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Viscous damping is frequently used in the equation of motion to present the dissipation
mechanism of a mechanical system. The orders of frequencies can be easily selected to
determine viscous damping coefficients (VDCs) when the degree of freedom of the structure
is low. For complex structures, difficulties in selecting the orders of reference frequencies to
obtain reasonable VSCs are encountered. This paper mainly discusses the capability of the
CWT method to select optimum frequencies of viscous damping formulation. The proposed
procedure considers both the classical Rayleigh, modal and the proposed full model modal
damping. The method is validated using a numerical time domain response of a two-stage
gear system.
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1. Introduction

Damping plays an important role in simulation of mechanical systems. Various models of damp-
ing are used such us non-viscous damping, Coulomb damping and hysteresis damping (Caughey
and O’Kelly, 1965; Zhang and Wang, 2010). Non-viscous damping model is usually used in gear
systems analysis. Recently, we presented a new technique to identify non-viscous damping in
a one stage system using the integral method (Yousfi et al., 2018). However, for mathemati-
cal convenience, the viscous damping model is the most used formulation of damping because
of its excellent advantages (Li et al., 2017). Various forms of the viscous damping formulation
have been implemented, which are simplified, full and extended Rayleigh formulations. These
formulations require defining one or more coefficients, respectively (Park and Hashash, 2004).
For gear system analysis, the damping ratio of the first mode is always used chosen to identify
viscous damping parameters (Khabou et al., 2011; Yassine et al., 2014). However, more than
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one mode usually exists in a gear system with multi-DOF, and different modes give different re-
sults for viscous damping parameters (Chowdhury and Dasgupta, 2003b; Pan, 2013) so that this
type of approach gives unsuitable results and has some limitations (Chopra, 2012; Tamura and
Suganuma, 1996). Therefore, the frequencies of viscous damping formulation should be selected
to overcome this problem. In other fields, such as in structural dynamics in earthquake engin-
eering, many references to damping can be found. Chowdhury and Dasgupta (2003a) present
a technique to identify viscous damping coefficients (VDCs) for systems with large degrees of
freedom but their study neglects the influence of input motion to select the optimal frequencies
of VDCs. Léger and Dussault (1992) used a Rayleigh damping model to study the dynamic re-
sponse of a multi-degree-of-freedom structure, and affirmed that the damping formulations based
on mass proportional, stiffness proportional and Rayleigh damping matrix represent different
energy-consumption modes. Kwok et al. (2007) compared the calculated responses using a range
of VDCs. It is demonstrated that the use of the 1-st and 5-th modes of the soil column is a good
preliminary estimate. Pan et al. (2017) proposed a constrained optimization method to deter-
mine the exact damping ratio of modes that greatly contribute to dynamic responses. Li et al.
(2015) developed an improved method to calculate Rayleigh damping coefficients by considering
spectrum characteristics of the dynamic response and frequency characteristics of the structure.
However, more fine tuning and additional trial-and-error estimates may be required to obtain the
optimum frequencies of viscous damping formulation in the gear system. To calculate viscous
damping coefficients, Chopra (2012) suggested that “in dealing with practical problems, it is
reasonable to select the modes of vibrations i and j with specific damping ratios to ensure that
the damping ratios of all modes of vibration that contribute greatly to the dynamic response
are reasonable.” Since, the means to identify damping ratios of a multi-DOF structure have
advanced from the time-domain logarithm decay method and the frequency-domain half-power
bandwidth method to the time-frequency domain wavelet transform method (Tamura and Sug-
anuma, 1996; Reda Taha et al., 2006). The continuous wavelet transform method (CWT) is used
in this study to select optimum modes of viscous damping formulation that greatly contribute to
dynamic responses. This paper is organized as follows. Section 2 introduces the current viscous
damping formulation. Section 3 provides the proposed calculation method of viscous damping
coefficients. Section 4 presents validation of the proposed method using a numerical example of a
two spur gear system. The modes that remarkably affect the dynamic responses are determined
on the basis of the mode corresponding to the maximum value of the wavelet spectrum, and the
Rayleigh damping coefficients are calculated and the results of the dynamic response obtained
by different methods are presented and compared. Numerical results show that the proposed
method accurately reveals the modes contributing to the dynamic response of the two-stage gear
system, and the calculated VDCs are consistent with actual results. The calculated results are
also closer to the exact solutions and even higher than those acquired by traditionnal methods.
Section 5 provides the conclusion.

