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Nonproportional plastic deformations on the microscale are an emerging topic. A simplified
theory of strain gradient elasto-plasticity is developed to study the evolution of yield strength
in a copper wire sequentially experiencing tension and torsion. The pre-tension deformation
and stress are inherited to the upcoming torsion process, resulting in a nonproportional
loading condition. With consideration of the extra hardening effect due to strain gradient,
pre-tension weakens the extra hardening effect of the strain gradient and the dependence on
the wire radius. Cyclic torsion behavior is also investigated. Anomalous Bauschinger effect
and plastic softening are found.
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1. Introduction

Plastic deformations on the micro scale have some featuers which are distinctively different from
those on the macroscale. For example, in tests of wire torsion (e.g. Fleck et al., 1994; Liu et al.,
2013a,b), microbend (e.g. Stölken and Evans, 1998) and indentation (e.g. Nix and Gao, 1998),
the yield strength shows a considerable dependence on the specimen size while material is the
same and grain sizes are similar. This size effect is often regarded contributed by geometrically
necessary dislocations (GND) and impossible to be modeled based on the conventional plasticity
(e.g. Fleck et al., 1994; Gao and Huang, 2003). Moreover, there are several other characteristics
related to the above size effect, such as the size effect around the elastic limit (e.g. Chakravarthy
and Curtin, 2011; Dunstan et al., 2009; Liu et al., 2013a,b), anomalous Bauschinger effect (e.g.
Bardella and Panteghini, 2015; Fertig and Baker, 2009; Idiart and Fleck, 2010; Kiener et al.,
2010; Liu et al., 2013a,b, 2015; Nicola et al., 2006; Xiang and Vlassak, 2006), plastic softening
and unconventional load-unload hysteresis loops (e.g. Kiener et al., 2010).

SGP theories are among the efforts to model the above unconventional effects. Intrinsic scale
parameters are included in the constitutive relation in order to consider the extra hardening due
to GND (e.g. Fleck and Hutchinson, 1997, 2001; Fleck et al., 1994; Fleck and Willis, 2009; Forest
and Sievert, 2003; Gao and Huang, 2001; Gudmundson, 2004). Strain gradient elasto-plasticity
(SGEP) (Liu and Soh, 2016), different from many existing SGPs in which elastic deformation
is completely ignored or rarely considered, can catch all the above non-classical characteristics.
Such a SGEP satisfies thermodynamical conditions. Furthermore, the elastic strain gradient
does not change the linear-elastic stiffness during the elastic stage, and plays its role in altering
the yield strength only after the plastic deformation has begun. SGEP by Liu and Soh (2016)
is free of the issue in the SGP theory by Fleck et al. (1994) and Fleck and Hutchinson (1997),
where the unphysical dependence of the initial slope of the torque-twist relation on the plastic
length exists. We believe that this issue is mainly due to their assumption that the deformation
is entirely plastic from the very beginning, i.e. the rigid-plastic assumption. Liu and Soh (2016)
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took the elastic strain and strain gradient as parts of recoverable deformations and accounted
for their contributions to hardening.
One remaining challenge in this field is the modeling of microscale plastic deformations under

nonproportional loading conditions (e.g. Fleck et al., 2014; Janssens, 2018; Ozhoga-Maslovskaja
et al., 2015; Pejkowski, 2017; Yang and Vormwald, 2017). Thus, we make an attempt to meet
this challenge based on a simplified version of the SGEP (Liu and Soh, 2016), where one single
intrinsic scale parameter appears.
The paper is organized as follows. In Section 2, the theoretical formulation of the simplified

SGEP is constructed, with only one plastic length and without higher order stresses. In Section 3,
the analytical solution is provided for torsion of a pre-tension wire. In Section 4, numerical results
show the effect of pre-tension on torsion of microscale Cu wires. The paper ends with conclusions
in Section 5.

