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Gravity can play a tremendous effect on deformation of rubberlike materials and biological
soft tissues. In this paper, considering the gravity effect, we proposed a surface Green’s
function of a soft elastomer based on the neo-Hookean model. The proposed surface Green’s
function is applied to analyze the elastic deformation of a soft elastomer subjected to uniform
pressure. The surface normal displacement of the soft elastomer is calculated and the results
show that gravity has a large impact on the surface deformation of the elastomer. Generally,
the surface normal displacement decreases with the increasing gravitational force.

Keywords: surface Green’s function, gravity, distributed pressure, soft materials, neo-
-Hookean model

1. Introduction

Numerous materials like rubbers, biological soft tissues and polymer gels can produce large
deformations due to lower elastic modulus even though the surface of soft materials is subject
to small forces. In the last decade, stemming from the elastic deformation, instability patterns
in soft materials could be observed in experiments and elucidated theoretically (Tanaka et al.,
1987; Dervaux and Amar, 2012; Kim et al., 2012; Zhu et al., 2010; Keplinger, 2012; Gent and
Cho, 1999; Biot, 1963; Wang and Zhao, 2013). In attempt to generate and regulate a surface
pattern accurately, the elastic deformation of soft materials shall be understood and clarified
rigorously. The well-known Green’s function for the conventional elastic half space has been well
built and provides an important method for calculating the elastic deformation of soft materials.
Furthermore, the surface Green’s functions of soft solids were first put forward incorporating
the influence of surface stress (He and Lim, 2006) and prestretches (He, 2008), respectively.

Recently, the effect of gravity on elastic deformation of soft solids has attracted much atten-
tion (Mora et al., 2014; Liang and Cai, 2015; Amar and Jia, 2013; Li et al., 2012). To evaluate
the effect of gravity, an intrinsic length scale is often defined as L0 = µ/(ρg), where µ is the shear
modulus of the solid, ρ is density, and g is gravitational acceleration. When the characteristic
length of a soft material is comparable or larger than the intrinsic length scale, gravity may
play a significant role on the elastic deformation of the gel, elastomer and a soft biological tissue
(Mora et al., 2014; Liang and Cai, 2015; Amar and Jia, 2013; Li et al., 2012). Motivated by the
thought, the surface Green’s function of a soft elastomer occupying the half space is derived
in this paper considering the effect of gravity. As an example, the surface deformation resulted
from uniform distributed pressure in a circular zone is investigated.
In this paper, we will mainly focus on the effect of gravity on the surface deformation of

soft materials, by ignoring the effect of surface stress and prestretches, although they may
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have a large impact on the elastic deformation of a soft elastomer. The organization of this
paper is as follows. In Section 2, following the methodology (He and Lim, 2006; He, 2008; Biot,
1965; Ogden, 1997), we firstly derive the surface Green’s function of an elastomer occupying
a half space incorporating the gravity effect based on the neo-Hookean constitutive model. In
Section 3, we secondly investigate the surface elastic deformation of an elastomer subjected to
uniform distributed pressure in a circular zone by using the derived Green’s function. Finally,
the conclusion is given in Section 4.

2. Derivation of surface Green’s function of an elastomer occupying a half space

with the gravity effect

For a homogeneous, isotropic and incompressible solid elastomer, the surface Green’s function of
a half space has been deduced considering the surface stress (He and Lim, 2006) and prestretches
(He, 2008). So far, the surface Green’s function has not been available involving the gravity effect
which may have a non-negligible influence on the elastic deformation of soft materials. Here, we
will derive the surface Green’s function of an elastomer occupying a half space taking into
account gravity.

We first consider a homogeneous, elastically isotropic and incompressible elastomer occupying
a half space. When the elastomer stays in an initial unstressed state with a flat surface, we mark
a material particle in the elastomer with coordinate XK as the initial state, and use xi to indicate
the spatial position coordinate as an intermediate state.

A Cartesian coordinate system (x1, x2, x3) is introduced such that the plane x3 = 0 coincides
with the flat surface of the elastomer, as shown in Fig. 1. The half space is under a gravitational
field.

