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The paper shows the application of the Monte Carlo method to the stability analysis of a
single-layer shallow (h/d = 0.04) dome modelled with frame elements. Structures of this
type are characterized by strong nonlinearity, consequently, they are extremely susceptible
to stability loss resulting from the node snap-through. It is necessary to perform a nonlinear
stability analysis that allows determination of limit points related to that mode of stability
failure. This paper shows that with the reliability analysis methods, it is possible to trace
the failure probability level while moving along the load-displacement path towards the limit
point.
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1. Introduction

Bar coverings are used as bearing structures in buildings of various purposes. The scope of their
application is very wide and covers many fields of engineering. Bar coverings function as main
parts of supporting structures in halls, shopping malls, station halls, sports buildings, swimming
pools, theatres, concert halls, churches and similar facilities. The axes of the bars form a specific
spatial geometric grid. Regular placement of mesh nodes on a given surface is often found. The
surfaces used can most often be described by simple mathematical expressions. The surface shape
can be selected in such a way that for the configuration of given geometric constraints and for
dominant loads, it maintains specific stiffness and stability (low sensitivity to local snapping).
The optimal shape of the base surface corresponds to a membrane state in which only

tensile forces without bending and with low compression are present. The correct selection of
base surfaces is a prerequisite for applying a single-layer bar covering. If bending occurs in the
structure, it is necessary to use rigid edge girders, or double-layer meshes. Structure analysis
and connection details vary depending on the number of layers used in the mesh. A single-layer
covering is most often constructed using rigid nodes, while multi-layer coatings employ pinned
joints.
Due to the presence of rigid joints in single-layer bar coverings, the occurrence of node

snapping is significantly prevented. The use of this type of connections substantially increases
the rigidity of the structure, which is important in the event of dynamic variable loads (wind).
As regards a single-layer covering, it is possible to use pinned joints, however, it is required to
fully examine the phenomenon of nodal snap (global stability), natural frequency and torsion
resistance of the mesh covering (Kacprzyk and Pawłowska, 1999; Chodor, http, 2019).
In this paper, a single-layer steel bar dome is considered, i.e. the covering described on the

sphere erected on a round base. Domes belong to the oldest known and widely used large-
-span coverings. In practice, 5 types of domes are most often employed. They include Schwedler,

1The results contained in this paper were presented at the 4th Polish Congress of Mechanics, 23rd International

Conference on Computer Methods in Mechanics.
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Lamella, ribbed, and geodetic domes. The fifth type are domes with isosceles triangular mesh
in each layer.

The key advantages these structures offer are low self-weight, relatively high load capacity,
and repeatability of the elements, especially in the case of small spans. In the design of this type
of structure, the phenomena associated with their stability may be decisive (Marcinowski, 2017;
Waszczyszyn et al., 1994; Thompson and Hunt, 1973; Kleiber, 1982; Zabojszcza and Radoń,
2019a).

2. Methods of structural analysis

In the traditional design process, internal forces are calculated using various methods of static
and stability analysis. Depending on whether the distribution of internal forces is determined
using the range of linear-elastic behaviour of bars and nodes of the system, or the possibility
of plastic redistribution of internal forces in the elements is used, two basic methods are distin-
guished: elastic and plastic design. The elastic design (design due to reaching the limit state in
the most stressed section of the element, or the most stressed element of the structure) is based
on assuming a constant stiffness of the elements with a cross-section of classes 1-4. The elastic
design is applicable to structures composed of bars of different cross-section classes and nodes
with different rotational capabilities. The plastic design is connected with such a design situation
in which internal forces in the system elements and stability assessment are determined taking
into account the plastic reserve of redistribution of moments in bar cross-sections and system
nodes. In the elastic and plastic design of steel bar structures, bar systems can be distinguished
utilizing three basic groups of structural analysis methods. The latter include the following: first
order static analysis, second order static analysis and advanced analysis (second order analysis
that accounts for imperfections).

