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The lumped parameter method is adopted to establish a dynamic model of two stage planets
and multistage fixed-shaft gears in which the effect of coupling shaft section radius on the
system in a continuous miner is considered. The acceleration test of the system proves the
accuracy of the proposed model. With the increase of cross section size of the coupled shaft,
the influence of the first stage meshing frequency on the second stage planetary system
is enhanced. The acceleration decreases gradually with the increase of the size of coupled
carrier. It is shown that the modeling by considering the coupled size contributes to reduction
of the vibration level.
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1. Nomenclature

The subscripts ¢, r, s, p represent planet carrier, ring gear, sun gear and planet gear, respectively.
1 = 1,2 denotes the number of stages of the planetary gears subsystem, n = 1, 2, 3,4 is the index
of planet gear.

gm (m=1,2,...,8) — gear in multistage fixed-shaft subsystem,

Ospnis Orpni — relative displacement between sun (ring) and n-th planet along mesh line,

Opnci» Opnyi — relative displacement between carrier and n-th planet in direction of ¢ and 7,

Ojks Vjks kji, cji. — relative displacement of gear pairs along mesh line, angle between y-axis and
mesh line, mesh stiffness and damping for gear j and gear k in fixed-shaft gears subsystem,
respectively, where (j,k) = (1,2), (2,3), (4,5), (5,6), (6,7), (7,8),

mj,I;,r; — mass, moment of inertia and base radius of gear j (j =1,2,...,8), respectively,

i — n-th planet position angle,

Qusi, iy — pressure angles of sun and ring gear,

dez125 0ey12, Oew12 — relative displacement of the coupling element between two stage planets in
corresponding directions,

Omnzs Omnys Omnu — relative displacement of coupling element between first planets stage and low
speed spur gears stage in corresponding directions,

034z, 034y, 0344 — Trelative displacement of coupling element between low speed spur gears stage
and high speed spur gears stage in corresponding directions,
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Te,Tmn, T34 — connecting shafts radius of two-stage planets, first planets stage and low speed
spur gears stage, low speed spur gears stage and high speed spur gears stage, respectively,

Megi, Mri, Mei, Mpni — Mass of sun, ring, carrier and planet, respectively,

Igi 1,1, Ipn; — moment of inertia of sun, ring, carrier and planet, respectively,
TsiyTriy Teis Tpns — base radius of sun, ring, carrier and planet, respectively,

Espniy Krpnis Cspnis Crpni — meshing stiffness and damping in planetary system,

Epncis Kpnnis Concis Conmi — support stiffness and damping of planet gears in ¢ and 7 directions,
respectively,

kszis ksyiy Cswir Csyi — support stiffness and damping of sun gear in x and y directions, respectively,
krzis kryis Crais Cryi — support stiffness and damping of ring gear in x and y directions, respectively,

Eewis Keyis Cexis Ceyi — support stiffness and damping of planet carrier in « and y directions, re-
spectively,

Kswis Krwis Kewis Csuis Cruiy, Ceui — torsional stiffness and damping in planetary system,

M, C, Ky, K,,(t) —mass matrix, damping matrix and support stiffness matrix and mesh stiffness
matrix in coupling system, respectively,

q, F(t) — displacement vector and load vector, respectively,

M,,1, M2, M;, M, — mass matrices of first planet stage, second planet stage, low speed spur
gears stage and high speed spur gears stage, respectively,

Kypi, Ky, Ky, — support stiffness matrices of planet stages, low speed spur gears stage and high
speed spur gears stage, respectively,

Kopi(t), K (t), Kpp(t) — time-varying meshing stiffness matrices for planet stages, low-speed
and high-speed spur gears stage, respectively,

K, 1p2, Kp11, Ky, — coupling stiffness matrices of two planetary stages, first-stage planetary and
low-speed spur gears stage, low-speed spur gears stage and high-speed spur gears stage,
respectively.

