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In this article, we present a proposition of a model of the compressive behaviour of open-
-cell aluminium with relation to the material apparent density. The research was based on
experimental data from uniaxial compression tests conducted for two sample lots. These
results were analysed with the use of neural networks in a specially designed algorithm.
The main criterion for choosing a satisfactory approximation was mean absolute relative
error MARE< 5%. As a result of the analysis, the sought relation was extracted and is
presented as a proposition of a new ANN model of the compressive stress-strain relationship
for aluminium sponge.
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1. Introduction

Cellular and porous metals are a well-known group of smart materials which play role in a wide
variety of applications from medicine, through civil engineering, electronics, automotive and
space industry to even battle fields, e.g. (Garćıa-Moreno, 2016; Kränzlin and Niederberger, 2015).
Specific applications are of course dependent on individual properties which are a consequence
of the skeletal material and special porous morphology. In turn, the individual characteristic
porous structure is a derivative of the production method. Now, against this quite broadly
outlined background, it is time to introduce in more detail the material chosen for the presented
study and the authors’ approach to contribute to scientific discussion regarding it. The article
reports a part of a wider research of an open-cell metal sponge with an aluminium skeleton. The
material was self-produced by investment casting. The overall study comprises various aspects,
but here we focus on compressive behaviour and its description.

Usually, the starting point in a discussion of compressive behaviour of an open-cellular metal
is the following general formula (Gibson and Ashby, 1988) which binds some characteristic,
interesting for a designer, parameter with the sponge relative density ρ/ρs

cellular material property

skeleton property
= C
( ρ

ρs

)n

(1.1)

where C and n are to be determined experimentally. However, only few values, e.g. plastic
collapse strength σpl.c or boundary between plastic collapse and densification σ

∗, can be predicted
based on the formulae from (Gibson and Ashby, 1988). The usage of the referred approach might
be limited due to the necessity of knowledge of experimentally derived constants, as well as the



386 M. Dudzik, A.M. Stręk

knowledge of skeleton characteristics such as the yield point, modulus, density, which are also
included in the formulae.
In this study, the authors employ a modern computational method, namely artificial in-

telligence, for the purpose of finding a mathematical formula for description of compressive
behaviour of the open-cell aluminium. The resulting approximation is supposed to free the de-
signer from the necessity of calibration of experimental constants, as well as the knowledge of
skeleton characteristics, and provide the possibility of finding the whole range of stresses instead
just single values. The idea of making use of artificial intelligence was first encouraged by the
fact that neural networks were reported useful in mechanics of materials (e.g., Potrzeszcz-Sut
and Pabisek, 2014; Sumelka and Łodygowski, 2013). The possibility of using neural networks
specifically for the studied problem was preliminary positively verified by the authors in (Stręk
et al., 2019a).
The overall form of the sought relation was chosen so as to bind stress with strain and

apparent density

σ = f(ε, ρ) (1.2)

2. Material and uniaxial compression experiments

This Section will be limited only to necessary information, all details can be found in separate
publications (Stręk et al., 2019b; Kasza et al., 2016). The studied material was an open-cellular
aluminium sponge, two sample lots were investigated: the prototype lot P (with minor structural
imperfections like swellings of struts, small number of semi-closed cells, mould residuals sunk
inside) and the regular lot R without visible structural flaws. The material had PPI=5.4-6.2
in both groups. Apparent density varied over the specimens: ρ = 0.32-0.36 g/cm3 in P and
ρ = 0.36-0.56 g/cm3 in R. Compression experiments were uniaxial, quasistatic and were conduc-
ted at room temperature using Zwick 1455 20 kN machine with programme TestExpert II. The
obtained results are depicted together with the modelling in Fig. 2.

3. The neural network used for modelling

3.1. Data for the network

The results from compression experiments as well as specimens apparent densities and the
auxiliary parameter-indicator of the lot were used as data for training the neural network. For
each sample, 1 000 experimental values of strain (expressed as a decimal number, not %) and
respective stress (expressed in MPa) were taken. Stresses and strains were defined according to
(ISO 13314:2011):

σ – stress which is the compressive force divided by the initial cross-section area perpendi-
cular to the loading direction,

ε – strain which is the overall compressive displacement divided by the initial height of the
test specimen.

The additional parameters – lot indicators lP and lR – assumed value 1 if the sample belonged to
the given group and 0 in the opposite case. Arguments entering the neural network were arranged
into vectors Ai = [εi, ρi, lP.i, lR.i]

T, and the corresponding stress from the i-th experimental data
set was assumed as the respective target ti = σi. The specific relation sought by the network
had then the following general form (augmented with respect to assumed general relation (1.2))

σ = f([ε, ρ, lP , lR]
T) (3.1)
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The data was normalised. Calculations were performed in the Matlab environment, so the inbuilt
function “mapminmax” was utilised for this purpose (Demuth et al., 2009). It is equivalent to

V ′ =
V − Vmin
Vmax − Vmin

(V ′max − V
′
min) + V

′
min (3.2)

where: V ′ is the new value, V – original value, Vmax, Vmin – original interval limits, V
′
max, V

′
min

– new limits, here: −1 and 1. The vectors Ai were normalised before entering the network, and
the network outputs were post-processed by a reverse relation after computations.