The first group are methods using the first-order, geometrically linear analysis such as:
linear-elastic methods – LA (Linear Analysis) or inelastic plastic joints – MNA (Materially
Nonlinear Analysis). Static analysis is supported by bifurcation analysis of buckling in the plane
of the system in order to determine buckling length coefficients of its compressed elements:
LBA (Linear Buckling Analysis) in the case of the elastic design, MNBA (Materially Nonlinear
Buckling Analysis) in the case of design accounting for plastic reserves. The elastic design takes
into consideration the buckling mode of the system, which corresponds to the lowest buckling
load value, called the critical load in the sense of the elastic stability theory of the initial
system. According to PN-EN 1993-1-1/5.2.1(3), the first-order analysis can be used if the increase
in internal forces or moments, or any other change in the behaviour of the structure due to
deformation, can be disregarded. It is assumed that in the case of elastic analysis, this happens
if the criterion is met αcr ­ 10, where αcr is the critical load multiplier in relation to design
loads.

Self-stable structures and susceptible bracing which do not meet this condition, depending
on the design method, can be considered as tilted systems with elements in which forces are
calculated taking into account second order effects.

If αcr < 3.0, the second order analysis (GNA) is used in the elastic design, and if
3.0 < αcr < 10.0 – the approximate second order elastic analysis (PDNA).

The PDNA analysis allows for an approximate consideration of the stability of the P -Delta
effect and, hence, an approximate assessment of the internal forces taking into account the
global second-order tilting effects. PDNA analysis methods can be used for systems in which
the compression elements have a relatively small slenderness and/or longitudinal forces of low
value. Then, the P -delta effect on the flexural rigidity of compression bars and the distribution
of internal forces can be disregarded.
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Accurate methods of the GNA group use the second-order analysis which takes into account
P -Delta and P -delta stability effects. The support of static analysis by buckling analysis is not
required in this case due to the fact that the close second order theory is a natural extension
of the theory of stresses to the case of bending with participation of longitudinal forces. Buck-
ling lengths, used to check the criteria of bearing capacity of elements, are assumed equal to
the lengths of bars between nodes. The elastic analysis of GNA is carried out incrementally –
following the load history, or iteratively by the secant method for the level of the design load.
The last group of methods are advanced analyses, i.e. second-order analysis, in which global

and local imperfections are taken into account at the stage of structural analysis. In the elastic
design, when the second-order analysis is used with imperfections GNIA (Geometric Nonlinear
with Imperfection Analysis), the limit load is identified by reaching the load capacity of the most
stressed section of the bar or node. In the design practice, the GNIA analysis can be performed
in one calculation step for longitudinal forces estimated or determined from a linear analysis of
LA in relation to design loads (Giżejowski and Ziółko, 2010; PN-EN 1993-1-1).
The purpose of this paper is to estimate the influence of imperfections on the reliability of

a single-layer steel dome. The analysis is based on linear relations between stresses and strains.
These structures are subjected to large displacement gradients and are susceptible to stability
loss from the condition of node snapping. When designing such structures, local buckling of
individual bars is also possible. However, this is not a mode of stability loss that determines the
load-bearing capacity of the structure. These structures are extremely sensitive to even slight
changes in materials parameters or geometry. Therefore, the imperfection description is very
important for the correct design of such structures. In this paper, the probabilistic approach
is used to describe imperfection (Zabojszcza and Radoń, 2019b; Kato et al., 1998; Liu et al.,
2016; Luca et al., 2016). The values of the reliability index are calculated with the Monte Carlo
method (Mochocki and Radoń, 2019; Rubinstein, 1981).

3. Reliability analysis – the Monte Carlo method

The classic Monte Carlo simulation method consists in generating x-realization of a random
vector X in accordance with the total density of a probability distribution fx(x), and then
checking whether the given implementation lies in the safe area or in the failure area. The number
of ’hits’ in the area of failure in relation to the total number of simulations is the estimator of the
probability of failure. The above idea can be expressed by defining the characteristic function of
the set (the area of failure) as

XΩf (x) =

{
1 if x ∈ Ωf
0 if x /∈ Ωf

(3.1)

XΩf (x) is therefore a random variable with a two-point distribution

P [XΩf (X) = 1] = Pf P [XΩf (X) = 0] = 1− Pf (3.2)

where Pf = P [X ∈ Ωf ]. The mean value and the variance XΩf (x) have the form

X0Ωf (X) = E[XΩf (x)] = 1 · Pf + 0 · (1− Pf ) = Pf

Var [XΩf (X)] = E[(XΩf (X))
2]− (E[XΩf (X)])

2 = Pf − P
2
f = Pf (1− Pf )

(3.3)

In the Monte Carlo method, the estimator of the mean value of the characteristic of the set,
has the form