2. Introduction

The multistage gears system studied in this paper is formed by coupling of a two stages pla-
netary gears subsystem and a multistage fixed-shaft spur gears subsystem. As for research of
the planetary gears system, Lin and Parker (1999) and Eritenel and Parker (2009) proposed a
dynamic analysis model of the planetary system using a lumped parameter method, and ana-
lyzed the frequency property and vibration characteristics in the planetary system, which laid
a foundation for the future research of planetary gears. Karray et al. (2013), Hammami et al.
(2015a,b, 2016) developed a test device suitable for dynamic behavior research, and carried out
theoretical modeling and model verification by a back-to-back planetary gears system. The ef-
fects of load and speed on the dynamic behavior of the planetary gears were studied respectively.
Due to the change of mesh stiffness in the planetary gears set under different load conditions,
the internal excitation is changed in the system and the influence of variable load on the pla-
netary system is analyzed. At the same time, the dynamic behavior of the system is studied in
the process of speed change at the moment of starting and stopping. Liu et al. (2016), Bai et
al. (2018) and Yi et al. (2018) studied the interaction mechanism between the planetary gear
transmission system and motor, established the electromechanical dynamics model of the multi-
stage gear transmission system considering the electromagnetic induction characteristics of the
motor, analyzed and pointed out that the electromechanical coupling effect would aggravate the
vibration level of the system, and proposed the speed regulation and monitoring methods to
improve the electromechanical performance of the system. The coupled modeling approach of
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multistage planetary gears system was proposed by Wei et al. (2017) and Zhang et al. (2017).
The fully coupled dynamic modeling method combines the lumped parameter method with the
finite element method, which improves the modeling speed and accuracy. The analytical model
of the planetary gears system including wedge and bearing clearance was established by Guo
and Parker (2010, 2012). The relationship between the bearing force and tooth force of planet
gears was studied by analyzing the physical force and displacement acting on the whole plane-
tary gears. The prediction method of wedge was developed and validated based on geometric
interaction. Liu et al. (2014, 2017) proposed a analytical approach for dynamic behavior of the
planetary system in a variable speed process and high speed process with the centrifugal force
taken into account. The influence of tooth profile error excitation on vibration and the dynamic
meshing force was studied before and after gear separation, and corresponding suggestions were
put forward in terms of restraining system vibration and reducing the dynamic meshing force.
In the research of a fixed-shaft gear system, Kubur et al. (2004) developed an analytical model
of a multistage gear transmission system by shaft finite elements. The model also considers the
influence of bearing stiffness. The vibration modes of the gear set were predicted by eigenva-
lue solution and a modal summation technique. Chowdhury anf Yedavalli (2017, 2018) studied
the dynamic behavior of a fixed-shaft gear system mounted on rigid bearings at low and high
speeds, analyzed the sensitivity of natural frequencies to different gear parameters, obtaining
the response of the meshing process caused by a static transmission error. Ma et al. (2012, 2013)
developed a general gear meshing dynamics model with full degree of freedom, and analyzed
the effect of gear transmission error, unbalanced rotor mass, geometric eccentricity and their
coupling on the dynamic behavior of the system.

3. Dynamics modeling of a multistage gear system

The multistage gear system is composed of a multistage fixed shaft gear subsystem and a two-
-stage planetary gear subsystem. Figure 1 is a three-dimensional model of the coupled gear
system in the cutting section of a continuous miner. Figure 2 shows the kinematic scheme of the
coupled gear system.

Fig. 1. The multistage gear system in the cutting section of a continuous miner

Figure 3 is the translation-torsion coupling dynamic model of a multistage gear transmission
system. The system model is divided into a high speed spur gears stage, low speed spur gears
stage, first planets stage and the second planets stage. The spring damper system simulates
the supporting effect of the gear system in the x and y directions. The meshing action between
gear teeth is simulated by the spring and damper system in the direction of the meshing line.
Different subsystems are connected by the elastic shaft. The influence of coupling components
radius on the torsional moment is fully considered in the coupling system. Figure 4 shows the
position relationship of planetary gears in the two-stage planetary subsystem.
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Fig. 3. The coupling dynamic model of the multistage gear transmission system

The relative displacements of the system associated components are as follows (i = 1,2)