2. Theoretical formulation

Strain gradient elasto-plasticity (SGEP) adopted here was initially built aiming to predict un-
conventional features like size effects and anomalous Bauschinger effect on the microscale (Liu
and Soh, 2016). Its incremental form is summarized as follows.
The strain rate and the rate of the second-order gradient of the displacement u̇i are respec-

tively,

ε̇ij =
1

2
(∂iu̇j + ∂j u̇i) η̇ijk = ∂ij u̇k (2.1)

Based on the fact that the elastic lengths are generally far smaller than the plastic ones, one
conclusion is that the strain gradient is dominantly elastic out of the elasto-plastic decompo-
sition according to the associate rule. The other is that omitting the elastic length scales and,
therefore, higher-order stresses is reasonable. This simplification leads to substantial reduction
in the complexity of formulations and calculations, nevertheless meanwhile good agreements
with experimental data can still be achieved.
ε̇ij is divided into a deviatoric part ε̇

′

ij and a volumetric part ε̇kk. η̇ijk is purely elastic. Then,
the deviatoric part ε̇′ij is decomposed into an elastic and plastic part

ε̇′ij = ε̇
′e
ij + ε̇

p
ij (2.2)

Hooke’s law serves as the elastic constitutive law, and relates stress to elastic deformation,
i.e.

σij = λδijε
e
mm + 2µε

e
ij (2.3)

And the total effective stress is simply contributed to the Cauchy stress σij due to negligence of
higher order stresses, i.e.

σte = σe =

√

3

2
σ′ijσ

′

ij (2.4)

The total effective elasto-plastic strain εt,epe is defined as by Liu and Soh (2016)

εt,epe = [(ε
e
e + εe)

2β + l(ηee + ηe)
2β ]

1

2β (2.5)

where

εee =

∫

√

2

3
ε̇
′e
ij ε̇
′e
ij dt εe =

∫

√

2

3
ε̇pij ε̇
p
ij dt

ηee =

∫

√

2

3
η̇eijkη̇

e
ijk dt ηe =

∫

√

2

3
η̇pijkη̇

p
ijk dt
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and β is a constitutive parameter to determine how the effective strain and strain gradient are
combined to form εt,epe ; l is the plastic characteristic length. In this study, we assume that l works
for both recoverable GNDs (energetic) and unrecoverable GNDs (dissipative). From Eq. (2.5),
strain gradient has an extra hardening effect, lifting the yield strength.
Notably, in Eq. (2.5) we have not decomposed the strain gradient. This is different from the

counterpart in Liu and Soh (2016).
Besides, the hardening law can be expressed as

σt =



















σY + (σ
t
0 − σY )

εt,epe
εt0

if εt,epe ¬ εt0

σt0

(εt,epe
εt0

)N

if εt,epe > ε
t
0

(2.6)

with

εt0 =
( εt,epe
εee + εe

)γε
εY σt0 =

( εt,epe
εee + εe

)γσ
σY (2.7)

where the readers are referred to Liu and Soh (2016) for details.

3. Circular wire in torsion and tension

Suppose that the wire of radius a, which is lying along the x3 axis of a Cartesian co-ordinate
system (x1, x2, x3), is stretched until it reaches deformation of a certain degree ε; thereafter,
it is twisted, with further axial deformation prevented. Eleftheriadis et al. (2012) conducted a
similar investigation. In the following, we solve the problem by dividing it into the tension and
torsion stages, respectively.

3.1. Tension stage

During the whole tension process, the strain gradient η remains zero.
The nonzero strain increments are

ε̇33 = ε̇ ε̇11 = ε̇22 = −
1

2
ε̇33 (3.1)

where the deformation is assumed to be incompressible.
The strain increments are decomposed into elastic and plastic parts as follows

ε̇ = ε̇
e
+ ε̇
p

ε̇33 = ε̇
e
33 + ε̇

p
33 ε̇11 = ε̇

e
11 + ε̇

p
11 ε̇22 = ε̇

e
22 + ε̇

p
22 (3.2)

where the relations among above components can be written as

ε̇e33 = ε̇
e

ε̇p33 = ε̇
p

ε̇e11 = ε̇
e
22 = −

1

2
ε̇e33

ε̇ee = ε̇
e
33 ε̇e = ε̇

p
33

(3.3)

The non-vanishing stress components and the effective stress are respectively

σ33 = σe = Eε
e (3.4)

where εe =
∫ t
0 ε̇
e
dt.