X̃0Ωf =
1

K

K∑

k=1

XΩf (Xk) = P̃f (3.4)
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where Xk are independent random vectors with a probability distribution defined by the density
function fx(x), and K is the number of simulations.
The average value and variance of the estimator is given as

P̃ 0f = E[P̃f ] =
1

K

K∑

k=1

X0Ωf (Xk) =
1

K
KPf = P̃f

σ2
P̃f
= Var [P̃f ] =

1

K2

K∑

k=1

Var [XΩf (Xk)] =
1

K2
KPf (1− Pf ) =

1

K
Pf (1− Pf )

(3.5)

The variation coefficient of the estimator is

v
P̃f
=
σ
P̃f

P̃ 0f

=

√
1− Pf
KPf

(3.6)

The above formula shows how the variation coefficient of 0.1 for the expected probability of
failure was obtained. In real structures, the coefficient ranges from 10−7 to 10−4 and requires
K = 106 − 109 simulations.

4. Numerical results and discussion

4.1. Geometry

A mesh of a single-layer dome consisting of 37 nodes and 84 elements is illustrated in Fig. 1.
The dome geometry is shown in Table 1.

Fig. 1. Mesh of the dome elements

The structure shown above has been analysed in two stages. The first, deterministic stage,
is directed to finding coordinates of the limit point on the load-displacement path using the
FEM Abaqus software. These coordinates are necessary to determine the parameters of the



Stability analysis of the single-layer dome in probabilistic description... 429

Table 1. Geometry of the dome

No. of
x [m] y [m] z [m]

No. of
x [m] y [m] z [m]

node node

1 14.489 14.489 0.900 20 21.733 16.430 0.400

2 10.739 14.489 0.750 21 21.733 12.548 0.400

3 11.241 16.364 0.750 22 19.792 9.186 0.400

4 12.614 17.736 0.750 23 16.430 7.244 0.400

5 14.489 18.239 0.750 24 12.548 7.244 0.400

6 16.364 17.736 0.750 25 9.186 9.186 0.400

7 17.736 16.364 0.750 26 4.746 8.864 0.0

8 18.239 14.489 0.750 27 3.239 14.489 0.0

9 17.736 12.614 0.750 28 4.746 20.114 0.0

10 16.364 11.241 0.750 29 8.864 24.232 0.0

11 14.489 10.739 0.750 30 14.489 25.739 0.0

12 12.614 11.241 0.750 31 20.114 24.232 0.0

13 11.241 12.614 0.750 32 24.232 20.114 0.0

14 7.244 12.548 0.400 33 25.739 14.489 0.0

15 7.244 16.430 0.400 34 24.232 8.864 0.0

16 9.186 19.792 0.400 35 20.114 4.746 0.0

17 12.548 21.733 0.400 36 14.489 3.239 0.0

18 16.430 21.733 0.400 37 8.864 4.746 0.0

19 19.792 19.792 0.400

limit function in reliability analysis. The second step involves combining the Numpress Explore
and Abaqus programs. This analysis makes it possible to estimate the reliability index.

4.2. STAGE I – Static – strength analysis

4.2.1. Step 1 – LA – Linear analysis

In the first step, linear analysis of a steel single-layer dome modelled with frame elements
and loaded with P = 10 kN in each node was performed. On the basis of the calculations made,
the cross-section of the elements was determined as a steel pipe RO101.6x6 with the yield point
fy = 23.5 kN/cm

2 and Young’s modulus E = 21000 kN/cm2. Elements from 61 to 84 are the
most stressed. Table 2 shows the values of internal forces, load capacity and limit values of
displacements for element No. 84 and node No. 25. As regards the selection of cross-sections, it
was decided by the stability condition of the bent and compressed element.

4.2.2. Step 2 – LBA – Linear Buckling Analysis

In the second step, the structure under consideration underwent linear buckling analysis.
The structure was loaded with µP load in each node (P = 10 kN). Figure 2 shows deformation
of the structure. The critical load multiplier µcr was equal to 1.465. According to PN-EN 1993-
1.1/5.2.2 (5) B, if the critical load multiplier µcr < 3.0, a more accurate second order analysis
(GNA) is necessary for the structure.

