipahi and Olgac (2006a) demonstrated that stability maps of a linear
time invariant retarded time delayed systems (LTI-TDS). Vyhlidal and Zitek (2009) used the
Mikhaylov criterion to neutral time delay systems. Strecker et al. (2015) studied three different
semi-active strategies and compared them. The response time of the MR damper and the by-pass
valve have a serious impact on the ability of the semi-active suspension. While, that work is just
dedicated to the conditional semi-active suspension whose structure is fixed and the ability is as
close to the theoretical limit as possible. The topology structure of the inerter-spring-damper is
more complex, and it is an effective approach to enhance the ability of the suspension.

This paper provides a general solution for stability analysis of the semi-active ISD suspension.
This solution can explore the variation rule of the critical instability time-delay of the semi-
-active ISD suspension with the inerter coefficient and the unsprung mass. In Section 2, the
general solution for solving the critical instability condition and the variation rule of the critical
instability time-delay of the semi-active ISD suspension with vehicle parameters are proposed.
In Section 3, two suspension structures with the skyhook control strategy, easy to realize in
engineering, are analyzed. The quarter-car model of semi-active ISD suspension with time-
-delay is established and the time-delay differential equation of the semi-active ISD suspension
is deduced. Then, by a numerical simulation, the variation law of the critical instability time-
delay of the semi-active ISD suspension with the inerter coefficient is analyzed. In Section 4,
the optimal parameters of the suspension selected by the previous numerical analysis are used
to build the suspension model. The kinetic response and the performance of the semi-active
ISD suspension in different time-delays, compared with the traditional passive suspension, are
investigated under the condition of random incentive.

2. A general solution for stability analysis of the semi-active ISD suspension

In order to ensure that the semi-active ISD suspension can work under effective conditions,
the sum of the time-delay for all the sensors, processor and actuator should be limited to the
critical time-delay. If the time-delay is out of the critical time-delay, the control of the semi-active
ISD suspension is invalid. So the critical time-delay of the semi-active ISD suspension should
be solved before designing the suspension control system. For the semi-active ISD suspension,
the topology of the element inerter, spring and damper is very diverse and complex. A general
solution for stability analysis to solve the critical time-delay and analyze the variation rule of
the critical instability time-delay with the inerter coefficient and the unsprung mass is necessary.
Here are the steps of this solution:

Step 1: Establishing the kinetic semi-active ISD suspension model with time-delay and getting
kinetic equations. The structure of the semi-active ISD suspension is not always first-
-order. More generally, the structure is high-order. For a high-order structure, the kinetic
equations are also pluralistic.

Step 2: Solving the kinetic equations. Those kinetic equations are linear differential equations
with time-dependent constant coefficients. The characteristic equations and eigenroots can
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be solved. For the first-order structure, those equations can be easily solved. But equations
for a high-order structure may be transcendental equations. In this condition, the Taylor
series expansion will help to solve the problem.

Step 3: Judging the stability condition and solving the critical time-delay. According to the
Lyapunov stability criterion of invariant linear differential equations with constant coef-
ficients, the sufficient and necessary condition for the asymptotic stability of the system
with time-delay is that all the eigenroots of the system lie in the left portion of the complex
plane. In addition, the variation rule of the critical instability time-delay of the semi-active
ISD suspension with the vehicle parameters can be obtained.

Step 4: If the critical time-delay is long enough, the vehicle parameters can be designed based
on the above solution results. If the critical time-delay does not exist, the suspension
system is unstable. The suspension structure should be redesigned.

Step 5: Simulation verification. Testing of the semi-active ISD suspension to ensure that the
solving results are accurate. It is also an important progress for the semi-active ISD sus-
pension designed.

3. Application of the general solution’s in three-element semi-active ISD

suspension

3.1. Quarter-car kinetic model of semi-active ISD suspension

The most basic ISD suspension structure is the three-element-structure and it is most fre-
quency easily used in the engineering practice (Chen M.Z.Q. et al., 2012; Chen L. et al., 2014).
Considering that the elastic element is indispensable for the vehicle suspension system to main-
tain the vehicle mass, the three-element-structure ISD suspension only has two topological struc-
tures. One is a spring, a damper and an inerter connecting the body and the wheel respectively
(S1). The other one is a spring connecting the body and the wheel, but the damper and the
inerter are connected in series and then in parallel with the spring (S2). The two kinds of the
three-element quarter-car kinetic model of the semi-active ISD suspension are illustrated in
Fig. 1.