5spni =
= — Ty sin wrni =+ Yri COS wrni + Tlpni COS Qipj — Cpni sin Olpj + Upj — Upni
= T¢; COS wni + Yei sin wni - Cpni (31)

57"pni
5pn( i

5pnm' =

— L5 S wsni + Ysi cOS 77bsni — Tlpni COS Olgj — Cpni SIN Qg + Usj + Upni

—T; SIN Yy + Yei COS Vi + Ui — Npni

djr = (—xj + xp) sin vy + (y; — yr) cos i + uj + uyp
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Fig. 4. Position relationship of planetary gears in the two-stage planetary subsystem

The system is coupled by connecting shafts. Considering the influence of coupling shaft
radius, the relative displacements of the connecting parts between the stages are as follows

Te Te
Jex12 = Tel — T2 5ey12 = Yecl — Ys2 deul2 = Uel — — Uga——
Tel T's2
T'mn T'mn
Omne = Ts1 — Ts 6mny =UYs1 — Ys Omnu = Us1 — Us (3.2)
T's1 Ts
Sanr — Sas — San — T34 T34
34x = T3 — X4 34y — Y3 — Y4 3y = U3— — Uq4—
3 T4

Referring to the dynamic modeling method of a single-stage planetary system by Lin and
Parker (1999), considering the stiffness of coupling shaft in the x, y and u directions, a two-stage

planetary system equation of dynamics are established.
The differential equations of motion of the ring gear are (i = 1,2)

4 4
MyiZyi — E krpni(srpni s wrni - E Crpni(srpni s wrni + krmixri + CraiTri = 0
n=1

n=1
4 4
MeriYri + Z k:rpniérpm' COS WYypi + Z Crpniérpni COS Yyrni + kryiym' + Cryiyri =0 (33)
n=1 n=1
I 4 4
5 Upi — Z rpniOrpni — Z CrpniOrpni T Kruilly; + Cruilp; =
re.
i n=1 n=1

The differential equations of motion for the planet gear are (i = 1,2)

mpniCpni - kspni(sspni SN Qrgg — Cspni(sspni SN Qrgg — krpni(srpni S Qg

- Crpni(srpni S Qi — pn(i(spnﬁi - Cpn{i(spn@' =0
MpniTlpni — k:spm'éspni COS Ovgj — Cspm'éspni COS Ovgj — k:rpniérpm' COS Oy (3 4)

- kpmyiépnm' - Cpmyiépnm‘ =0

- Crpniérpni COS Qi
Toni i ki 5 Krpni® Srpmi = 0
Upni + spniYspni + CspniOspni — NrpniOrpni — CrpniOrpni =

2
pni
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The differential equations of motion for the second-stage planet carrier are

MeaZe2 + Z n<2 pnCZ COS Y2 — 6pn772 sin Q;Z)nQ)

+ Z CpnCQ pn(2 COs wnZ pnn2 sin wn2) + kca}2xc2 + Ccm2xc2 =0

n=1
4
Me2le2 + Z kpnrﬂ (5pn(2 sin o + 5pnn2 COs wn2) (35)
n=1
4 . .
+ Z Cpnn2 (6png2 Sin Y2 + 5pnn2 COs ¢n2) + kcy2yc2 + CcyQ?)cQ =0
n=1
I Tc2
22 ucQ + Z kpnn25pnn2 + Z Cpnn25pm72 + kcu2u02 + Ccu2uc2 - _E
Te n=1 c

The dynamic differential equations for the second-stage sun gear are

ms2-.7:'52 - Z kspn258pn2 sin wsn2 - Z Cspn25spn2 sin wsn2

n=1 n=1
+ kspoTs2 + Csz2@52 + Kex120e212 + Cez120e212 = 0
4 4
ms2y82 + Z kspn255pn2 COs ¢5n2 + Z Cspn255pn2 COs ¢5n2
n=1 n=1 (36)
+ ksy2ys2 + Csy2ys2 + key12éey12 + Cey12éey12 =0
I 4 4
s2 .. k 5 5 k .
TTU/S2 + Z spn20spn2 + Z Cspn20spn2 T Ksu2Us2 + Csy2Us2
s2 n=1 n=1

