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This communication presents the effect of thickness on the frequency ratio of nanobeams and
nanoplates using Eringen’s nonlocal theory. Although there exist numerous works regarding
the effects of thickness and small scale on the frequency ratio of nanobeams and nanoplates,
none has captured and reported the true effects. The main intention of this communication
is to correct the misunderstanding regarding this issue. It was found that the frequency
ratio is indeed dependent on the thickness to length ratio and its variation with respect to
thickness to length ratio is highly dependent on the mode number, combination of boundary
conditions, plate aspect ratio, and the nonlocal parameter.
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1. Introduction

Structures such as plates, beams, rods, shells and membranes are widely used in the engineering
science at different scales (macro, micro and nano) (Bahrami et al., 2015; Bahrami and Teimo-
urian, 2015a, 2017b; Sarayi et al., 2018; Zargaripoor and Bahrami, 2018). With the advent of
nanotechnology, these structures are started to be used in micro/nanoelectromechanical systems
(MEMS/NEMS), such in the form of electrically actuated MEMS devices (Zhang and Fu, 2012),
atomic force microscopes (AFMs) (Kahrobaiyan et al., 2010), and etc.

Recently, several non-classical theories such as couple stress theory (Mindlin and Tiersten,
1962), modified couple stress theory (Yang et al., 2002), strain gradient theory (Mindlin, 1964),
nonlocal elasticity theory (Eringen, 1972), and nonlocal strain gradient theory (Lim et al., 2015)
try to capture the size effect in the structures. The scientific literature includes many papers
based on different non-classical theories on the mechanical analysis of micro- and nano-sized
structures such as micro/nanorod (Bahrami, 2017b), micro/nanobeam (Bahrami and Teimo-
urian, 2015b, 2016; Dehrouyeh-Semnani and Bahrami, 2016; Arefi and Zenkour, 2017c; Bahrami,
2017a), and micro/nanoplates (Arefi and Zenkour, 2016, 2017a, 2017b; Ilkhani et al., 2016; Arefi
et al., 2018; Bahrami and Teimourian, 2017a; Zenkour and Arefi, 2017).

While there are many papers in the literature regarding the effects of thickness and small
scale on the frequency ratio of nanobeams and nanoplates using Eringen’s nonlocal theory,
unfortunately, most papers presented the thickness effect on the frequency ratio for fully simply
supported cases due to simplicity of the calculation in this case (Aghababaei and Reddy, 2009;
Aydogdu, 2009; Bahrami and Teimourian, 2016; Daneshmehr et al., 2015; Eltaher et al., 2012;
Natarajan et al., 2012; Rahmani and Pedram, 2014; Reddy, 2007; Thai, 2012). As a result, the
true effect of the thickness to length ratio on the frequency ratio of nanobeams and nanoplates
was not captured and reported at all. As an attempt to demonstrate the effect for other com-
binations of boundary conditions, Hosseini-Hashemi et al. (2013) presented an exact solution
to free vibration of Mindlin rectangular nanoplates using nonlocal first-order shear deformation
plate theory. The authors claimed that for fixed values of the plate aspect ratio and the nonlocal
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parameter, the frequency ratio of a specific mode and a determined boundary condition remains
unchanged throughout variations of the thickness to length ratio as shown in their Fig. 8 and
stated clearly in page 298 and in the conclusion. Although the same reported frequency values
can be obtained exactly according to the paper, the authors made a mistake in reporting this
behavior. In another publication by Hosseini-Hashemi et al. (2015), the authors presented an
exact solution to the buckling and free vibration of rectangular nanoplates using Reddy’s non-
local third-order shear deformation plate theory. Although the same reported frequency values
can be obtained exactly according to the paper by Hosseini-Hashemi et al. (2015), the authors
reported the same untrue behavior again. They concluded again that for fixed values of the
aspect ratio and the nonlocal parameter, the frequency ratio of a specific mode and a deter-
mined boundary condition remains unchanged throughout variations of the thickness to length
ratio as shown in their Fig. 4 and Table 10. To the best of the authors’ knowledge, there is no
literature presenting the true effect of the thickness to length ratio on the frequency ratio of
nanobeams and nanoplates. As a result, the intention of this communication is to present the
true effect of the thickness to length ratio on the frequency ratio of nanobeams and nanoplates
and finally correct the misunderstanding among researchers once and for all.