Fig. 1. Quarter-car kinetic model of semi-active ISD suspension; (a) S1, (b) S2

The skyhook control strategy is a classic control method and the control model is simple and
easy to build, simple to calculate, with less application state and convenient measurement. The
skyhook control strategy is utilized into the controllable inerter to improve the performance of
the suspension. The effect of controllable inerter can be equivalent to an inertial force Fsemi.
And the force for S1 and S2 structure can be denoted as

Fsemi =

{

bemi(ẍ2 − ẍ1) for S1

bsemi(ẍ2 − ẍ3) for S2
(3.1)
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Because the model of the semi-active ISD suspension is a passenger car, the main evaluation
index is riding comfort. The control strategy of semi-active ISD suspension is comfortable-
-oriented. The control model for the semi-active ISD suspension system is illustrated in Fig. 2.
The control model can be divided into two parts: the semi-active ISD suspension controller
and semi-active ISD suspension system. The model was stimulated by pavement excitation,
and the states were sampled by sensors and acted as an input to the semi-active ISD suspension
controller. The controller first generated an ideal control force Fsemi under the law of the control
strategy. Then, the classification model was applied to generate a realizable control force with
velocity of rattle space. And the parameter bsemi of structure S1 was following the criteria as

bsemi =

{

bmax ẍ2(ẍ2 − ẍ1) ­ 0

bmin ẍ2(ẍ2 − ẍ1) < 0
(3.2)

Equation (3.2) is to make the controllable inerter transfer the maximum force when the control-
lable inerter has the same function as the ideal skyhook inerter, and transfer the minimum force
when the forces are in opposite direction. This means that the smallest inerter coefficient bmin
is always desirable, and the ideal state is bmin = 0.

Fig. 2. Schematic block diagram of semi-active ISD suspension control strategy

And the following equations are kinetic equations for the three elements semi-active ISD
suspension of the quarter model for a vehicle with time-delay. The parameter bsemi is the semi-
-active controllable inerter coefficient. In practice, the inertia always exists, so bsemi cannot
be 0. It can be replaced with b0 and br. b0 is the base value of the inerter coefficient; br is
the controllable inerter coefficient. Equations (3.3) is for structure S1 and Eqs. (3.4) is for
structure S2

m1ẍ1 + kt(x1 − xr)− k(x2 − x1)− b0(ẍ2 − ẍ1)− br[ẍ2(t− τ)− ẍ1(t− τ)]

− c(ẋ2 − ẋ1) = 0

m2ẍ2 + k(x2 − x1) + b0(ẍ2 − ẍ1) + br[ẍ2(t− τ)− ẍ1(t− τ)] + c(ẋ2 − ẋ1) = 0

(3.3)

and

m1ẍ1 + kt(x1 − xr)− k(x2 − x1)− c(ẋ3 − ẋ1) = 0

m2ẍ2 + k(x2 − x1) + b0(ẍ2 − ẍ3) + br[ẍ2(t− τ)− ẍ3(t− τ)] = 0

b0(ẍ2 − ẍ3) + br[ẍ2(t− τ)− ẍ3(t− τ)] = c(ẋ3 − ẋ1)

(3.4)

where m1 is the unsprung mass, m2 is the sprung mass, xr is the road random input, x1 is
the unsprung mass displacement, x2 is the sprung mass displacement, x3 is the two terminals
displacement of the controllable inerter, kt is the stiffness of the tire, k is the spring stiffness,
c is the coefficient of the damper, t is time, τ is the time-delay.
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3.2. Analyzing the stability theory of semi-active ISD suspension

According to theory of linear differential equations with time-dependent constant coefficients
(Babister, 1957; Qin et al., 1989), the general solution of homogeneous equations (3.3) and (3.4)
is shown as

xr(t) =

{

Xre
λt r = 1, 2 for S1

Xre
λt r = 1, 2, 3 for S2

(3.5)