4.2.3. Step 3 – GNA – Geometric Nonlinear Analysis for P = 10 kN

In the third step, a geometrically nonlinear static analysis of the considered structure was
carried out. In the shallow bar dome modelled with frame elements, internal forces, strength
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Table 2. Values of the internal forces, capacity of the most stressed element of the structure
(element No. 84), and the maximum horizontal and vertical displacement of node No. 25

Internal force/capacity Value

NEd [kN] – axial force 113.156

Nc,Rd [kN] – design capacity of section under uniform compression 423.00

Nb,Rd [kN] – design buckling resistance of compressed element 176.097

My,Ed,max [kNm] – design bending moment with respect to y-y axis 122.83

My,c,Rd [kNm] – design bending resistance with respect to y-y axis 1290.34

Mz,Ed,max [kNm] – design bending moment with respect to z-z axis −2.98

Mz,c,Rd [kNm] – design bending resistance with respect to z-z axis 1290.34

Strength utilisation [%] 77

Maximum vertical displacement [mm] – for node 25 30.61

Allowable vertical displacement [mm] – d/300 75.00

Maximum horizontal displacement [mm] – for node 25 1.32

Allowable horizontal displacement [mm] – h/150 6.00

Fig. 2. Ribbed dome deformation

Table 3. Values of the internal forces, capacity of the most stressed element of the structure
(element No. 84), and the maximum horizontal and vertical displacement of node 25

Internal force/capacity Value

NEd [kN] – axial force 125.80

Nc,Rd [kN] – design capacity of section under uniform compression 423.00

Nb,Rd [kN] – design buckling resistance of compressed element 179.097

My,Ed,max [kNm] – design bending moment with respect to y-y axis 162.60

My,c,Rd [kNm] – design bending resistance with respect to y-y axis 1290.34

Mz,Ed,max [kNm] – design bending moment with respect to z-z axis −5.61

Mz,c,Rd [kNm] – design bending resistance with respect to z-z axis 1290.34

Strength utilisation [%] 90

Maximum vertical displacement [mm] – for node 25 45.38

Allowable vertical displacement [mm] – d/300 75.00

Maximum horizontal displacement [mm] – for node 25 2.02

Allowable horizontal displacement [mm] – h/150 6.00

utilisation and displacements were verified when the force P was equal to 10 kN. Table 3 shows
values of internal forces, strength utilisation and displacements for the most stressed element
(No. 84) and node No. 25.
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4.2.4. Step 4 – GNA – Geometric Nonlinear Analysis for P = 11.10 kN

In the last step, the behaviour of the structure was analysed in the case of structural load
with the maximum value obtained in geometrically nonlinear analysis. The structure was loaded
with a one-parameter load µP at each node, and the value of the critical load multiplier was
µcr = 1.11, P = 10 kN. The analysis was carried out using the Simulia Abaqus software, and
the Riks analysis algorithm. Table 4 shows the values of internal forces, strength utilisation in
element No. 84 and the displacement of node No. 25 in the case under consideration.

Table 4. Values of the internal forces, capacity of the most stressed element of the structure
(element No. 84), and the maximum horizontal and vertical displacement of node 25

Internal force/capacity Value

NEd [kN] – axial force 132.816

Nc,Rd [kN] – design capacity of section under uniform compression 423.00

Nb,Rd [kN] – design buckling resistance of compressed element 183.19

My,Ed,max [kNm] – design bending moment with respect to y-y axis 122.83

My,c,Rd [kNm] – design bending resistance with respect to y-y axis 1290.34

Mz,Ed,max [kNm] – design bending moment with respect to z-z axis −6.66

Mz,c,Rd [kNm] – design bending resistance with respect to z-z axis 1290.34

Strength utilisation [%] 96

Maximum vertical displacement [mm] – for node 25 49.69

Allowable vertical displacement [mm] – d/300 75.00

Maximum horizontal displacement [mm] – for node 25 1.848

Allowable horizontal displacement [mm] – h/150 6.00

The first stage of structural analysis is the verification of the steel shallow dome modelled
with frame elements (Element B32 in Abaqus) in terms of statics and strength. In the analysis,
it was shown that for the considered structure it is necessary to conduct a geometrically non-
linear analysis. The strength utilisation of the structure in the first step, i.e. linear static analysis,
was 77%, while for the GNA analysis, it increased to 90%. The stresses in bars, for the maximum
load value of the structure in geometrically non-linear static analysis, did not exceed 96%, which
indicates that the global stability loss is a decisive mode of stability failure. The allowable vertical
displacement value (deflections) determined on the basis of EC-1993-1-1 is 7.5 cm. The GNA
analysis showed, however, that for the load value of Pcr = 11.10 kN, the maximum displacement
of the node in the structure is 4.969 cm. This means that the determined value according to
Eurocode of the allowable displacement is almost 51% greater than the maximum value of the
displacement obtained from a more accurate structural analysis – GNA.