2. Nonlocal elasticity theory

Among the non-classical theories, the nonlocal elasticity theory introduced by Eringen (1972) is
one of the most popular non-classical continuum theories in which the effects of small scales are
considered in the characteristic equations of this theory. In the classical theories of continuum
mechanics, the stress in a point is related only to the strain in that specific point; however, in
the nonlocal elasticity theory, the stress is also dependent on the strains at all points in the
domain. In nonlocal elasticity theory, constitutive equations incorporate the effects of atomic
forces and small scale as material parameters (Eringen, 2002). The differential form of the
nonlocal constitutive equation has been developed by Eringen (2002) as follows

[1− (e0a)2∇2]σ = C : ε (2.1)

where σ and ε are the stress and strain tensors, C is the fourth order elastic modulus
tensor,∇2 indicates the Laplacian operator, a indicates the internal length scale and e0 is a
physical parameter that has been identified by experimental results. The value of the parame-
ter a depends on the lattice parameter, granular size and C-C bonds, and the material constant.
The parameter µ = (e0a)

2 is named the nonlocal parameter. Comparison of the continuum mo-
deling results with those of atomistic ones determines the value of this parameter in any type of
analysis.

2.1. Mathematical formulation of the nanoplate

Consider a thick rectangular nanoplate of length a, width b, and uniform thickness h as
shown in Fig. 1, oriented so that its undeformed middle surface contains the x1 and x2 axis of
a cartesian coordinate system (x1, x2, x3), as shown in Fig. 1.

The displacements along the x1 and x2 axes are denoted by U1 and U2, respectively, while
the displacement in the direction perpendicular to the undeformed middle surface is denoted
by U3. In the Mindlin plate theory, the displacement components are given as

U1(x1, x2, x3, t) = u1(x1, x2, t) + x3φ1(x1, x2, t)

U2(x1, x2, x3, t) = u2(x1, x2, t) + x3φ2(x1, x2, t)

U3(x1, x2, x3, t) = u3(x1, x2, t)

(2.2)
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Fig. 1. A rectangular plate with coordinate convention

where t is time, u1 and u2 are inplane displacements of points on the mid-plane (i.e. x3 = 0), u3 is
the transverse displacement and φi (i = 1, 2) are slopes due to bending alone in the respective
planes. The equations of motions of the Mindlin plate theory in the nonlocal continuum model
for in-plane and out-of-plate displacements are uncoupled (Hosseini-Hashemi et al., 2013), so,
for simplicity, we consider the equation of motion for flexural vibration. The non-dimensional
form of equations of motion of the Mindlin plate theory in the nonlocal continuum model can
be written as follows (Hosseini-Hashemi et al., 2013)

(12kν1 − ζ2β2δ2)∇̃2ũ3 + β2δ2ũ3 + 12kν1(φ̃1,1 + φ̃2,2) = 0
(
ν1 −
ζ2β2δ2

12

)
∇̃2φ̃1 +

(β2δ2

12
− 12kν1
δ2

)
φ̃1 + (1− ν1)(φ̃1,11 + φ̃2,21)−

12kν1
δ2
ũ3,1 = 0

(
ν1 −
ζ2β2δ2

12

)
∇̃2φ̃2 +

(β2δ2

12
− 12kν1
δ2

)
φ̃2 + (1− ν1)(φ̃1,12 + φ̃2,22)−

12kν1
δ2
ũ3,2 = 0

(2.3)

in which the non-dimensional Laplacian operator is defined as ∇̃2 = ∂2

∂X2
1

+ ∂2

∂X2
2

and the non-

-dimensional terms are considered as follows

Xi =
xi
a

δ =
h

a
η =
b

a
φ̃i = φi i = 1, 2

ũ3 =
u3
a

ζ =

√
µ

a
∇̃2 = a2∇2 β = ωa2

√
ρh

D

(2.4)

