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The paper concerns the analysis of a self-synchronization process of inertial vibrators in
general motion. These types of systems are found e.g. in the case of vibratory conveyors, in
which the synchronization plane of vibrators is perpendicular to the plane of vibration of
the conveyor trough. The analysis is focused on two basic issues related to movement of the
vibrator. The first issue concerns conditions for obtaining stable motion in a configuration
ensuring generation of useful vibrations. The second one is determination of the value of the
synchronizing moment. In order to obtain analytical dependencies as simply as possible, we
considered a typical build conveyor and the suspension, whose mathematical description we
can bring to a diagonal form.
In the paper, we paid attention to the consequences of using suspensions with highly direc-
tional properties, e.g. metal-elastomer vibration isolators.
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1. Introduction

The issues of self-synchronization of inertial vibrators is a well-recognized area of machine dyna-
mics. Extensive studies concerning synchronization of dynamic systems we can find in papers by
Blechman (1971, 2000), specific applications in papers, e.g. Michalczyk (2012), Michalczyk and
Cieplok (2014) and more (Hou et al., 2017; Michalczyk and Pakuła, 2016; Zhao et al., 2011; Fang
et al., 2015; Karmazyn et al., 2018; Francke et al., 2010). The principles of building vibrating
machines with a vibratory drive are known (Goncharewich and Frolov, 1990; Michalczyk, 1995;
Cieplok, 2009, 2018), in particular conditions of synchronous motion with distinction between
working in the desirable and undesirable state. One of the most widespread in the industry type
of vibratory machines are machines working over-resonance. We can include vibratory conveyors,
bolters, feeders, table vibrators, etc. In the case of machines working over resonance frequencies,
the natural vibrations of the machine body-suspension system are definitely lower than angular
velocity of vibrators. Basically we can say that already with a difference of four to five times
these frequencies, we can ignore the impact of the spring suspension on movement of the machine
body. This situation is available by coil springs (Michalczyk and Bera, 2019; Michalczyk, 2017)
commonly used in machine suspensions.

The matter may change when the coil spring is replaced by metal-elastomer joints (Sikora et
al., 2016, 2018). Depending on the purpose, they may present pronounced directional characteri-
stics. This type of vibro-isolators are intended for working in one plane. Such a situation does not
disturb and often helps the machines to direct their movement. An exception may be machines
in which the synchronization plane of vibrators is perpendicular to the vibro-isolators working
plane. Increased stiffness of the suspension in the synchronization plane leads to a displacement
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of natural frequencies of the system towards the working point. It may have a significant impact
on the self-synchronization process of vibrators. The case in point (Fig. 1a) should be considered
within the scope of general motion, unlike those (Fig. 1b) in which the self-synchronization plane
responds to the working plane. They may be considered as regards to the plane motion.

Fig. 1. Examples of vibratory conveyors of different constructions. Vibromechanics Laboratory AGH.
(a) Conveyor in general motion, (b) conveyor in plane motion

2. Model of conveyor

Let us consider the model of a conveyor presented in Fig. 2. It consists of a body mounted on an
elastic suspension induced to vibrate by the use of two inertial vibrators. The vibrator working
plane is perpendicular to the working plane of the conveyor trough and passes over the center
of gravity of the body. The vibrators are driven counter-rotating by asynchronous motors. The
suspension has been simplified to elastic elements operating independently of their coordinates,
namely to the system whose mathematical description can be reduced to a diagonal form. The
bodies of the system move in general motion, while the movement of the trough body can be
considered in the range of small angular displacements.

Fig. 2. Phenomenological model of the conveyor examined in the paper; 1,2 – inertial vibrators,
3 – machine body, 4 – elastic suspension, ω – vector of angular solid velocity, C – body center of mass,

P – selected point on the body of the conveyor, 0XgYgZg – global coordinate system (fixed),
Cxyz – moving system parallel to 0XgYgZg, Cξηζ – system defined by the principal axes of inertia of

the trough body, Mel1 , Mel2 – drive rotors moments
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The Lagrange equation of the second kind was used to determine dynamic equations of
motion. As generalized coordinates, the coordinates of the body mass center xC , yC , zC , Euler’s
angles of the body (Fig. 3a) and two coordinates ϕ1, ϕ2 describing the angular positions of the
vibrators were assumed. In the case of vibrating motion of rigid bodies, it is more convenient to
use a pre-turned Euler angle system. At the paper, two preliminary revolutions were decided:
θ = π/2 and Ψ = π/2. Then, in the position of equilibrium, the axes of the Cartesian system
Cxyz match the axes of the Cζξη system associated with the principal axes of inertia of the
trough body.