In which Xr represents the solution of Laplace transform of the xr, λ is the eigenvalue, t is time.
Taking the general solution into Eq. (3.3), one deduces the characteristic equation corresponding
to the homogeneous differential equations as shown in Eq. (3.6). Equation (3.6) is constantly
equal to zero from differential Eq. (3.3)
∣

∣

∣

∣

∣

m1λ
2 + b0λ

2 + brλ
2e−λτ + cλ+ kt + k −b0λ

2 − brλ
2e−λτ − cλ− k

−b0λ
2 − brλ

2e−λτ − cλ− k m2λ
2 − b0λ

2 − brλ
2e−λτ − cλ+ k

∣

∣

∣

∣

∣

= 0 (3.6)

According to the Lyapunov stability criterion of invariant linear differential equations with con-
stant coefficients (Wen et al., 2015; Grigoryan, 2015), the sufficient and necessary condition for
the asymptotic stability of the system with time-delay is that all the eigenroots of characteristic
Eq. (3.6) lie in the left portion of the complex plane. The marginally stable condition of the
system is that the eigenroot of Eq. (3.6) has just imaginary roots λ. Suppose that λ = jω, the
system will demonstrate self-excited vibration for the fundamental frequency of the natural fre-
quency ω. Taking the imaginary roots λ into Eq. (3.6), and using Euler’s formula, one separates
the real and imaginary part of Eq. (3.6). The condition that only contains pure imaginary roots
is illustrated as

ℜ = kkt − b0ktw
2 + b0m1w

4 + b0m2w
4
− km1w

2
− km2w

2
− ktm2w

2 +m1m2w
4

− brktw
2 cos(τw) + brm1w

4 cos(τw) + brm2w
4 cos(τw) = 0

ℑ = cktw − cm2w
3 − cm1w

3 + brktw
2 sin(τw) − brm1w

4 sin(τw)− brm2w
4 sin(τw) = 0

(3.7)

with the identity sin2(ωτ) + cos2(ωτ) = 1.
In order to obtain the value of the critical time-delay (Fu et al., 2007) τ , Equation (3.5)

should satisfy that all the roots are real. The simplest polynomial (3.8) with only self-excited
vibration frequency ω is obtained as

a4ω
8 + a3ω

6 + a2ω
4 + a1ω

2 + a0
a9ω8 + a8ω6 + a7ω4 + a6ω2 + a5

= 0 (3.8)

In which
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For a concrete kind of vehicle, ω and τ can be acquired through numerical calculation. What is
more, the variation law of the critical instability time-delay of S1 structure with the base value
of the inerter coefficient, the controllable inerter coefficient and the sprung mass were analyzed.
The parameter values of the semi-active ISD suspension are shown in Table 1.

Table 1. The parameter values of semi-active ISD suspension

Parameter Values

Spring stiffness k [kN/m] 22

Damping coefficient c [kN s/m] 1.2

Tire stiffness kt [kN/m] 190

Unsprung mass m1 [kg] 45

To analyze the variation law of the critical instability time-delay τ of S1 structure with the
base value of the inerter coefficient and the controllable inerter coefficient, the sprung mass m2
was set as 320 kg, the base value of the inerter coefficient b0 and the controllable inerter coef-
ficient m2 were all set within 0 to 800 kg. The root closest to the origin in the left part of the
complex plane was used as the solution of the equation. The result is illustrated in Fig. 3.

Fig. 3. The variation law of the critical instability time-delay of the semi-active ISD suspension
with b0 and br

This calculation result indicates that there is a large value of τ when the value of b0 is small.
The conclusions of other numerous researchers also show that b0 should be smaller to get a
better kinetic performance (Chen M.Z.Q. et al., 2016).
So, there are two methods to get a large critical time-delay:

Option 1: Select the greater value of the critical delay in the larger value of b0 part.

When m2 exceeded 250 kg, the critical time-delay τ was stabilized at about 0.08 s. When
m2 was about 350 kg, the largest critical instability time-delay τ could be obtained.

Option 2: Select the small b0. When b0 was about 50 kg, the critical instability time-delay τ
reached about 0.27 s.