3.2. The network architecture and learning parameters

The neural network structure type and transfer functions were chosen in accordance with
the recommendations for a nonlinear function approximation from the literature (Hagan et
al., 2014). Also, a preliminary work of the authors (Stręk et al., 2019a) confirmed this choice
and additionally helped in the assumption of learning parameters. The number of neurons in the
hidden layer was determined in a specially devoted research (Dudzik, 2019) to fulfil the expected
accuracy.

The artificial neural network was assumed as a feedforeward network with one hidden layer
with 7 neurons and one output layer with 1 neuron. In the hidden layer, the activation function
was hyperbolic tangent sigmoid-tansig. In the output layer, the transfer function was linear-
-purelin. The learning process included three stages: training, validation and test. Experimental
data was uniformly distributed between the stages in the respective proportions: 60%, 20%
and 20%. The training algorithm was Levenberg-Marquardt (Madsen et al., 2004) with the
mean square error as a performance function with its goal set as 0. The minimum performance
gradient was 10−10, maximum validation failures were set as 12. The learning rate was assumed
as 0.01, momentum as 0.9 and the maximum number of epochs to train – 100 000.

3.3. Performance of the network

The presented network approximated the experimental results with a good engineering ac-
curacy – the mean absolute relative error MARE = 4.8%. Figure 1 shows the outputs from
the network plotted against targets, i.e. approximate stresses vs. experimental stresses. A linear
regression between them was performed – the obtained fits are depicted left to each of the graphs
and the Pearson coefficients are above them. Figure 2 depicts the experimental data and the
network approximation of stresses with regard to strain and density. Additionally, the values of
errors are also visible in light blue.

Fig. 1. A linear fit between network outputs and targets for all learning stages separately
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Fig. 2. Experimental and approximated data with respect to strain and apparent density

4. Results – equation for the stress-strain relation

The following general relation approximating assumed Eq. (3.1) was obtained

σ = mapminmax−1
{

f
{1}
activ[W

{1}
·

(

f
{2}
activ(a)

)

+B{1}]
}

(4.1)

According to the assumptions and results of the present research, the first activation function

f
{1}
activ and bias B

{1} are in this case equal to

B{1} = 72.060 f
{1}
activ(x) = 1 · x (4.2)

Now, Eq. (4.1) can be expressed in the following, ready-for-use form

σ = mapminmax−1
(

W{1} ·
(

f
{2}
activ(a)

)

+ 72.060
)

(4.3)

where

W{1} = [0.584, 73.278,−0.701,−72.587, 0.085, 138.775,−60.245]

f
{2}
activ(a) =

e2a − 1

e2a + 1
(4.4)a = a([ε, ρ, lP , lR]

T) =W{2} ·mapminmax([ε, ρ, lP , lR]
T) +B{2}

W{2} =
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Also, two functions should be understood as follows:

• mapminmax – Matlab inbuilt normalisation function “mapminmax”, equivalent to Eq.
(3.2)

• mapminmax−1 – Matlab inbuilt denormalisation, equivalent to the reverse of Eq. (3.2).
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The above formula, Eqs. (4.1) and (4.2), can be used to generate data in the domain ranges
defined in Table 1. The density interval ρ = 0.36-0.405 is a transition between the ranges of
samples P and R and, due to this fact, it is problematic for the model. Also, it should be
noted that the largest values of absolute relative errors from the network were obtained for the
beginnings of the approximated experimental curves (up to ε ≈ 0.025 for R and ε ≈ 0.0375
for P ). This should be kept in mind when using the here proposed model, and the initial
range of strains should be preferably modelled in an augmented way. A proposition of such an
improvement is currently elaborated by the authors (Dudzik and Stręk, 2020).

Table 1. Domain ranges for the equation modelling the compression of an open-cell aluminium

Apparent density ρ [g/cm3] Strain ε Lot indicators

0.32-0.36 up to 0.8 lP = 0 and lR = 1

0.405-0.515 up to 0.65 lP = 1 and lR = 0

0.52-0.56 up to 0.58 lP = 1 and lR = 0

5. Conclusions

Thanks to the approach using neural networks, the authors obtained an analytical function which
allows one to determine single curves for chosen densities or a surface for a range of densities
to model the compressive behaviour of an open-cell aluminium with PPI ≈ 5.8. The model was
generated based on experimental data for prototype and regular samples. For these data, the
mean absolute relative error assured good engineering precision < 5%. Further development of
the research is going to comprise the improvement of approximation for the initial strain interval.
Also, investigation of materials with other structures or skeletal materials would be valuable.
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