In these equations, ζ and β are non-dimensional nonlocal and frequency parameters, respectively,
µ is the nonlocal parameter, ν is Poisson’s ratio and ν1 = (1−ν)/2. The shear correction factor k
was introduced to consider that for the transverse shear strains, D = Eh3/[12(1 − ν2)] is the
flexural rigidity.
The detailed solution of Eqs. (2.3) can be found in Hosseini-Hashemi et al. (2013). It is

also possible to obtain a non-dimensional form of equations of motion based on the third-order
shear deformation plate theory in the nonlocal continuum model. The detailed derivation and the
solution can be found in Hosseini-Hashemi et al. (2015) in order to calculate the non-dimensional
frequency parameter β. The frequency ratio (FR) of the nanoplate is defined as the ratio of the
nonlocal frequency parameter to the local frequency parameter as

(FR) =
βe0a
βe0a=0

(2.5)

2.2. Mathematical formulation of the nanobeam

The displacement fields of the elementary Timoshenko beams can be considered as

u = zφ(x, t) w = w(x, t) (2.6)
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where (u,w) are the axial and transverse displacements of the point (x, 0) on the mid-plane (i.e.,
z = 0), z is the coordinate measured from the mid-plane in the height direction of the beam
and φ denotes rotation of the cross-section. The below governing nonlocal equation of a nonlocal
Timoshenko beam can be obtained, see Bahrami and Teimourian (2016)

GAks
(∂φ
∂x
+
∂2w

∂x2

)
= ρA

(∂2w
∂t2
− (e0a)2

∂4w

∂x2∂t2

)

EI
∂2φ

∂x2
−GAks

(
φ+
∂w

∂x

)
= ρI

(∂2φ
∂t2
− (e0a)2

∂4φ

∂x2∂t2

) (2.7)

in which A is the cross-sectional area of the beam, I is the moment of inertia of the beam, ρ is
mass density of the beam material, E is the Young modulus elasticity, G is the shear modulus,
and ks is the shear correction in the Timoshenko beam theory. The detailed solution of Eqs.
(2.7) can be found in Bahrami and Teimourian (2016) in order to calculate the non-dimensional
frequency parameter β = ωL2

√
ρA/(EI) in which L is length of the nanobeam. The frequency

ratio (FR) of the nanobeam is defined as the ratio of the nonlocal frequency parameter to the
local frequency parameter as

(FR) =
βe0a
βe0a=0

(2.8)

3. Results and discussion

3.1. Nanoplate results

In this Section, the effect of the thickness to length ratio δ on the frequency ratio (FR) of
nanoplates is presented in detail. Table 1 presents the frequency ratio (FR) (nonlocal frequ-
ency/local frequency) for different modes (m,n), nonlocal parameters and thickness to length
ratios using the nonlocal first-order shear deformation plate theory by Hosseini-Hashemi et al.
(2013) in the case of SCSC boundary condition, and for η = b/a = 0.5 as shown in their Fig. 8
(Hosseini-Hashemi et al., 2013). It is seen form Table 1 that the frequency ratio increases with
an increase in the thickness to the length ratio for a fixed value of the nonlocal parameter. As
the nonlocal parameter ζ increases, the difference in the frequency ratio increases and it reaches
about 9% in the case of ζ = 0.6 which contradicts with their statement, and it should have been
visible in their Fig. 8 as shown in our Fig. 2. This behavior has not been reported before by the
nonlocal first-order shear deformation theory. Note that the frequency ratio difference increases
as the mode number increases as presented in Table 1.

In order to verify such behavior, the calculation has been repeated again using a higher order
theory, namely Reddy’s nonlocal third-order shear deformation plate theory (Hosseini-Hashemi
et al., 2015).

Table 2 presents the fundamental frequency ratio (FR) for different nonlocal parameters and
thickness to length ratios using Reddy’s nonlocal third-order shear deformation plate theory by
Hosseini-Hashemi et al. (2015) in the case of SCSC boundary condition for three different aspect
ratios a/b = 0.5, 1, 2 as shown in their Fig. 4 and Table 10 (Hosseini-Hashemi et al., 2015).
It is seen from Table 2 that the frequency ratio increases with an increase in the thickness to
length ratio for a fixed value of the nonlocal parameter. As the nonlocal parameter ζ =