In Option 2, the critical time-delay stability is better than in Option 1.
To further analyze the most suitable value of b0 and search the variation law of the critical

instability time-delay of the semi-active ISD suspension with the controllable inerter coefficient
and the sprung mass, the base value of the inerter coefficient b0 was set as 50 kg; the sprung
mass m2 was set from 200 kg to 520 kg; the controllable inerter coefficient m2 was set from 0 to
800 kg.
Figure 4 demonstrates that the small value of the sprung mass m2 can enhance the per-

formance. Luckily, the technology of lightweight automobile can help the light of the sprung
mass m2. So the parameter b0 was about 50 kg, br was about 320 kg, m2 was as little as possible.



Stability analysis of semi-active inerter-spring-damper... 605

Fig. 4. The variation law of the critical instability time-delay of the semi-active ISD suspension
with m2 and br (b0 = 50kg)

Similarly, taking the general solution of Eq. (3.5)2 into Eq. (3.4), one deduces the character-
istic equation corresponding to the homogeneous differential equations as shown in Eq. (3.10).
Equation (3.10) was constantly equal to zero from differential Eq. (3.4)
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Suppose that λ = jω, then the system demonstrates self-excited vibration for the fundamental
natural frequency ω. Imaginary roots λ were taken into Eq. (3.10), and Euler formula was utilized
to separate the real and imaginary part of Eq. (3.10). The condition of only imaginary root is
illustrated as
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4 sin(τw) + brktm2w
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(3.10)

Since the real and imaginary parts were all including sin(τw) and cos(τw) terms, the Taylor series
expansion was used to solve Eqs. (3.11). To analyze the variation law of the critical instability
time-delay τ of S2 structure with the base value of the inerter coefficient and the controllable
inerter coefficient, the sprung mass m2 and other parameters of the vehicle were the same as in
S1 structure. The result is illustrated in Fig. 5.

Fig. 5. The variation law of the critical instability time-delay of the semi-active ISD suspension
with b0 and br
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The critical instability time-delay of S2 structure changes quickly with b0 and br. When
b0 and br were little, the critical instability time-delay τ was much larger than S1 structure.
However, with addition to the value of b0 and br, the critical instability time-delay τ was sud-
denly declined. And Table 2 shows significant differences of the critical time-delay with different
parameters. Figure 6 is the variation law of the critical instability time-delay of S2 structure
with m2 and br under the condition of b0 = 25 kg. In this structure, it is guessed that the sprung
mass has relatively little influence on the critical instability time-delay. And with a smaller
controllable inerter coefficient m2, the performance on time-delay stability of S2 structure is
suitable. However, the time-delay of the control system is rarely over 0.5 s. So, the system is not
very demanding for the value of m2.

Table 2. Some values of Fig. 5

b0 [kg]
br [kg]

50 100 200 800

100 0.8216 0.7965 0.5155 0.2605

200 0.6981 0.7505 0.4920 0.2578

400 0.0403 0.0705 0.4024 0.2460

800 0.0214 0.0072 0.0098 0.2012

Fig. 6. The variation law of the critical instability time-delay of the semi-active ISD suspension
with br and m2

Considering the time delay and comprehensive performance of the suspension, the suitable
parameters of S1 structure were chosen as follows: b0 was 50 kg, br was 200 kg. The critical
instability time-delay of S1 structure was 0.27 s. And the suitable parameters of S2 structure
were chosen as follows: b0 was 25 kg, br was 120 kg. The critical instability time-delay of S2
structure was 0.20 s.

4. Performance analysis of semi-active ISD suspension system

To analyze the performance of the semi-active ISD suspension, random road information was
taken as the input to the traditional suspension for comparison. The parameters of the traditional
suspension were k = 22000N/m, c = 1200Ns/m. The suspension parameters of S1 and S2
are exhibited in Table 3. The value of the inerter coefficient b0 and br were selected by the
previous numerical analysis in Section 2. Other parameters are selected based on the experience
and reference from some common passenger vehicles. To distinguish the inerter parameters
between the two structures, the parameter of S1 structure was indicated by the index 01 and r1.
Structure S2 was indicated by the index 02 and r2.
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Table 3. Suspension parameters of S1 and S2