2. Current viscous damping formulation

In mechanical systems, the following dynamic equation of motion is solved

Mq̈+Cq̇+Kq = f0 (2.1)

where: M – mass matrix, C – viscous damping matrix, K – stiffness matrix. The dynamic
equilibrium equation, Eq. (2.1), is solved at each time using a step by step iterative Newmark
method. The damping matrix C which is better represented by hysteretic models where the
dissipation force is proportional to displacement or friction. However, viscous damping is widely
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considered as an equivalent approach because it leads to simple mathematical treatment. Vari-
ous forms of the viscous damping formulation have been implemented, but the most common
viscous damping formulation description is the uniform Rayleigh model which is derived from a
combination of the mass matrix and the stiffness matrix (Rayleigh et al., 1945)

C = αM+ βK (2.2)

The coefficients α and β in Eq. (2.2) are defined as follows

α = ξ
4π(f0f1)

f0 + f1
β = ξ

1

π(f0 + f1)
(2.3)

where ξ is the target damping ratio. Equation (2.3) matches the target damping ratio only at
two frequencies, f0 and f1. However, it is unrealistic to assume a constant damping ratio for all
modes, and the damping formulation will filter out a significant portion of the high frequency
content of the dynamic response. So a more fine procedure may be required to obtain the
optimum frequencies of the Rayleigh damping formulation. In the modal basis, modal damping
corresponds to the assumption that the viscous damping matrix is diagonal, that is to say that

ΦTCΦ =









. . .

2wjξj
. . .









(2.4)

whereΦ is the modal matrix normalized, the real modeshapes φj and pulsations wj are solutions
of the eigenvalue problem

(−w2jM+K)φj = 0 (2.5)

Using the mass orthogonality conditions and the fact that a matrix and its inverse can be
permuted, the following relations are obtained

C = [MΦ]N×N


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



. . .

2wjξj
. . .









N×N

[MΦ]TN×N (2.6)

In the current modal damping, Equation (2.8) is exact when all modes are taken into account.

3. Proposed calculation method of viscous damping coefficients

3.1. Proposed Rayleigh damping and modal damping

In the original formulation proposed by Rayleigh and Lindsay (Rayleigh et al., 1945), α and
β coefficients in Eq. (2.2) can be determined using two natural modes m and n

α =
2wkwn
w2n − w2k

(ξkwn − ξnwk) β =
2(ξnwn − ξkwk)
w2n − w2k

(3.1)

where wn and wk corresponds to the circular frequency of the n-th and k-th modes and their
damping ratios ξn and ξk obtained through measurement. The constants α and β are obtained by
specifying the desired damping ratios of two different modes and solving a system of two equa-
tions and two unknowns at two different preselected frequencies. Therfore, this study presents
an initial use of the formulation of Rayleigh damping presented in Eq. (3.1) in the gear system
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to model the damping matrix by specifying the desired damping ratios of two different modes
using the wavelet transform. In the proposed modal damping presented in this paper, only a
modal series of Nm modes is used. To carry out this simplification it is important to realize
that the rows of Φ−1 are given by φTjM to obtain a closed form solution of the modal damping
matrix (Bianchi et al., 2010)

C = [MΦ]N×Nm









. . .

2wjξj
. . .









Nm×Nm

[MΦ]TNm×N (3.2)

In traditional studies, the number Nm of modes is selected using time domain analysis. However,
the number Nm of modes and the associated damping coefficients directly impact computation
time and generally require a presentation of time-frequency maps. This paper presented ini-
tial investigation into the use of the Continious Wavelet Transform (CWT) method to provide
superior time-frequency analysis and to characterize the optimal modes Nm out in a modal
truncation procedure. The following Section presents the CWT technique and different steps
established to select VDCs.

3.2. Proposed selection method

The CWT-based damping-identification procedure is composed by the following steps. Ini-
tially, the signal of the gear system should be transformed at the time-frequency plot using Eq.
(3.3). The WT of a signal y(t) is defined by

CWT{y(t)} =Wx(τ, b) =
1√
b

+∞
∫

−∞

y(t)Ψ∗
(t− τ
b

)

dt (3.3)

where Ψ∗(t) is the complex conjugate of Ψ(t). A wavelet plot can be obtained which presents the
modulus of the wavelet coefficients |Wx(τ, b)| in the time τ and the scale b, which is important
to correctly obtain relevant time-frequency resolutions. The second step is the ridge detection
which represents the high energy density. The third step is to identify the damping ratio using
the logarithmic decay of the envelope of each mode separately using the following equation

ln |wx(a0, b)| = ξωnb+ ln
(

√
a0
2
B|Ψ∗(a0, ωd)|

)