√
µ/a

increases, the difference in the fundamental frequency ratio increases and it reaches about 5% in
the case of ζ = 0.6, a/b = 0.5. This behavior has not been reported before by third-order shear
deformation theories. It can be observed from their Table 10 by Hosseini-Hashemi et al. (2015)
that their reported values of the frequency ratios remain unchanged throughout variations of
thickness to length for all the mentioned boundary conditions. Such behavior is not correct
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Fig. 2. Variations of the frequency ratio with the thickness to length ratio for SCSC (η = 0.5,
m = 1, n = 2)

Table 1. Variations of the non-dimensional frequency β and the frequency ratio (FR) for dif-
ferent modes, nonlocal parameters and thickness to length ratios in the case of SCSC bounda-
ry condition, η = 0.5 using the nonlocal first-order shear deformation plate theory (Hosseini-
-Hashemi et al., 2013)

ζ
δ = h/a 0 0.2 0.4 0.6

(m = 1, n = 1)

0.01 94.9657 (1) 51.6164 (0.5435) 29.1845 (0.3073) 19.9751 (0.2103)

0.2 52.1283 (1) 29.5130 (0.5662) 16.8392 (0.3230) 11.5435 (0.2214)

Diff(FR)% 0 4.2 5.1 5.3

(m = 1, n = 2)

0.01 252.3968 (1) 84.7129 (0.3356) 44.2219 (0.1752) 29.7293 (0.1178)

0.2 102.7371 (1) 37.1430 (0.3615) 19.5190 (0.1900) 13.1390 (0.1279)

Diff(FR)% 0 7.7 8.4 8.6

at all. Note that our reported calculation and conclusion can also be checked and verified by
using their reported frequency values from their Table 10 (Hosseini-Hashemi et al., 2015) and
recalculating the frequency ratios for all the mentioned boundary conditions.

Table 3 presents the fundamental frequency ratio (FR) for different nonlocal parameters and
thickness to length ratios using Reddy’s nonlocal third-order shear deformation plate theory by
Hosseini-Hashemi et al. (2015) in the case of SSSS boundary condition for three different aspect
ratios a/b = 0.5, 1, 2. It is seen from Table 3 that the frequency ratio increases with an increase
in the thickness to length ratio for a fixed value of the nonlocal parameter. As the nonlocal
parameter ζ =

√
µ/a increases, the difference in the fundamental frequency ratio increases and

it reaches about 0.7% in the case of ζ = 0.6, a/b = 0.5, which is very small and can be neglected
for the considered parameters.
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Table 2. Variations of the fundamental frequency β and frequency ratio (FR) for different
aspect ratios, nonlocal parameters and thickness to length ratios in the case of SCSC boundary
condition using the nonlocal third-order shear deformation plate theory (Hosseini-Hashemi et
al., 2015)

ζ =
√
µ/a

h/a 0 0.2 0.4 0.6
a/b = 0.5

0.05 88.5692 (1.0000) 48.3921 (0.5464) 27.3718 (0.3090) 18.7341 (0.2115)

0.1 75.2832 (1.0000) 41.6212 (0.5529) 23.5827 (0.3133) 16.1444 (0.2144)

0.2 53.1087 (1.0000) 30.1629 (0.5679) 17.1903 (0.3237) 11.7824 (0.2219)

Diff(FR)% 0.0 3.9 4.7 4.9

a/b = 1

0.05 28.3174 (1.0000) 20.6724 (0.7300) 13.3181 (0.4703) 9.4734 (0.3345)

0.1 26.7084 (1.0000) 19.5537 (0.7321) 12.6161 (0.4724) 8.9777 (0.3361)

0.2 22.5355 (1.0000) 16.6210 (0.7375) 10.7703 (0.4779) 7.6740 (0.3405)

Diff(FR)% 0.0 1.0 1.6 1.8

a/b = 2

0.05 13.5772 (1.0000) 11.0475 (0.8137) 7.7813 (0.5731) 5.7357 (0.4224)

0.1 13.2747 (1.0000) 10.8073 (0.8141) 7.6159 (0.5737) 5.6149 (0.4230)

0.2 12.2939 (1.0000) 10.0250 (0.8154) 7.0754 (0.5755) 5.2198 (0.4246)