In Liu and Soh (2016), the total effective stress was defined as a combination of the Cauchy
stress and the higher order stress. Here, due to neglecting the higher order stress, there is

σte = σe = Eε
e (3.5)
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By keeping in mind that no strain gradient appears, the total effective strain (Liu and Soh,
2016) under monotonic tension is

εt,epe = ε
e
e + εe = ε33 (3.6)

Based on Eq. (3.3) and (3.6), the reference strain and stress are, respectively, expressed as

εt0 =
( εt,epe
εee + εe

)γε
εY = εY σt0 =

( εt,epe
εee + εe

)γσ
σY = σY (3.7)

The yield initiation occurs when

εt,epe = εY (3.8)

3.2. Torsion stage

After the total tensile strain reaches a certain value ε, the wire elongation is stopped from
further increasing, and the wire is twisted around the x3 axis. The twist per unit length is κ.
During the present stage, the strain gradient η is non-zero.
Considering the loading and unloading cycles, we continue to formulate the torsion process

in an incremental form. The displacement field is

u̇1 = −κ̇x2x3 u̇2 = −κ̇x1x3 u̇3 = 0 (3.9)

The associated non-vanishing components of the strain increment ε̇ij and strain gradient
increment η̇ijk are respectively

ε̇13 = ε̇31 = −
κ̇

2
x2 ε̇23 = ε̇32 = −

κ̇

2
x1

η̇231 = η̇321 = −κ̇ η̇132 = η̇312 = κ̇
(3.10)

At each radial position, κ is decomposed into the elastic and plastic part

κ̇ = |κ̇eε|+ κ̇pε sgn (κ̇) = |κ̇eη|+ κ̇pη sgn (κ̇) (3.11)

Correspondingly, the strain increment ε̇ij and strain gradient increment η̇ijk are both de-
composed into the elastic and plastic part

ε̇e13 = ε̇
e
31 = −

κ̇eε
2
x2 ε̇e23 = ε̇

e
32 = −

κ̇eε
2
x1 ε̇ee =

κ̇eεr√
3

ε̇p13 = ε̇
p
31 = −

κ̇pε
2
x2 ε̇p23 = ε̇

p
32 = −

κ̇pε
2
x1 ε̇e =

κ̇pεr√
3

η̇e231 = η̇
e
321 = −κ̇eη η̇e132 = η̇

e
312 = κ̇

e
η η̇ee = κ̇

e
η

η̇p231 = η̇
p
321 = −κ̇pη η̇p132 = η̇

p
312 = κ̇

p
η η̇e = κ̇

p
η

(3.12)

The non-vanishing stress components and the effective stress are respectively

σ13 = σ31 = −µκeεx2 σ23 = σ32 = µκ
e
εx1 σ33 = Eε

e

σe =
√

(Eεe)2 + 3(µκeεr)
2

(3.13)

where, notably, the inclusion of pre-tension εe causes a difference from pure torsion in Liu and
Soh (2016).
Thus, the total effective stress is

σte = σe =
√

Eεe)2 + 3(µκeεr)
2 (3.14)
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The total effective strain is