Fig. 3. Coordinates of rotation of a rigid body about a fixed point: (a) Euler’s angles in the traditional
system, (b) Euler’s angle system after revolutions of θ = π/2 and Ψ = π/2

We can simply put the coordinates of the vibrators centers of masses in the system Cξηζ as

ξ1,2 = ξ10 ± e sin(ϕ1,2) ζ1,2 = ±ζ10 + e cos(ϕ1,2) η1,2 = η10 (2.1)

where: ξ10, η10, ζ10 – coordinates of the vibrators axes mounting points.
The transformation between the coordinates of the Cξηζ and Cxyz systems allowed for the

conversion
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based on which, considering small angular shifts of the body, we can write

x1,2 = ±ζ10 − Ψ(ξ10 ± e sin(ϕ1,2)) + η10θ + e cos(ϕ1,2)

y1,2 = Ψ(±ζ10 + e cos(ϕ1,2)) + ξ10 ± e sin(ϕ1,2)− η10ϕ

z1,2 = −θ(±ζ10 + e cos(ϕ1,2)) + ϕ(ξ10 ± e sin(ϕ1,2)) + η10

(2.3)

We obtained absolute velocities (in 0XgYgZg system) of centers of the vibrators masses by time
differentiation of (2.3) and considering the system velocity of 0xyz. After removal of the small
of second order, we obtain

ẋ1,2 ∼= −ξ10Ψ̇ + η10θ̇ − eϕ̇1 sin(ϕ1,2)∓ eΨ̇ sin(ϕ1,2) + ẋC

ẏ1,2 ∼= ±ζ10Ψ̇ ± eϕ̇1,2 cos(ϕ1,2) + eΨ̇ cos(ϕ1,2)− η10ϕ̇+ ẏC

ż1,2 ∼= ∓ζ10θ̇ + ξ10ϕ̇− eθ̇ cos(ϕ1,2)± eϕ̇ sin(ϕ1,2) + żC

(2.4)

By using the velocities of individual solids of the system, we can formulate the Lagrange function
for it
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Due to connection of the vibrators with the trough (schematically shown in Fig. 2), we get:
ωη1 = ϕ̇1 + ωη, ωη2 = −ϕ̇2 + ωη, ωξ1 = ωξ2 = ωξ, ωζ1 = ωζ2 = ωζ .
Kinetic energy of the trough and the vibrators stated by using velocity projections on the

axes of the system Cξηζ written in formula (2.5) must be expressed by means of the generalized
coordinates. This transition is made by the following operation
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on the basis of which, for small angular displacements, we obtain

ωξ ∼= θ̇ + ϕΨ̇ ωη ∼= Ψ̇ + ϕθ̇ ωζ ∼= ϕ̇− θΨ̇ (2.7)

Dynamic equations of the conveyor motion can then be determined on the base of the
Lagrange-Euler equation

d

dt
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2
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in which: qi ∈ {xC , yC , zC , Ψ, θ, ϕ, ϕ1, ϕ2}. In the equations of motion, all generalized forces Qi
are zero except for

Qϕ1 =Mel1 −Mload1 Qϕ2 =Mel2 −Mload2

QΨ =Mel2 −Mel1 +Mload1 −Mload2

(2.9)

The linear loss power function N engaging the energy dissipation in the suspension components
can be represented by
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Due to extensive form of the dynamic equations of motion and for the sake of brevity of the
publication, their explicit form is not presented. A simplified form resulting in the adoption
of constant angular velocities of the vibrators is presented. It allows sufficient study of issues
related to the conditions of vibrators synchronization.
The conveyor equations of motion for the constant angular velocities of the vibrators assume

the form
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Let us consider a typical conveyor, i.e., of a symmetrical design in which the plane of action of
the vibrators forces passes through the center of mass of the conveyor in the state of synchronous
running. Then

ω1 = ω2 = ω − const ϕ1 = ωt+ ϕ10 ϕ2 = ωt+ ϕ20 (2.13)

and equations (2.11) and (2.12) are reduced to a system of three equations
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Other equations, due to the lack of conjugation of coordinates xC , yC , Ψ and the lack of extor-
tion from the vibrators – are neutralized. The conveyor with symmetrical design and extortion
through the center of mass was reduced to a plane system.