+ keu120eui2 + Ceu1256u12 =0

The dynamic differential equations for the first-stage planet carrier are

Me1Zel + Z nCl pnCl coS Y1 — 6pn771 sin Q;Z)nl)

+ Z Cpn{l pn(l COS Y1 — pnnl sin wnl)

n=1

+ kex1Te1 + Cex1®el — Kez120ex12 — Cez120ex12 = 0

4
Me1fel + Z kpnnl (5pn41 sin 1 + 5pnn1 COs wnl)
n=1 (37)

4
+ Z Cpnnl (6pnC1 sin 1 + 5pnn1 COs ¢n1)

n=1

+ kcylycl + Ccylycl - key1256y12 - Cey1256y12 =0

4 4
Icl . ;- .
TTucl + Z kpmylépmyl + Z Cpmylépmyl + keutter + Ceurticr
cl n=1 n=1

— keu120eu12 — Ceut20eu12 = 0
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The dynamic differential equation for the first-stage sun gear is

4 4
Me1Ts1 — Z k:spnléspnl Sin Ygn1 — Z Cspnléspnl Sin Ysn1
n=1 n=1

+ ksz1%51 + Csz1T51 + KmnaOmna + CmnaOmnae = 0

4 4
Mms1Ys1 + Z kspnléspnl COS Ysp1 + Z Cspnléspnl oS Ysn1
n=1

n=1

+ ksylysl + Csylysl + kmny(smny + Cmny(smny =0
Isl .

n=1

(3.8)

4 4
TTusl + Z kspnl(sspnl + Z Cspnl(sspnl + ksulusl + Csulusl + kmnu(smnu + Cmnu(smnu =0
sl n=1

The dynamics modeling of the fixed shaft train is mainly divided into two types: reduction
gears (g7, ga, 93, g1) and idlers (g7, g6, g5, g2). Referring to Ma et al. (2012), the dynamic

equations of fixed-shaft gear train are established.
The differential equations of motion for gear gg are

mSjS - k78678 sin ¢78 - 078678 sin ¢78 + k81x8 + C8xft8 - kmnzémnx - Cmnxémnz =0

magijs — krsd7s cos Prs — 7878 cos s + ksyys + csyUs — KmnyOmny — CmnyOmny = 0

Is . . :
EUJS - k78578 - 078578 - kmnu(smnu - Cmnu(smnu =0
8

The differential equations of motion of the gear g, are

iy + k5045 50145 + Ca5045 SN a5 + kae®a + CaoBa + k3400342 + 3420340 = 0

Madjs + kasdu5 o8 Yas + ca50a5 €08 Yas + kayys + cayfa + kaay03ay + 345034y = 0

Iy . . :
—olia — k45045 — Ca5045 + k3400340, 4 344,034, = 0
1

The differential equation of motion of the gear g3 are
My — kgl sintbog — 23023 Sin Vo3 + k3a@3 + 3083 — k3400342 — C3420340 = 0

M3z — ka3daz coS a3 — Ca3093 COS a3 + ksyys + C3yU3 — k3ay034y — C34y034y = O

3. . .
g lis — k23023 — 23023 — Kk340,034u — €3400340, = 0
3

The differential equations of motion of the gear g are
M1 + k12612 sinthia + c12012 sin 1o + ka1 + cipiy =0

miij1 + k12012 cos P12 + 12012 cos Piz + kiyyr + iy = 0

I . : . T
L k12012 — c12012 + k1yu1 + ey = -
1 1

The dynamic differential equations for the idler set are (j = 7,6, 5, 2)
mji; + kj 1105541 8I0Y; j41 + ¢ j4+105 54180 Yj 41
—kj—10j-158m 15 — €101, 8515 + kjpxj + ¢jad; =0
m;ij + kj 105,541 €08 Yj 541 + ¢ 54105541 cos 41
— kj1,j0j-1,5€COSYj_1j — ¢j—1,j0j-1,5 oS i1, + kjyy; + cjyY;
I . .
—5lj — kjj+105,541 — Cj+10j,541 — Kj—1,50j-1,5 — ¢j—1,j0j-1,; = 0