Diff(FR)% 0.0 0.2 0.4 0.5

Table 3. Variations of the fundamental frequency β and frequency ratio (FR) for different
aspect ratios, nonlocal parameters and thickness to length ratios in the case of SSSS boundary
condition using the nonlocal third-order shear deformation plate theory (Hosseini-Hashemi et
al., 2015)

ζ =
√
µ/a

h/a 0 0.2 0.4 0.6
a/b = 0.5

0.05 48.2699 (1.0000) 27.9996 (0.5801) 16.1910 (0.3354) 11.1480 (0.2310)

0.1 45.4869 (1.0000) 26.4101 (0.5806) 15.2767 (0.3358) 10.5194 (0.2313)

0.2 38.1883 (1.0000) 22.2526 (0.5827) 12.8876 (0.3375) 8.8772 (0.2325)

Diff(FR)% 0.0 0.4 0.6 0.65

a/b = 1

0.05 19.5625 (1.0000) 14.6247 (0.7476) 9.5947 (0.4905) 6.8721 (0.3513)

0.1 19.0653 (1.0000) 14.2566 (0.7478) 9.3550 (0.4907) 6.7009 (0.3515)

0.2 17.4523 (1.0000) 13.0634 (0.7485) 8.5780 (0.4915) 6.1460 (0.3522)

Diff(FR)% 0.0 0.12 0.20 0.25

a/b = 2

0.05 12.2675 (1.0000) 10.0386 (0.8183) 7.1142 (0.5799) 5.2595 (0.4287)

0.1 12.0675 (1.0000) 9.8761 (0.8184) 6.9999 (0.5801) 5.1753 (0.4289)

0.2 11.3717 (1.0000) 9.3111 (0.8188) 6.6025 (0.5806) 4.8826 (0.4294)

Diff(FR)% 0.0 0.06 0.12 0.16
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It can be deduced from Tables 1-3 that the frequency ratio is indeed dependent on the
thickness to length ratio. It is also observed from Tables 2 and 3 that the frequency ratio
difference is medium for the plate aspect ratio of a/b = 1 while the difference is sever and
significant up to 5% for the lower aspect ratio a/b = 0.5. It is also noticeable that the frequency
ratio difference is also dependent on the combination of the boundary conditions by comparing
Tables 2 and 3. The observed difference is significant for SCSC boundary condition as presented
in Table 2 while the thickness to length ratio has the least effect on the frequency ratio for SSSS
boundary condition as presented in Table 3.

3.2. Nanobeam results

In order to detect whether the mentioned conclusions about nanoplates are valid or not
for other nanostructures, the process was repeated for nanobeams using the nonlocal first order
shear deformation, namely the Timoshenko beam theory (Bahrami and Teimourian, 2016; Reddy,
2007).

Tables 4 and 5 present the frequency ratio (FR) for different modes, nonlocal parameters,
and thickness to length ratios using the nonlocal first-order shear deformation theory, namely the
Timoshenko beam theory by Reddy (2007) in the cases of CC and SS nanobeams, respectively.
The same mentioned conclusions about nanoplates can also be detected via Tables 4 and 5 for
the nanobeams as follows:

• The frequency ratio increases with an increase in the thickness to length ratio.
• As the nonlocal parameter increases, the percentage difference in the frequency ratio in-
creases.

• The frequency ratio difference increases as the mode number increases.
• The effect of thickness to length ratio on the frequency ratio is significant for clamped-
clamped (CC) nanobeams while it has the least effect for simply supported (SS) nano-
beams.

Table 4. Variations of the non-dimensional frequency
√
β and the frequency ratio (FR) for

different modes, nonlocal parameters and thickness to length ratios in the case of CC nanobeam
using the nonlocal first-order shear deformation theory, namely the Timoshenko beam theory
(Bahrami and Teimourian, 2016; Reddy, 2007), L = 10 nm, E = 5.5TPa, ν = 0.19, ks = 0.563

ζ =
√
µ/L

δ = h/a 0 0.2 0.4 0.6
Mode 1

0.01 4.7279 (1.0000) 4.2748 (0.9041) 3.5908 (0.7594) 3.0824 (0.6519)