System of equations (2.14) is solvable. Due to the linear character and harmonic type of
extortion, solutions describing the steady state can be determined with the use of a complex
transformation. The results obtained in this way can be presented in the form
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where
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2
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α = ϕ20 − ϕ10 ξ10 = L cos β ζ10 = L sin β
(2.16)

On the basis of the solutions, it can be concluded that when α = π, i.e. when the vibrators pass
each other on the axis 0y, the conveyor makes a segmental movement along the axis 0y, in the
opposite phase to extort. In the case, when α = 0, i.e. when the vibrators pass each other on
the axis 0x, the conveyor makes a plane motion, which is a combination of translational motion
along the axis Ox and rotary motion around the axis 0z.

In Fig. 4 a comparison between the steady state based on the full model and the proces-
ses determined on the basis of analytical solutions is shown. The comparison is based on the
parameters presented in Table 1.

Table 1. Physical parameters of the conveyor used in simulations

Figure
mk mw Jη e L β kx ky kΨ
[kg] [kg] [kg m2] [m] [m] [rad] [N/m] [N/m] [Nm/rad]

4 77.34 4.0 7.04 0.021 0.16 0.682 1.65E+05 1.35E+04 2.25E+04
5a, 7b, 7d 77.34 4.0 7.04 0.021 0.16 0.682 1.68E+05 6.2E+04 2.93E+04
5b, 7c 77.34 4.0 7.04 0.021 0.16 0.682 8.4E+05 6.2E+04 1.37E+05
7a, 7e 77.34 4.0 7.04 0.021 0.16 0.682 4.2E+04 1.85E+04 7.34E+03



518 G. Cieplok, K. Wójcik

Fig. 4. Steady state – comparison of the full model and analytical solutions. The results of the full
model were marked with a star (∗); ∆M = 0.5Nm, α = −2.44 rad

3. Stable states of operation

In steady motion, inertia vibrators can take on two basic states: synchronized and unsynchro-
nized. The first one is a state which guarantees generation of vibrations of one frequency and a
constant amplitude. The second one, a disordered state.

The Blekhman criterion is the commonly used approach to determine the conditions of stable
motion of vibrators. It allows one to determine the equilibrium position of the oscillating system
from the condition of minimum average value of Lagrange’s kinetic potential calculated for the
period of oscillations of the system

T
∫

0

(E − V ) dt = D(ϕ10, ϕ20, . . . , ϕn0) (3.1)

The course of the D function depends on the reciprocal position of the vibrators ϕi0 toward each
other. For positions for which the function takes a minimum, the vibrators operate in a stable
synchronized state.

For the case considered in the paper, the D function takes the form of
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As we can see, D can only be extreme for two values: α = 0 or α = π. The first case corre-
sponds to the situation when counter-rotating vibrators sum up their action in the transverse
direction to the movement of the conveyor trough; the second corresponds to the situation when
the vibrators sum up their effect in the direction of the conveyor trough.
The stable motion for the desired variant (α = π) is therefore obtained when

sgn (G) = 1 (3.4)

Figure 5 presents the course of the function sgn (G) for two cases – typical, for which the
suspension of the machine has a similar stiffness in three directions perpendicular to each other
and untypical, with a higher stiffness in a direction transverse to the working plane of the
conveyor. It can be seen that already at 5 times higher coefficients kx the range of frequencies
of undesirable synchronization is shifted very clearly in the direction of the working point of the
machine. We can deal with such a situation in the case of application of steel-elastomer vibro-

Fig. 5. Influence of suspension stiffness on vibrators synchronization. Value: „−1” – desirable
synchronization, „+1” – undesirable synchronization. (a) Coeficient kx in accordance with Tabele 7,

(b) coeficient kx 5 times higher with regard to figure (a)

-isolators type ROSTA AB D presented in Fig. 6, which depending on the type, are characterized
by strong directional properties. To illustrate the risk, in Fig. 7, the results of conveyor operation

Fig. 6. Example of application of the steel-elastomer joins ROSTA type AB D

at 5 times higher elasticity coefficient kx and the cooperation of the conveyor with the frequency
inverter are presented. The use of an inverter is a typical drive solution, which allows one to
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regulate the speed of material movement on the conveyor trough and in specific cases like dosing,
including stopping material movement.