Fig. 1. Schematics of three configurations for the half space elastomer incorporating the gravity effect:
initial configuration, intermediate configuration and current configuration. A Cartesian coordinate
system (x1, x2, x3) is introduced in three configurations, where the plane x3 = 0 coincides with the flat
surface of the soft elastomer in the intermediate configuration, and the x1- and x2-axes are along the
directions of x1 and x2, respectively. Referring to this coordinate system, the position vectors of a
representative point in the three configurations are represented by XK , xi(XK), x̃i(XK), respectively

The kinematics is described by the deformation gradient defined as

F iK =
∂xi
∂XK

(2.1)

A concentrated force fi is applied at xi on the surface x3 = 0 in the intermediate state, and
the spatial position xi is perturbed with infinitesimal deformation ui. In this circumstance, the
additional strains induced by the external concentrated force fi are small, and the incremental
displacement field ui(x) in the elastomer resulted from any distributed loading can be obtained
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by linear superposition. The spatial coordinate x̃i in the current state due to perturbation equals
to

x̃i = xi + ui (2.2)

The deformation gradient in the current state is

FiK =
∂x̃i
∂XK

= (δij + ui,j)F jK (2.3)

where δij is the Kronecker delta and ui,j = ∂ui/∂xj . For simplicity, we assume that the material
of the elastomer is described by a neo-Hookean constitutive model which takes the strain energy
function W (FiK) as follows (Treloar, 1975)

W =
µ

2
(FiKFiK − 3)− p∗(J − 1) (2.4)

where J is the determinant of the deformation gradient FiK , µ is the shear modulus, and
p∗ (interpreted as a pressure) is a Lagrange multiplier concerned with the incompressibility
constraint J − 1 = 0. The first Piola-Kirchhoff stress SiK is calculated from the stress-strain
relation

SiK =
∂W

∂FiK
= µFiK − p∗F−1Ki (2.5)

In the presence of body forces, the nominal stress in the initial state satisfies the following
force balance equation and boundary condition

SiK,K + ρgi = 0

SiKNK dA = fiδ(x1)(x2) da at x3 = 0
(2.6)

where dA and NK are the element of area and the unit outward normal vector in the initial state,
respectively, da is the element of area in the intermediate state and δ(·) is the Dirac function.
For convenience, we take the intermediate state as the reference state, and rewrite

the force balance equations, and boundary condition with application of Nanson’s formula
NK dA = F iKni da

(SiKF jK),j = 0

SiKF jKnj = fiδ(x1)(x2) at x3 = 0

ui = 0 at x3 = −∞
(2.7)

where nj is the unit outward normal vector in the reference state.
Since the perturbed displacement is small, all the involved equations can be linearized. For

this sake, one can separate the pressure p∗ into the form p∗ = p+p, where p is linearly dependent
hydrostatic pressure which can be determined as p = µ− ρgx3 in terms of boundary condition
(2.7)2 (where fi = 0) and p is the incremental pressure from the reference state to the current
state. With the linear terms remained only, the incompressibility condition can result in

ui,i = 0 (2.8)

For convenience of the following calculation, SiKF jK in Eqs. (2.7)1 and (2.7)2 is expressed as
below

SiKF jK = −pδij + µ(ui,j + uj,i) + ρgx3(δij − uj,i) (2.9)
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By the aid of formula (2.9), the linearized forms of Eqs. (2.7)1 and (2.7)2 are derived as

µui,jj − p,i − ρgu3,i = 0
− pδijnj + µ(ui,j + uj,i)nj = fiδ(x1)(x2) at x3 = 0

ui = 0 at x3 = −∞
(2.10)

Equations (2.10) entirely depict the boundary value problem for the incremental deformation
induced by a force exerted on the surface of an elastomer occupying the half space.