Ty

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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The differential equation of the system established by (3.1)-(3.13) is defined as

Mg + Cq + [Kpy + K, (t)]q = F(t) (3.14)

The coupling system is divided into the first planet stage, the second planet stage, the low
speed spur gears stage and the high speed spur gears stage. The mass matrix of the system can
be defined as follows. The form of C is determined by the Rayleigh damping (Zhang et al., 2013)

M = diag (M1, M2, M;, My,) (3.15)

The generalized coordinate vectors of the system can be given as

q = [Te1, Yels Uel, Tris Yris Urls Ts1, Yss Usts Cpits Mpits Uplls - -+ 5 Cpat, Tpal, Updd s

First planets stage

T2, Ye2y Ue2s Tr2, Yr2, Ur2s Ts2, Ys2, Us2y Cp12, Mp12, Upl2, -+ 5 Gpd2, Tpd2, Upa2,
Second planets stage (3 16)
€8, Ys,us,r7, Y7, U7, 6, Y6, U6, L5, Y5, U5, T4, Y4, U4,
Low speed spur gears stage
T
T3, Y3, U3, T2, Y2, U2, T1, Y1, U1)
High speed spur gears stage
The external load vector of the system is given as follows
Teo TiqT
F(t) = [0,0,...,0,0,0,——,0,0,...,0,0, —} (3.17)
— T2 71
21
The support stiffness matrix of the system is defined as follows
K, = diag (Kpp1, Kppa, Kpi, Kon) (3.18)

The time-varying meshing stiffness matrix and the inter-stage coupling stiffness matrix of the
system can be written as

Kmpl (t) Kp1p2 Kpll 0
B Kop2(t) 0 0
K, (t) = Ko)  Kp, (3.19)
sSym Kmh (t)

4. Study on dynamical behavior

The gear parameters of the multistage gear transmission system are derived from the cutting unit
of a continuous miner in the National Coal Mine Energy Mining Equipment Test Center. The
shearer has a cutting speed of 29 rpm, cutting depth of 300 mm and traction speed of 1.5 m/min
during the test. Table 1 is the parameter of the high-speed and low-speed gear subsystem, and
Table 2 is the parameter of the two-stage planetary gears subsystem. f,,1(180Hz), f,2(30Hz),
fn1(687Hz), f,2(464 Hz) represent the meshing fundamental frequencies of the first planet stage,
second planet stage, high speed spur gears stage and low speed spur gears stage, respectively.
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Table 1. Parameters of high-speed and low-speed spur gears subsystems

‘ ‘Gear 1 ‘ Gear 2 ‘ Gear 3 ‘ Gear 4 ‘ Gear 5 ‘ Gear 6 ‘ Gear 7‘ Gear 8‘

Tooth number 28 39 40 27 33 33 33 40
Module [mm] 8 8 8 10 10 10 10 10
Mass [kg] 135 | 271 | 284 | 25.1 | 351 | 351 | 351 | 524
Inertia [kgm?] 0.085 | 0.16 | 038 | 0.22 | 0.52 | 0.52 | 0.52 | 1.04
Bearing stiffness [N/m]|5-10% | 5-10% [ 5-10% | 10" 107 109 109 10?

Table 2. Gear parameters of the two-stage planetary subsystem

‘ ‘ Stage ‘ Sun ‘Planet‘ Ring ‘Carrier‘

Tooth number First 18 31 82 -
Second 18 23 66 -
Module First 7 7 7 -
[mm] Second | 11 11 11 -
Mass First 4.5 12.3 32.9 95.6
[kg] Second | 10.1 28.7 | 108.6 | 706.3
Inertia First | 0.035 | 0.072 1.36 1.03
[kgm?] Second | 0.06 | 0.23 | 7.11 22.9
Torsional First | 2-10” - 2-107 | 2-10°
stiffness [Nm/rad] | Second | 4 -10” = 4-107 | 4-10°
Support First | 5-10% | 5-10% | 5-10% | 5-10%
stiffness [N/m] Second | 107 10° 10° 10°