Fig. 7. Coordinates of movement of the conveyor in the case of low damping suspension, ξ ≈ 0.01.
(a) Angular velocity of the vibrator described by the coordinate ϕ1; (b) course of the difference in

coordinates of the angular vibrators; the course of (c) xC coordinate and (d) yC coordinate of the center
of mass of the conveyor body

As we can see, there is a high correlation between the results and the graph shown in Fig. 5.
After the start-up period, the rotors reach a nominal speed of approx. 157.1 rad/s (Fig. 7a),
and in accordance with Fig. 5b they synchronize in the desirable state, Fig. 7b. After the
speed has been reduced below 140 rad/s, the configuration of the vibrators is changed to the
stable undesirable state. Operation in the undesirable system is carried out at a speed of up
to approx. 130 rad/s and then switch back to the desired configuration. Further decreasing of
the rotor angular velocity leads to another change visible at approx. 100 rad/s. The change
in the configuration of the vibrators naturally entails a change in the direction of the resul-
tant force of the vibrators and the working direction of the vibrations of the conveyor trough,
Fig. 7c,d.

Numerical research based on the full model also allowed one to state the influence of conveyor
suspension damping on the process of vibrator synchronization. During lowering the rotation
velocity of the vibrators, an increased damping reduced the number of passes between the desired
and undesirable states. In particular, in the cases where the operating frequency ranges in a given
configuration were narrow. Such a situation is presented in Fig. 8. The relative damping assumed
in the simulation at the level of ξ = 0.06 corresponding to the rubber suspensions.
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Fig. 8. Coordinates of movement of the conveyor in the case of low damping suspension, ξ ≈ 0.06.
(a) Angular velocity of the vibrator described by the coordinate ϕ1; (b) course of the difference in
coordinates of angular vibrators; course of (c) xC coordinate and (d) yC coordinate of the center of

mass of the conveyor body

4. Synchronization moment

An equally important issue as the conditions of synchronization of the vibrators is the issue of
the synchronizing moment. Its value determines the resistance of the vibrators to falling out
from the position of equilibrium and the angle of phasing-out associated with the quality of
transport.
The synchronizing moment can be determined on the basis of the components of vibrators

equations of motion responsible for the coupling with the body. In the form after rejection of
small orders of magnitude, these actions can be presented as vibration moments

Mvib1 = −mwe sin(ϕ1)ẍC +mwe cos(ϕ1)ÿC +mwe[cos(ϕ1)ζ0 + sin(ϕ1)ξ0]Ψ̈

Mvib2 = −mwe sin(ϕ2)ẍC −mwe cos(ϕ2)ÿC +mwe[cos(ϕ2)ζ0 + sin(ϕ2)ξ0]Ψ̈
(4.1)

that affect individual vibrators. In practice, we are satisfied with the average for the period with
the value of the synchronizing moment, i.e.

Msync =
1

T

T
∫

0

(Mvib2 −Mvib1) dt (4.2)

After insertion into (4.2), the acceleration formula ẍC , ÿC , Ψ̈ determined on the basis of e.g.
solutions (2.15), we get its full form.
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In this paper, we have only provided a simplified relation without the influence of the su-
spension on the body movement. From a practical point of view, it is a case of a over resonance
conveyor operation, where the working point of the vibrators is significantly (at least 4 times)
distant from the natural frequency of the body-suspension system. With this assumption, we
can calculate

Msync ≈ m
2
we
2L2ω2

m∗k
2 + 4mw(mw −m

∗

k) cos β
2

mk(J∗ηm
∗

k − 4L
2m2w cos β

2)
sin δ (4.3)

when δ = α − π. The maximum value of the synchronizing moment MsyncMAX is received for
sin δ = 1.
The MsyncMAX is important to ensure the technical stability of the system. According to the

paper (Michalczy, 1995)

MsyncMAX ­ cMn (4.4)

when Mn means the rated moment of an asynchronous motor driving a single vibrator. Recom-
mended values for the c factor to guarantee the phase differences of no more than ∆ϕ are shown
in Table 2.