4.3. STAGE II – Probabilistic analysis with the Monte Carlo method

Based on the outcomes of analysis presented in Sections 4.2.1-4.2.4, reliability analysis was
carried out. Two types of this analysis were distinguished:

• Analysis 1 – reliability analysis of the frame element (steel pipe RO 101.6x6)

• Analysis 2 – reliability analysis of the entire structure.

In both cases, random variables are: R – external radius of the cross-section and t – wall
thickness of the cross-section. The third random variable in the case reliability analysis of the
frame element is fy – the yield point of steel, while in the case of the structural reliability analysis
it is E – Young’s modulus. The values of all random variables are listed in Table 5.
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Table 5. The values of random variables in all types of reliability analysis

Random Analysis 1 – frame element Analysis 2 – structure
variable Mean Standard Variation Mean Standard Variation
Xi value deviation coefficient value deviation coefficient

R [cm] 5.08 0.2032 4% 5.08 0.2032 4%

t [cm] 0.60 0.0024 4% 0.60 0.0024 4%

fy [kN/cm
2] 23.50 1.4100 6% – – –

E [kN/cm2] – – – 21000 1260 6%

In the case of reliability analysis of the frame element, the limit function was defined as the
condition of not exceeding the capacity due to stability of the bar, simultaneously compressed
and bent. The general version of the condition is as follows

fb = 1−
N

Nb,Rd
−
kzyMy
χMy,Rk

(4.1)

where: Nb,Rd [kN] – buckling resistance of the compressed element, My,Rk [kNm] – bending
resistance with respect to y-y axis, χ – buckling coefficient, kzy – interaction coefficient acc.
PN-EN 1993-1-1.

For the needs of the analysis, the condition was developed using the following relationships

Nb,Rd = A
fy
γM1

A = π(2Rt− t2)

My,Rk =Wpl
fy
γM1

Wpl = 4
3R2t− 3Rt2 + t3

3

(4.2)

The final version of the limit function takes the following form

fb = 1−
NEd

χΠ(2Rt− t2)fy
−

3kzyMy
4(3R2t− 3Rt2 + t3)fy

(4.3)

In the case of reliability analysis of the entire structure, the limit function is defined as a condition
of non-exceedance of the maximum vertical displacement obtained in the nonlinear geometric
analysis

fs = 1−
w(x)

wmax
= 1−

w(x)

4.969
(4.4)

where: w(x) – vertical displacement for node 25, wmax – maximum vertical displacement for
node 25 obtained in the nonlinear geometric analysis [cm] (Table 4).

The reliability analysis was carried out using the NumpressExplore program created at IPPT
PAN in Warsaw (http://www.numpress.ippt.pan.pl/, Kowalczyk et al., 2014; Lógó et al., 2011).
The determination of the reliability index in both analyses differed significantly.

In the case of Analysis 1, i.e. determination of the reliability index for the most stressed
element of the structure, the explicit form of the limit function expressed by formula (4.3) was
used. The calculations were carried out in accordance with the algorithm shown in Fig. 3.

For the sake of Analysis 2, it was necessary to combine the NumpressExplore program
with the numerical analysis program Simulia Abaqus. In that case, the implicit form of the
limit function was used, as described by Eq. (4.4). NumpressExplore made it possible to define
two types of random variables, namely, basic and external ones. The external variables were
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Fig. 3. Procedure of the analysis for the explicit limit state function

implicit functions of basic random variables, the values of which were obtained with the Abaqus
software. The values of external variables were read from the text files that contained the results
of computations with the Abaqus software. The next step involved the introduction of the
limit function formula, using the standard mathematical notation as a dependence on basic and
external random variables. NumpressExplore software communicated with the Abaqus software
to perform analysis. The latter was used to compute the values necessary to define the limit
function for subsequent sets of random variables. Next, the reliability analysis method was
chosen and computations began. The task ended with generation of information that contained
the value of the reliability index. In Fig. 4, the procedure of the analysis algorithm for the
implicit limit state function is shown.