(3.4)

The last step of the CWT-based damping-identification is to determine the dominant frequencies
from which the optimum frequencies of the viscous damping formulation are selected. For the
proposed Rayleigh damping model, the proposed procedure uses the 1-st mode for wk and
defines wn based on the range of frequency at which the high amplitude of wavelet transform is
concentrated, which is determined from the wavelet plot. For the proposed modal damping, the
selection of the trunced frequencies Nm is based on the dominant frequencies observed on the
wavelet plot. The FFT method is used to determine the rest of the frequencies then, the CWT
method is used to determine the damping ratio of each frequency. The steps of the proposed
method are presented in Fig. 1.

In Section 4, the CWT method is used to analyze the uncertainties resulted from usage of
classical Rayleigh and modal damping which can not predict the real response of the system
and to examine the proposed viscous damping with selected frequencies based on the CWT to
overcome this problem. The performance of the proposed method is validated by a simulated
example of the two-stage gear system.
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Fig. 1. Steps of the wavelet transform method

Fig. 2. Dynamic model of the two-stage spur gear system

4. Numerical example and validation of the proposed algorithm

4.1. Numerical example

The dynamic behavior of the gear system can be examinated in terms of the transmission
error. In Fig. 2, the dynamic model of a two-stage gear system is established with the parameters
presented in Table 1 (Walha et al., 2009). The gears are modelled by concentrated masses,
bearings are modelled by linear springs in the gears plans. The shafts are supposed flexible with
neglected masses. The dynamic model studied in this paper is characterised by 12 degrees of
freedom and can be defined by
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q = [x1, y1, x2, y2, x3, y3, θm, θ1, θ2, θ3, θr] (4.1)

where xj and yj are bearings displacements, θi (i = 1, . . . , 4) are dynamic angular displacements
of the gears, θm and θr are dynamic angular displacements of the motor and brake.
The two teeth deflections δ1(t) and δ2(t) of each stage gear are defined by

δ1(t) = (x1 − x2) sinα1 + (y1 − y2) cosα1 + r1θ1 − r2θ2
δ2(t) = (x2 − x3) sinα2 + (y2 − y3) cosα2 + r3θ3 − r4θ4

(4.2)

Lagrange formulation was used to formulate the differential equation governing motion of the
two-stage gear system. The general matrix form of this 12 degrees of freedom system is defined
by

Mq̈+Cq̇+ [Ks +K(t)]q = F0 (4.3)

where the external excitation vector of the system is

F0 = [0, 0, 0, 0, 0, 0, Cm, 0, 0, 0, 0,−Cr]T (4.4)

and M is the mass matrix. In most previous works (Walha et al., 2009), viscous damping has
been considered to reduce the level of vibrations given by

C = αM+ βKmoy (4.5)

where Kmoy is the average stiffness matrix of the system (Walha et al., 2009). α and β, respec-
tively, represent the mass and stiffness proportional damping coefficients which are collectively
known as VScs. The resolution of each linear system is made thanks to a step by step iterative
Newmark method (Dhatt and Touzot, 1984). The resolution of Eq. (3.7) gives the simulated
responses presented in Fig. 3 which corespond to the first teeth deflection fluctuation and the
second teeth deflection fluctuation following the time. The performance of the proposed VSCs
identification method using CWT presented in this paper is validated based on the simulated
examples presented in Fig. 3. Our objective is to identify the VSCs from only the simulated
responses (the input first teeth deflection and the input second teeth deflection) of Fig. 3 and
its wavelet transform.

Table 1. Parameters of the studied two-stage gear system (Walha et al., 2009)

Material: 42CrMo4 ρ = 7860 kg/m3

Motor torque [Nm] Cm = 10

Bearings stiffnesses [N/m] kxi = kyi = 10
7

Torsional shaft flexibilities [Nm/rad] kθi = 10
5

Pressure angle α1 = α2 = 20
◦

Teeth module [m] m = 4 · 10−3
Teeth number Z1 = 30, Z2 = 45, Z3 = 30, Z4 = 45

Average mesh stiffness [N/m] k1moy = k2moy = 3 · 107
Contact ratio εα1 = εα2 = 1.592