4.1. Model verification

The variable mesh stiffness of the coupled system is solved by referring to Parker (2002), and
the phase relationship of the planetary system is solved by referring to Parker and Lin (2004).
The dynamical differential equation of the multistage gear transmission system is simulated by
the Newmark-3 method. The calculated values are compared and verified with test data collected
by the continuous miner test system in “National Coal Mine Energy Mining Equipment Test
Center”. Figure 5 is the test site of acceleration for the multistage gear systems of the shearer.
The measuring point is located on the bearing housing of the coupling shaft where gear gg is
installed, that is, the connecting shaft of the planetary subsystem and the fixed shaft gears
subsystem.

Fig. 5. Acceleration test site of the multistage gear transmission system
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Figure 6 shows a time domain comparison between the calculated and measured values of
the vibration acceleration of gear gg in the x direction. The amplitudes of both are within
the range of £0.6m/s?. The simulation results are in good agreement with the experimental
values. Figure 7 shows a frequency domain comparison between the calculated and measured
values of the acceleration of gear gg in the x direction. Gear gg is located in the low speed spur
gears stage, and its vibration acceleration is mainly generated by the meshing frequency f2o
and its harmonic component of the low speed spur gears stage. The frequency domain results
of Fig. 7 show that f,.2,2fn2,3fn2,-..,7fn are the most important frequency components of gg
acceleration. The high-speed meshing frequencies fy1,2fn1,3fn1 also have a certain excitation
effect on gg acceleration. Figure 7 shows that the first stage planetary meshing frequency f,1
and its multiplication have a stronger influence on the acceleration calculated value than the
experimental value. This is due to the installation position of acceleration test points. The
accelerometer of gear gg is installed on the side of spur gear transmission, which weakens the
reception effect of the planetary acceleration signal. The acceleration test values in Fig. 7 have
different degrees of side bands near the meshing frequency, which is caused by the joint excitation
of the meshing frequency and the rotating shaft frequency. The theoretical model does not take
into account the influence of the rotating shaft frequency, so it does not produce side bands.

R i

~04 ‘\‘ L] | PN (YT R T R R NN Ll ; Ll b bl Ll
EO. [ I

&

0.4 T [ LA I

I ‘v“‘\““‘\‘u\ \‘\“ \‘uvH

T T I ‘\ U‘ P

0 0.5 1.0 1.5 2.0 2.5 3.0

0 0.5 1.0 1.5 2.0 2.5 3.0
Time [s]

Fig. 6. Time domain comparison between calculated and measured values of acceleration of gg

4.2. Effect of coupling shaft radius on acceleration of the planet system

The carrier in the first stage planet subsystem and the sun in second stage planet subsystem
are connected by a coupling shaft. The theoretical model fully considers the influence of the
change of coupling shaft radius r. and first stage carrier radius r.; on the dynamic behavior of
two stage planet systems.

Figure 8 shows frequency spectra of the acceleration of the sun and the planet located in the
second planet stage in the u direction when 7 (r. = 0.5752-3.0r52) changes (1.1 = 3752 remains
unchanged at this time). When r. changes from 0.5rg2 to 3.0r5 (52 is constant value), with
the increase of 7., the amplitude of the second stage planetary meshing frequency f,2 and its
harmonic frequencies 3 f,.2, 5 fm2, 7fm2 and the coupling frequency 2f,,1 & fino, 6 fm1 £ fino are
continuously decreasing, while the amplitude of the first stage planetary meshing frequency fi,1
and its harmonic frequency 3 f1, 5 fm1, 7fm1 are constantly rising. It shows that with the increase
of size r., the influence of f,,; on the acceleration of the secondary planet is enhanced, and the



Dynamical modeling and coupling characteristic analysis...