Parameter Values

Unsprung mass m1 [kg] 45

Sprung mass m2 [kg] 320

Spring stiffness k [N/m] 22000

Tire stiffness kt [N/m] 190000

Damping coefficient c [Ns/m] 1200

Base value of inerter coefficient b01 [kg] 50

Base value of inerter coefficient b02 [kg] 25

Controllable inerter coefficient br1 [kg] 200

Controllable inerter coefficient br2 [kg] 120

The system response was analyzed. Taking integral white noise of time-domain expression
as the road input model (Yu and Lin, 2005), the input equation was

żr(t) = 2π
√

G0uw(t) (4.1)

In which w(t) is a mean of zero Gauss white noise, u is the vehicle speed, G0 is the road roughness
coefficient. For the vehicle u = 20m/s, the passing roughness factor was G0 = 5 · 10

−6m3/cycle.
The output power spectral density with a random input for the traditional suspension, and
structures S1, S2 are manifested in Table 4. Because the skyhook control strategy is comfort-
-oriented, the root mean square (RMS) value of body acceleration decreased under this control
strategy. This means that the performance of riding comfort is improved by utilizing a control-
lable inerter. But the performance of suspension working space and dynamic tire load had a
little deterioration or just little improved.

Table 4. RMS values of random response outputs

Performance index Traditional suspension S1 S2

Body acceleration RMS [m/s2] 2.3464 1.5630 1.6886

Suspension working space RMS [m] 0.0188 0.0232 0.0185

Dynamic tire load RMS [kN] 1.5492 1.5716 1.6242

Figures 7, 8 and 9 demonstrate a comparison of the suspension performance for structure S1
and S2 for a small time-delay (0.01 s) and the critical instability time-delay. The RMS values in
random response outputs and their variation are demonstrated in Table 5.

Table 5. RMS values and their variation of S1 and S2 structures with different time-delays

Time-delay [s] RMS S1 Variation S2 Variation

Body acceleration 1.5630 – 1.6886 –
0 (No time-delay) Suspension working space 0.0232 – 0.0185 –

Dynamic tire load 1.5716 – 1.6242 –

0.1 (Little
time-delay)

Body acceleration 1.5863 1.49% 2.7601 63.45%
Suspension working space 0.0231 −0.43% 0.0189 2.16%
Dynamic tire load 1.5869 0.97% 1.3587 −16.35%

τ (Critical
instability
time-delay)

Body acceleration 4.0883 156.45% 6.3657 292.97%
Suspension working space 0.0227 −2.15% 0.0202 9.19%
Dynamic tire load 1.6268 3.51% 1.9762 21.67%

In Table 5, the positive variation number means that the value was increased and the perfor-
mance was deteriorated. The negative variation number means that the value was decreased and
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Fig. 7. Body acceleration with different time-delays; (a) S1 structure, (b) S2 structure

Fig. 8. Suspension working space with different time-delays; (a) S1 structure, (b) S2 structure

Fig. 9. Dynamic tire load with different time-delays; (a) S1 structure, (b) S2 structure
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the performance was enhanced. Figures 7-9 and Table 5 indicate that the little time-delay within
the critical instability time-delay also deteriorates the suspension performance slightly. Further-
more, the performance of riding comfort deteriorates obviously with a surplus of the time-delay
over the critical instability time-delay. This distinguishing exacerbation of the function leads to
failure of the control system under the condition of the large time-delay.

5. Conclusion

• A general solution to stability analysis was proposed and utilized in analyzing the variation
law of the critical instability time-delay in different semi-active ISD suspension structures.
There is a significant impact upon the stability of the system with a time-delay. This paper
provided a method to select suitable parameters in semi-active suspension design to avoid
negative effects of the time-delay.

• The kinetic and stability of two three-element-structure ISD suspensions were analyzed
from the perspective of the time-delay. Results suggest that different structures contain
different kinetic features. The placing of the inerter greatly enriched the suspension char-
acteristics.

• Two three-element-structure semi-active ISD suspensions effectively inhibit vertical vibra-
tion of the vehicle and improve the ride comfort. Although the time response of the inerter
force control is shorter than the damping force control, a little time-delay will deteriorate
the performance of the semi-active ISD suspension. And a large time-delay which exceeds
the critical instability time-delay will obviously deteriorate the performance of the semi-
active ISD suspension. So, how to avoid or reduce the time-delay is the significant problem
in the suspension design.
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