For convenience, we rewrite Eqs. (2.10)1 and (2.10)2 in a more explicit form

µ(ui,11 + ui,22 + ui,33)− p,i − ρgu3,i = 0
µ(u1,3 + u3,1) = f1δ(x1)(x2) µ(u2,3 + u3,2) = f2δ(x1)(x2)

2µu3,3 − p = f3δ(x1)(x2) at x3 = 0

(2.11)

In view of the incompressibility of the material, we adopt two stream functions ϕ1 = ϕ1(xi)
and ϕ2 = ϕ2(xi) such that the incremental displacement can be expressed as below

u1 = ϕ1,3 u2 = ϕ2,3 u3 = −ϕ1,1 − ϕ2,2 (2.12)

Substituting Eq. (2.12) into Eq. (2.11)1 and taking the corresponding Fourier transforms in the
x1 and x2 directions, we have

µΦ1,333 − µk2Φ1,3 + ik1P − k1ρg(k1Φ1 + k2Φ2) = 0
µΦ2,333 − µk2Φ2,3 + ik2P − k2ρg(k1Φ1 + k2Φ2) = 0
µ(k1Φ1 + k2Φ2),33 − µk2(k1Φ1 + k2Φ2) + iP,3 − ρg(k1Φ1 + k2Φ2),3 = 0

(2.13)

where i =
√
−1, k is a two-dimensional vector with components k1 and k2, Φi and P represented

by Eq. (2.14)2 as below, are the Fourier transforms of ϕi and p

Φi(k1, k2, x3) =

∞∫

−∞

∞∫

−∞

ϕi(x1, x2, x3)e
ikx dx1 dx2

P (k1, k2, x3) =

∞∫

−∞

∞∫

−∞

p(x1, x2, x3)e
ikx dx1 dx2

(2.14)

The corresponding boundary conditions are given at x3 = 0

µΦ1,33 + µk1(k1Φ1 + k2Φ2) = f1 µΦ2,33 + µk2(k1Φ1 + k2Φ2) = f2

2iµ(k1Φ1 + k2Φ2),3 − P = f3
(2.15)

and at x3 = −∞

Φ1,3 = 0 Φ2,3 = 0 k1Φ1 + k2Φ2 = 0 (2.16)

After a series of operations, the general solutions to Eqs. (2.13) can be obtained

Φ1 = (a1 + a2k1x3)e
kx3 Φ2 = (a3 + a2k2x3)e

kx3

P = i[−(a1k1 + a3k2)ρg + a2k2(2µ− ρgx3)]ekx3
(2.17)
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where k =
√
k21 + k

2
2 , a1, a2, a3 can be solved as follows

a1 =
−ik2k1µf3 + k2(f1k2 − f2k1)(ρg + 2kµ)

µk4(ρg + 2kµ)

a2 =
2ik2µf3 + (f1k1 + f2k2)(ρg + 2kµ)

2µk3(ρg + 2kµ)

a3 =
−ik2k2µf3 + k1(f2k1 − f1k2)(ρg + 2kµ)

µk4(ρg + 2kµ)

(2.18)

By substituting Eqs. (2.17) into Eq. (2.13)2, one obtains Fourier transforms of the incremental
displacements of the surface of the half space

U1(x3 = 0) = Φ1,3 = (a1k + a2k1) U2(x3 = 0) = Φ2,3 = (a3k + a2k2)

U3(x3 = 0) = ik1Φ1 + ik2Φ2 = i(a1k1 + a3k2)
(2.19)

The results in Eqs. (2.19) enable the surface incremental displacements of the half space to be
solved. We write out the incremental displacements in the form of ui(x) = Gij(x − x′)fj by
introducing the surface Green’s function Gij(x− x′) given by

G11(x− x′) =
1

4π2

∞∫

−∞

∞∫

−∞

k2 + k22
2k3µ

e−ik(x−x
′) dk1 dk2

G22(x− x′) =
1

4π2

∞∫

−∞

∞∫

−∞

k2 + k21
2k3µ

e−ik(x−x
′) dk1 dk2

G33(x− x′) =
1

4π2

∞∫

−∞

∞∫

−∞

1

ρg + 2kµ
e−ik(x−x

′) dk1 dk2

G12(x− x′) = G21(x− x′) = −
1

4π2

∞∫

−∞

∞∫

−∞

k1k2
2k3µ
e−ik(x−x

′) dk1 dk2

G13(x− x′) = G31(x− x′) = 0 G23(x− x′) = G32(x− x′) = 0

(2.20)