4.2. Validation of the proposed method

In order to validate the usefulness of the wavelet transform method in modal analysis to
select optimum frequencies/modes of the viscous damping formulation, a suite of analysis is
performed on the simulated responses of the two-stage gear system presented in Fig. 2. There
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Fig. 3. (a) Temporal first teeth deflection, (b) temporal second teeth deflection

Fig. 4. Wavelet plot of the first teeth deflection signal

are two models considered for the system which are Rayleigh damping and modal damping.
The input dynamic response s of the first stage and the second stage used in the analyses are
shown in Figs. 3a and 3b. To estimate the modal parameters, we use the steps described in
Section 3. Figure 4 shows the energy spectrum distribution in the time-frequency domain of
the first stage; we obtain a superior time-frequency analysis of the simulated response and the
presented modes can be easily observed from this plot, in particular from Fig. 5a. Seven values
of the dilatation parameter are predominant in this plot. They correspond to the number of
modes present in the frequency band. The 7-th mode corresponds to the dominant frequency
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Fig. 5. (a) Power spectrum of the first teeth deflection signal using CWT method by a slice parallel to
the time axis [0, 0.02], (b) power spectrum of the first teeth deflection signal using FFT method

where high energy is concentrated and used to determine the VDCs. The power spectrum of
the second teeth deflection signal is found using the FFT method. The wavelet envelope can
be extracted from the wavelet plot as it is shown in Fig. 6 by a slice parallel to the time axis
through each frequency wi for i = 1, . . . , 7 in the frequency axis, which can be used to estimate
the corresponding damping ratio. Thus the damping ratio of each mode can be estimated from
the slope of the straight line of the wavelet modulus. The identified modal parameters for the
first seven modes presented in Table 2 are obtained using Eq. (3.4) and from the plots shown in
Fig. 6.

Fig. 6. The envelope of the wavelet ridge at the first natural frequency, –- signal, - - - linear regress

Table 2. Damping ratios corresponding to frequencies using Wavelet demodulation

Parameter i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

fi = wi/(2π) [Hz] 61.36 84.09 171.8 381.6 580.8 1046 2048

ξi 0.302854 0.036399 0.01546078 0.01022876 0.0178635 0.002389 0.00827

The same steps of the wavelet transform procedure are applied to the second input teeth
deflection presented in Fig. 3b. Figure 7 shows the energy spectrum distribution in the time-
-frequency domain of the second stage. We obtain an appropriate distribution of energy and
the modes can be easily observed from this plot, in particular from Fig. 7. Six values of the



Selection of viscous damping coefficients... 593

dilatation parameter are predominant in this plot and they correspond to the number of modes
present in the frequency band. The first mode and the 6-th mode correspond to the dominant
frequency where high energy is concentrated. The wavelet envelope can be extracted from the
wavelet plot as it is shown in Fig. 8 by a slice parallel to the time axis through each frequency wi
for i = 1, . . . , 6 in the frequency axis, which can be used to estimate the corresponding damping
ratio. The identified modal parameters for the first six modes presented in Table 3 are obtained
using Eq. (3.4) and from the plots shown in Fig. 9. Thus the damping ratio of each mode can
be estimated from the slope of the straight line of the wavelet modulus. Then, the predominant
frequencies obtained using the wavelet transform are used to select the optimum frequencies of
the viscous damping for each stage.

Fig. 7. Wavelet plot of the second teeth deflection signal

Fig. 8. (a) Power spectrum of the first teeth deflection signal using CWT method by a slice parallel to
the time axis, (b) power spectrum of the first teeth deflection signal using FFT method

Table 3. Damping ratios corresponding to frequencies using wavelet demodulation

Parameter i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

fi = wi/(2π) [Hz] 62.66 168.189 336.37 545.3 1045 2048

ξi 0.0327 0.0014 0.0394 0.0435 0.0271 0.0024

Then, two models of viscous damping are investigated, which are Rayleigh damping and
modal damping in the following Section for each stage.
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Fig. 9. The envelope of the wavelet ridge at the first natural frequency, –- signal, - - - linear regression

4.2.1. Rayleigh damping

Some codes are available in selecting the parameters of Rayleigh damping presented in Eq.
(2.4), which is usually modeled by a target damping ratio ξ (1%-5%) and not an optimum
estimate for the frequencies wk and wn. Thus, it results in ambiguities in the current practice
because damping parameters should be selected through an iterative process depending on the
characteristics of the input motion. Therefore, there is a need to develop a procedure which is
capable of automatically selecting the coefficients for a given response of the system. This paper
develops a new algorithm for selecting the coefficients of the Rayleigh damping formulation based
on the calculated modal parameters obtained using the wavelet transform of the input response.
The selected coefficients using CWT method are closely compared to the results obtained using
the conventional Rayleigh formulations. Figures 10 and 12 compare the input teeth deflection
signals of the two-stages of the gear system with the obtained response using different optimal
frequencies and the conventional Rayleigh damping formulations.