Fig. 4. Procedure of the analysis for the implicit limit state function

Table 6 shows the values of the reliability index for both types of analyses.
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Table 6. The values of the reliability index β in both types of the reliability analysis

Load µP Displacement Analysis 1 – frame element Analysis 2 – structure
[kN] w [cm] β β

8.095 3.078 4.892 3.156

8.762 3.420 4.013 2.461

9.392 3.767 3.147 1.737

9.984 4.133 2.295 1.083

10.57 4.538 1.396 0.457

5. Conclusions

In the study, a single-layer dome modelled with frame elements was discussed. Due to the rise-
-to-span ratio h/d = 0.04, this is a shallow dome. On the basis of the first stage of the analysis, it
was shown that the critical load multiplier in the linear bifurcation analysis (LBA) was 1.465. For
frame structures, when the critical load multiplier is not greater than 3, PN-EN-1993 standard
recommends execution of nonlinear geometric analysis GNA. The nonlinear geometric analysis
showed that the limit load for this structure was 11.10 kN, and the maximum strength utilisation
of the bar was 96%. The decisive mode of stability loss is the global stability failure due to node
snap-through. The summary of calculations is provided in Table 7.

Table 7. The summary of calculations of the first stage.

Internal force/capacity
LA GNA GNA

µ = 1.000 µ = 1.000 µcr = 1.110

NEd [kN] 113.156 125.800 132.816

Nc,Rd [kN] 423.000 423.000 423.000

Nb,Rd [kN] 176.097 176.097 176.097

My,Ed,max [kNm] 122.830 162.600 183.190

My,c,Rd [kNm] 1290.340 1290.340 1290.340

Mz,Ed,max [kNm] −2.980 −5.610 −6.660

Mz,c,Rd [kNm] 1290.340 1290.340 1290.340

Strength utilisation [%] 77 90 96

Max. vertical disp. [mm] 30.610 45.380 49.690

Allowable vertical disp. [mm] 75.000 75.000 75.000

Maximum horizontal disp. [mm] 1.320 2.020 1.848

Allowable horizontal disp. [mm] 6.000 6.000 6.000

In the second stage, the reliability of both the single structural frame element and the entire
dome was verified. The results from this stage are listed in Table 6. The analysis was carried
out for several different values of the structure loading. The load values for which the reliability
index was calculated were determined in the incremental nonlinear static analysis (Riks) process.
It was observed that the highest reliability index value in both cases was obtained for a load of
8.095 kN. The lowest recorded value of the reliability index in the case of Analysis 1 was 1.396
for the load P = 10.57 kN. With respect to the reliability analysis of the entire structure, it was
observed that the lowest value of the reliability index was recorded for the same load value as
in the case of Analysis 1, and was β = 0.457. This value is only about 32.7% of the value from
Analysis 1.
The results obtained can be directly compared with the values adopted in PN-EN 1990 stan-

dard. In accordance with the above standard, in the case of verification of the ultimate limit
states for the most popular RC2 design situation, the value of the reliability index is β = 3.8.
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When the serviceability limit states are verified, this value is β = 1.5 (PN-EN 1990). In this
study, the reliability analysis for the ultimate limit states was presented in Analysis 1, i.e. the
analysis of the reliability of the most stressed bar in the structure. The data in Table 6 indi-
cate the standard value of the reliability index was not exceeded for the structure load below
P = 8.762 kN. The dashed line in Fig. 5 indicates the value of the load multiplier (µ = 0.892)
for which the reliability index β = 3.8.

Fig. 5. Load displacement path (ultimate limit state, RC2, β = 3.8)

Fig. 6. Load displacement path (serviceability limit state, RC2, β = 1.5)

Analysis 2, the analysis of the reliability of the entire structure, represents a situation in which
the obtained values of the reliability index can be compared with the value of the reliability index
adopted in the Eurocode for serviceability limit states (RC2 situation). Table 6 shows that the
exceedance of the limit value β = 1.5 occurs when the displacement is greater than 3.767 cm.
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That happens at the moment when the load is equal to P = 9.392 kN. The dashed line in Fig. 6
indicates the value of the load multiplier (µ = 0.961) for which the reliability index β = 1.5.
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