Equation (2.20)3 can be degenerated to the state of no gravity

G33(x− x′) =
1

4π2

∞∫

−∞

∞∫

−∞

1

2kµ
e−ik(x−x

′) dk1 dk2 (2.21)

which is in agreement with the result in (He, 2008). After integration, the analytical forms of
the Green’s function of the surface of the half space can be provided as below

G11(x− x′) =
1

2πµr

(
1− (x2 − x

′

2)
2

2r2

)
G22(x− x′) =

1

2πµr

(
1− (x1 − x

′

1)
2

2r2

)

G33(x− x′) =
1

4πµr

{
1−mr

[
mr1F2

(
1;
3

2
,
3

2
;−m

2r2

4

)
− π
2
Y0(mr)

]}

G12(x− x′) = G21(x− x′) =
(x1 − x′1)(x2 − x′2)

4πµr3

(2.22)

where m is defined as ρg/(2µ), r = |x− x′|, Fj(a1, . . . , ai; b1, . . . , bj ;x) is the generalized hyper-
geometric function, and Y0(x) is the Bessel function of the second kind with the order zero.
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3. Elastic deformation caused by uniform distributed pressure on the surface of

the elastomer incorporating the gravity effect

In this Section, we will apply the above derived surface Green’s function to calculate the elastic
deformation resulted from uniform distributed pressure. A uniform distributed pressure q(x′)
with loading circular radius R is exerted on the surface of the elastomer occupying a half space,
so the surface normal stress is −q in the loading region while the surface normal stress is zero
outside the loading region.

Fig. 2. Schematics of a uniform distributed pressure applied on the surface of a soft elastomer occupying
a half space. The uniform distributed pressure q is exerted on a circular zone with radius R of the
surface of the elastomer occupying the half space. Density of the soft elastomer is ρ, and gravitational

acceleration is g

The normal surface displacement u3(x) resulted from the pressure can be gained by the
integration form

u3(x) =

∫∫

A

G33(x− x′)q(x′) dx′1 dx′2 (3.1)

where A is the loading area.

Taking advantage of the polar coordinate transformation as below

x′1 = x1 + r cos θ x′2 = x2 + r sin θ (3.2)

Thus, Eq. (3.1) can be adapted by the strategy (Zheng, 2017) as

u3(x) =

π∫

0

r2∫

r1

G33(r, θ)q(r, θ)r dr dθ (3.3)

where the integration limits r1 and r2 are determined by the following solution to the boundary
equation

(x1 + r1,2 cos θ)
2 + (x2 + r1,2 sin θ)

2 = R2 (3.4)

According to Eq. (3.4), the two limits of r are on the edge of the circular loading area as

r1,2 = −(x1 cos θ + x2 sin θ)±
√
R2 − (x1 sin θ − x2 cos θ)2 (3.5)

Substituting Eq. (2.22)3 into Eq. (3.3) can give a rise to

u3(x) =
q

4πµ

2π∫

0

dθ

r2∫

0

{
1−mr

[
mr1F2

(
1;
3

2
,
3

2
;−m

2r2

4

)
− π
2
Y0(mr)

]}
dr =

q

4πµ
I1 (3.6)
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where I1 is an integral with respect to θ as below, which needs numerical computation

I1 =

2π∫

0

{ 1
m
πMeijerG

[{
{1},
{1
2

}
;
{
{1, 1},

{
0,
1

2

}}
;
1

4
m2r22

]

+
1

2
r2
[
2− 2
3
m2r22F2

(
1;
3

2
,
5

2
;−m

2r22
4

)]}
dθ

(3.7)

where MeijerG[{{a1, . . . , an}, {an+1, . . . , ap}}; {{b1, . . . , bm}, {bm+1, . . . , bq}}; z] is the MeijerG
function.