0.1 4.5348 (1.0000) 4.1097 (0.9062) 3.4566 (0.7622) 2.9675 (0.6543)

0.2 4.1254 (1.0000) 3.7559 (0.9104) 3.1711 (0.7686) 2.7249 (0.6605)

0.3 3.7150 (1.0000) 3.3950 (0.9138) 2.8792 (0.7750) 2.4784 (0.6671)

Diff(FR)% 0.0 1.1 2.0 2.3

Mode 2

0.01 7.8449 (1.0000) 6.0294 (0.7685) 4.5934 (0.5855) 3.8129 (0.4860)

0.1 7.1985 (1.0000) 5.5728 (0.7741) 4.2523 (0.5907) 3.5307 (0.4904)

0.2 6.1616 (1.0000) 4.8236 (0.7828) 3.6959 (0.5998) 3.0716 (0.4985)

0.3 5.3496 (1.0000) 4.2180 (0.7884) 3.2437 (0.6063) 2.6987 (0.5044)

Diff(FR)% 0.0 2.6 3.5 3.8
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Table 5. Variations of the non-dimensional frequency
√
β and the frequency ratio (FR) for

different modes, nonlocal parameters and thickness to length ratios in the case of SS nanobeam
using the nonlocal first-order shear deformation theory, namely the Timoshenko beam theory
(Bahrami and Teimourian, 2016; Reddy, 2007), L = 10 nm, E = 5.5TPa, ν = 0.19, ks = 0.563

ζ =
√
µ/L

δ = h/a 0 0.2 0.4 0.6
Mode 1

0.01 3.1413 (1.0000) 2.8905 (0.9201) 2.4788 (0.7891) 2.1504 (0.6845)

0.1 3.1089 (1.0000) 2.8608 (0.9201) 2.4532 (0.7891) 2.1283 (0.6845)

0.2 3.0219 (1.0000) 2.7807 (0.9201) 2.3846 (0.7891) 2.0688 (0.6845)

0.3 2.9038 (1.0000) 2.6720 (0.9201) 2.2914 (0.7891) 1.9879 (0.6845)

Diff(FR)% 0.00 0.00 0.00 0.00

Mode 2

0.01 6.2805 (1.0000) 4.9559 (0.7890) 3.8187 (0.6080) 3.1801 (0.5063)

0.1 6.0439 (1.0000) 4.7692 (0.7890) 3.6748n(0.6080) 3.0603 (0.5063)

0.2 5.5494 (1.0000) 4.3790 (0.7890) 3.3742 (0.6080) 2.8100 (0.5063)

0.3 5.0518 (1.0000) 3.9864 (0.7890) 3.0717 (0.6080) 2.5580 (0.5063)

Diff(FR)% 0.00 0.00 0.00 0.00

4. Conclusion

The main intention of this communication is to correct the misunderstanding among researchers
regarding the true effect of the thickness to length ratio on the frequency ratio of nanobeams
and nanoplates using Eringen’s nonlocal theory. It was found that the frequency ratio is indeed
dependent on the thickness to length ratio, and its variation with respect to the thickness to
length ratio is highly dependent on four parameters, namely: 1) the mode number, 2) combina-
tion of boundary conditions, 3) plate aspect ratio, and 4) the nonlocal parameter. The following
conclusions were drawn as follows:

• The frequency ratio increases with an increase in the thickness to length ratio, and the
percentage difference in the frequency ratio is more significant for a higher nonlocal para-
meter.

• The frequency ratio decreases with an increase in the nonlocal parameter.
• The frequency ratio difference increases as the mode number increases.
• The frequency ratio difference is more significant for a lower aspect ratio of the nanoplate.
• The observed frequency ratio difference is significant for clamped-clamped (CC) nano-
beams while it is almost negligible for simply supported (SS) nanobeams.

• The observed frequency ratio difference is significant for a (SCSC) nanoplate while it is
almost negligible for fully the simply supported (SSSS) nanoplate.

• The effect of the thickness to length ratio on the frequency ratio is more significant for
nanoplates in comparison to nanobeams.

The authors hope that this communication corrects the misunderstanding regarding this issue.
The authors also hope that this communication can motivate other researchers to investigate
similar problems with other nonlocal theories in the future.
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