95

@) o7 () (19 T
o? 2fn2 g n2
= 0.06 £ 010
E 3fn2 E ’ 3fn2
0.05
0.08
0.04 Afn2
Ao 0.06
0.03 3 |
' 5fml 5fn2
0.04 \ 7fm1
5/n2 el I s
0.02 " 6/m1 5 6/u2
6f Sfml\ fnl 7fn2
o~ fm1 Il, n2 - 0.02| £ 55 3/
fm? fn? f"I | f”2 fml
(]”.HL_J il m i 0 a“um \Jm“.\l - -
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Frequency [Hz] Frequency [Hz]

Fig. 7. Frequency domain comparison between calculated and measured values of acceleration of gg
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Fig. 8. Frequency spectra of acceleration of the second stage planets with different coupling radius

excitation of f,,2 on the acceleration of the secondary planet is suppressed. That is, as the size
of r. increases, the coupling effect between the planetary systems is enhanced.

Figure 9 displays a relationship between acceleration and time of the sun gear located in
the second planet stage in the u direction when r. (1. = 0.5r42, 1.1742, 3rs2) changes. With the
increase of 7., the amplitude of a, does not change significantly, but the period of a, changes
from t.o/4 to te1/4 (teo is the rotation period of the second stage carrier, and t.1 is the rotation
period of the first stage carrier). This phenomenon can be explained by the frequency domain
distribution of a, in Fig. 8, with the increase of r., the main components of the mesh frequency
gradually change from f,,2 to fi,1, while the change of r. could not cause obvious change of the
vibration level for planet systems.

Figure 10 shows frequency spectra of the acceleration of the second stage sun gear and the
planet in the u direction when r.y (r. = 752-3.0r52) changes (7. = 752 remains unchanged at this
time). When r.; changes from 75 to 3.0r5 (rs2 is constant value), with the increase of 7.1, the
amplitude of the second stage planetary meshing frequency f,,2 and its harmonic frequencies
3 fm2, 5 fme and the coupling frequency 2f,,1 + fime, 6 fm1 = fme does not change significantly or
has decreased slightly, while the amplitude of the first stage planetary meshing frequency f,1
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Fig. 9. The relationship between a,, and time of the second stage sun with different coupling radius
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Fig. 10. Frequency spectra of the acceleration of the second stage sun gear and the planet in
the u direction

and its harmonic frequency 3fn1,5fm1,7fm1 are gradually decreasing. For the second stage
planetary system response, it shows that the change of r.; mainly affects the first stage meshing
frequency fn1, and the influence on the second stage meshing frequency f,2 is relatively small.

Figure 11 presents the relationship between acceleration and time of the second stage sun
gear in the u direction when 7. (re1 = 752, 1.5r42, 3rs2) changes. With the increase of 7., the
amplitude of acceleration decreases gradually. It shows that the change of r.; causes a change
of the vibration level for the planet systems. When r.; = 74, that is, when the size of r. is
not taken into account in the coupling model, the vibration level of the system is the highest.
Therefore, most of the multistage gear vibration models without considering the influence of the
radius of the coupling shaft are conservative calculation methods. Considering the influence of
the actual size of r.; is beneficial to the lightweight design of multistage gear systems.
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Fig. 11. The relationship between acceleration and time of the second stage sun gear in the u direction

5. Conclusion

Considering the influence of the cross-section size of the coupling shaft, the coupling shaft is
regarded as a translational torsion spring, and the coupling analytical model of two-stage planets
and a multistage parallel shaft gear is developed by the lumped parameter method. The coupling
model fully considers the effect of the cross-section radius of the coupling shaft on the multistage
gear system. The acceleration test of gears further verifies the accuracy of the theoretical model
and lays a foundation for the study of the dynamic behavior of the system.

The research on the influence of coupling shaft radius on the acceleration of the planetary
system shows that with the increase of cross-section size of the coupling shaft, the influence of
the first stage meshing frequency on the second stage planetary system is enhanced, while the
excitation effect of the second stage meshing frequency is suppressed. That is to say, with the
increase of cross-section size of the coupling shaft, the coupling effect between planetary systems
is enhanced. The acceleration level of the planetary system decreases gradually with the increase
of radius of the first stage planet carrier. The influence of the actual size of the planet carrier
when coupling can be considered beneficial in reducing the vibration level in a multistage gear
system.
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