By numerically calculating Eqs. (3.6) and (3.7) in Matlab software, we can obtain the normal
surface displacement of the soft elastomer driven by the uniform distributed pressure. Since the
surface normal displacement caused by the pressure on the elastomer occupying the half space is
axisymmetric, we will just plot the normalized surface displacement along the radial direction.
Figure 3 presents a 3D surface profile inside (r/R < 1) on the boundary (r/R = 1) and outside
(1 < r/R) the loading zone with variation of dimensionless gravity parameter.

Fig. 3. The 3D surface profile inside (r/R < 1) on the boundary (r/R = 1) and outside (1 < r/R) the
loading zone with variation of the dimensionless gravity parameter. With an increase of the gravity

parameter, the amplitude of surface deformation decreases

Figure 4 plots the normal surface displacement of the soft elastomer in the loading zone
for different dimensionless gravity parameters. The results show that the gravitational force
of the soft elastomer has a tremendous impact on the surface deformation of the elastomer.
When the normalized gravity parameter ρgR/µ is small, i.e., the gravity effect is trivial, the
computed normal displacement by the derived Green’s function is nearly the same as the well-
-known analytical solution (Ling, 2002). With an increase of the dimensionless gravity parameter
ρgR/µ, the normal surface displacement in the loading zone decreases. Some biological tissues
are commonly soft with Young’s modulus ranging from several hundreds to several thousands
Pa (Du et al., 2011). In these cases, the gravity effect on the deformation of soft tissues should
be considered.

From the displacement distribution of the elastomer in the loading zone, as shown in Fig. 4,
it is found that the maximum normal surface displacement appears at the center of the loading
zone, which is the same as in the results reported by Li and Cai (2014). Figure 5 plots the
normal surface displacement at the center of the loading zone as a function of the dimensionless
gravity parameters. The result shows that the normal surface displacement drastically decreases
with an increase of the gravity parameters.
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Fig. 4. The axisymmetric normal surface displacement along the radial direction caused by a uniform
distributed pressure on the elastomer occupying a half space, for different gravity parameters. The
results show that the normal surface displacement in the loading zone decreases with the increasing
distance from the center of the loading zone. When the gravity effect is trivial, the normal surface

displacement computed by the derived Green’s function is nearly the same as the well-known analytical
solution (Ling, 2002)

Fig. 5. The dimensionless normal surface displacement at the center of the loading zone as a function of
the dimensionless gravity parameter ρgR/µ = 0 corresponds to the circumstance without the gravity
effect. The result shows that the surface normal displacement decreases with an increase of the gravity
parameter, and the gravitational force prefers to resist the surface deformation, which is consistent with

the intuition

In this work, thickness of the soft elastomer is assumed to be infinite, and the influence
of thickness of the elastomer is not considered. The previous literature shows that thickness
of the soft elastomer has also an important impact on the surface displacement on thin soft
layers (Mora et al., 2014; Liang and Cai, 2015). In the future work, we will further explore the
surface elastic deformation of soft elastomer layers with a finite thickness and the gravity effect.
In the current work, we focus on the gravity effect on the surface deformation of an elastomer.
However, for a soft elastomer, the surface stress of the elastomer may also have a big impact on
the deformation of the elastomer (He and Lim, 2006), and should be considered in the analysis
of the mechanical phenomenon in the future.

4. Conclusion

We proposed the surface Green’s function of the elastomer occupying a half space based on the
neo-Hookean constitutive model, incorporating the gravity effect. By utilizing Fourier transfor-
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mation, the surface Green’s function has been analytically derived. We apply the surface Green’s
function to calculate the surface normal deformation of the soft elastomer and obtain the rela-
tion between the surface normal displacement and the gravity parameter. The study shows that
gravity can play a tremendous effect on deformation of the soft elastomer resulting from uniform
distributed pressure. The proposed surface Green’s function has also potential applications in
other fields, such as indentation, cell migration, robot walking on soft materials, etc.
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