Table 2. Recommended values for the factor c

Machine c ∆ϕ [◦]

Conveyor 0.5-1.0 12-16

Feeder 1.0-2.4 5-12

Sifter 1.5-4.0 3-5

Formula (4.3) has been tested. Five computer simulations were performed, see Fig. 9. The
first simulation was based on parameters corresponding to a soft suspension that meets the

Fig. 9. Charts of the phase difference of the vibrators depending on the load; A – soft suspension,
B – ROSTA suspension, C – ROSTA AB D suspension, D – ROSTA suspension and displacement of
the synchronization plane below the body center of gravity, E – soft suspension and displacement of the

synchronization plane below the body center of gravity

requirement of at least 4 times distance between the natural frequency of the suspension-body
system and the velocity of vibrators. The second was carried out on the basis of parameters of
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soft metal-elastomer suspension characterizing slim elements. The third simulation was based on
the parameters of a highly directional suspension in which the elastic coefficient in the transverse
direction to the working plane was increased 5 times in relation to the slim structures. The fourth
and fifth correspond to simulations of the second and first, but with a lower synchronization
plane of the vibrators in relation to the centre of gravity of the machine body.

The factor that pulls the vibrators out of the synchronism is the systematically increased
load moment ∆Mload applied to the rotor shafts as follows

Mload1 = +
∆Mload

2
Mload2 = −

∆Mload

2
(4.5)

In simulations presented in the graph, the loading moment was activated in 30 seconds of the
simulation time and increased by 0.1Nm every 10 seconds. According to formula (4.3) and the
parameters given in Table 7, the value of MsyncMAX = 0.54Nm.

It can be observed that full compatibility of the formula with the results of the simulation
occurred only in the first case; in the time interval of 80 s-90 s the loading moment was 0.6Nm,
and in this interval the vibrators were disassembled. On the basis of other simulations, we can
see that the synchronizing bond between the vibrators was stronger, and the systems with stiffer
suspensions showed a higher synchronizing moment. Also, the displacement of the synchroniza-
tion plane of the vibrators below the center of gravity resulted in an increase in the synchronizing
moment. This situation can be explained by an increase in the amplitude of vibrations caused
by the shift of resonances in the direction of the working point or by activation of other motion
coordinates.

5. Conclusions

The paper presents the analysis of a self-synchronization process of inertial vibrators of a vi-
bratory conveyor in which the self-synchronization plane of vibrators is perpendicular to the
working plane of the conveyor trough. It shows that in the case of a conveyor of typical con-
struction, symmetrically in relation to the vertical plane passing along the length of the conveyor
and where the plane of synchronisation of the vibrators passes through the center of gravity of
the body, the system may be considered as a plane one. The authors introduce a function on
the basis of which it is possible to determine frequency ranges of operation of rotors for which
the desired synchronization occurs, i.e. where the vibrators produce a sinusoidal force passing
through the center of mass of the machine body along the conveyor trough. The autors analyzed
the influence of stiffness of the suspension on the synchronization plane. It is proved that in
the case of suspensions in which there is a significant difference of elastic coefficients in the
main directions, there is a danger of transition from the desired to undesired synchronization.
We suggest that in such a case, we can apply metal-elastomer suspensions. The danger of the
transition from the desired to undesired synchronization state can be increased by using frequ-
ency inverters that reduce velocity of the drive motors. We notice the influence of damping on
reduction of the number of switches between the state of desired and undesired synchronization.

An approximate formula for the value of the synchronizing moment (omitting of the su-
spension components) has also been derived. The formula may by applied to conveyors working
over-resonance meeting the requirement of multiple (at least 4 times) difference in the frequency
of free vibrations of the suspension-body system in relation to the rotation speed of vibrators.
On the basis of simulation tests performed on the full model of the conveyor, a positive effect
was found of the shift of the conveyor free vibration frequency towards the angular velocity of
the vibrators, as well as the movement of the synchronization plane of the vibrators below the
center of gravity of the body. These facts can be explained by an increase in the amplitude of
vibration of the body. In the first case, the phenomenon is caused by the shift of the resonance
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towards the working point. In the second, the appearance of motion in additional coordinates.
However, the increase in the synchronization moment obtained through these paths has nega-
tive influence on the uniformity of motion of the conveyor trough and the quality of transport
associated with it.
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