Fig. 10. First teeth deflection signal determined from the first natural mode approximation as well as
proposed full Rayleigh viscous damping formulation

As it shown in Fig. 11, the conventional Rayleigh damping formulation filters out a significant
portion of the response and filters out an important component at the high frequency range, and
a good match is obtained when using wk as the first mode and wn as the dominant frequency
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Fig. 11. Computed surface Fourier spectra of the first teeth deflection signal from first natural mode
approximation as well as proposed full Rayleigh viscous damping formulation

Fig. 12. Second teeth deflection signal found from the first natural mode approximation as well as
proposed full Rayleigh viscous damping formulation

(higher mode), which corresponds the maximum value of the wavelet transform. Thus, the use
of the proposed Rayleigh damping with the selected frequencies provides an exact match of the
results from the time domain and frequency domain analysis. Therefore, the proposed Rayleigh
damping formulation suggests that the first mode and the dominant mode (7-th mode for the first
stage and 6-th mode for the second stage) obtained using the CWT method have an important
contribution to the Rayleigh damping formulation. In the modal basis, the traditional practice
is to use modal damping where the viscous damping matrix is diagonal of the form 2ξjwj , where
the number of modes must be selected to give the best match for the input deflection. In the
following paragraph, the selection of modes of the modal damping is obtained using the CWT
procedure.
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4.2.2. Modal damping

The numerical cost of modal damping is directly associated with the number of retained
modes. Therfore, the CWT method provides a simple procedure to get modes that have influence
on response analysis with respect to the minimum number of frequencies required for achieving
the model of damping to fit global behavior better. A part of this study is thus to select target
modes of the equation to obtain a proposed selective modal daming to compare it with the
conventional modal damping where all modes are kept. The optimal frequencies Nm should
be selected as for the presented modes observed in the wavelet plot, 7 out of 12 modes are
retained for the first stage and 6 modes are retained for the second stage. Figures 13 and 14
compare the input teeth deflection signal of the two-stages of the gear system with the obtained

Fig. 13. First teeth deflection signal for classical modal damping (using all modes) as well as full modal
damping formulation (using selective modes)

Fig. 14. Second teeth deflection signal for the first natural mode approximation as well as the proposed
full Rayleigh viscous damping formulation

response using selective modal damping (the number of modes Nm is selected using CWT) and
the conventional modal damping formulation (all modes are kept). The results nearly match the
input deflection for the two-stages and capture the peaks in low periods. At longer periods, the
results obtained using the conventional damping underestimate the input deflection at periods
more than 0.0025 s, and a good match is obtained using the selective modal damping. From the
results, we can conclude that the option of using the number of modes Nm obtained using the
CWT method (7-th modes for the first stage and 6-th modes for the second stage) lower than
the total number of modes N should be applied in lieu of the simplified modal damping (all
modes are kept) to gave response characteristics that are close to the ones of the actual system.
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It must be noted that the rest of modes are obtained using the FFT method, and the resulting
damping ratio for each mode is estimated using the CWT method.

5. Conclusion

The calculation methods of VDCs greatly affect dynamic responses of a two-stage gear system.
As a result, the dynamic response is significantly smaller. In the method proposed in this study,
the modes orders that influence the dynamic responses are found on the basis of the contunious
wavelet trasform method, and VDCs are determined by using the natural frequencies of the
mode orders where high energy is concentrated to minimize the effect of the frequency-dependent
damping. In the proposed method, the teeth deflections are presented from a numerical example.
Next, the test signals are treated by a complex Morlet CWT to identify the damping ratio related
to each dominant frequency. Finally, analysis is performed to determine the optimal model of
Rayleigh and modal damping.
Comparisons with the time domain response demonstrate that the proposed procedure is very

effective in selecting the optimum frequencies from the input motion. Moreover, the estimated
damping ratio and the Rayleigh and modal damping coefficients of the two-stage gear system
may provide a suitable starting point for many codes to choose the optimum damping model.
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