εt,epe = {(εee + εe)2β + [l(ηee + ηe)]2β}
1

2β =
{[

ε+
(|κeε|+ κpε)r√

3

]2β
+ [l(κeη + κ

p
η)]
2β
}

1

2β
(3.15)

where, the effect of pre-tension is represented by the appearance of ε.
Based on Eqs. (3.12) and (3.15), the reference strain and stress are, respectively, expressed

as

εt0 =
( εt,epe
εee + εe

)γε
εY =

{

1 +
[

√
3l(κeη + κ

p
η)√

3ε+ r(|κeε|+ κpε)
]2β} γε

2β
εY

σt0 =
( εt,epe
εee + εe

)γσ
σY =

{

1 +
[

√
3l(κeη + κ

p
η)√

3ε+ r(|κeε|+ κpε)
]2β} γσ

2β
σY

(3.16)

where it should be kept in mind that the strain gradient is purely elastic through the present
elasto-plastic decomposition and, therefore, at any moment κ = κeη+κ

p
η = κ

e
η . Notably, the same

assumption was made in Fleck et al. (2014).
The yield evolves when

σte = σ
t (3.17)

where σt can be given according to Eqs. (2.6) and (3.15)-(3.17).
Finally, the torque on the cross section of the wire can be expressed as

T = 2πµ

a
∫

0

κeεr
3 dr (3.18)

4. Results and discussions

Figure 1 shows variation of normalized torque of wires with the surface strain. The dashed lines
are resulted from the strain gradient elasto-plasticity (SGEP) in Liu and Soh (2016), whereas
the red solid lines are obtained based on the simplified SGEP formulated in Section 2, where the
elastic characteristic length scales are assumed to be zero and the plastic characteristic length
scales are deemed the same. We can find that the simplified SGEP can provide almost identical
results when compared with the version of SGEP by Liu and Soh (2016). This indicates that
neglecting the of higher order stresses is proper at least under the present settings.
Figure 2 reveals strong dependence of the pre-tension wires on the wire radial size and the

pre-tension strain ε. The dot-dashed lines correspond to results without any pre-tension, i.e.
ε = 0. For the wire of diameter 2a = 2l, let the pre-tension strain be 0%, 0.16%, 0.50%, 1.00%
and 3.00%, respectively, it is found that the yield strength decreases with the increasing pre-
-tension strain. For other sizes of wires, i.e. 2a = 4l and 8l, the tendency is the same. On the other
hand, for wires with equal pre-tension strain, the strong size effect can be observed. This is to
say, the yield strength increases with the decreasing wire radius. For example, when ε = 3.00%,
i.e. for the three dashed lines, the one corresponding to 2a = 2l has the highest yield strength,
whereas both to 2a = 4l and 8l, are smaller. The influence of pre-tension is easy to explain based
on Eqs. (3.15) and (3.16). The bigger ε, the smaller εt,epe will be. If the pre-tension deformation
is purely elastic, after being transformed to torsion, the pure elastic deformation continues for
a while before the yield initiation occurs, for example, when ε = 0.07% and 2a = 2l. When
ε = 0.16% and 2a = 2l, there is some small plastic deformation during the tension stage. When
torsion starts, the extra hardening effect of the strain gradient comes into play and, meanwhile,
the pre-tension ε tends to weaken the gradient effect. The final yield strength depends on the
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Fig. 1. Diagrams of the normalized torque T/a3 versus the surface strain κa for torsions of
polycrystalline Cu wires with diameter of 2l, 4l, 8l, respectively. Parameters are kept the same as those

in Liu and Soh (2016) except that the elastic lengths are set to be zero, i.e., σY = 100MPa,
E = 118GPa, L0 = L1 = L2 = 0, l = l0 = l1 = l2 = 2.83µm, ν = 0.5, γσ = 2γε = 2β = 2.0, N = 0.22.

Note that in Liu and Soh (2016), L0 = L1 = L2 = 5 · 10−2 µm

Fig. 2. Diagrams of the normalized torque versus the surface strain for wires of diameters 2l, 4l, 8l,
respectively, and with different degrees of pre-tension, i.e. ε = 0, 0.07%, 0.16%, 0.50%, 1.00%

and 3.00%, respectively

competition between them. ε = 0.16% is relatively small and, therefore, the extra hardening
effect becomes dominant now. While for ε = 0.5% and above, the influence of pre-tension
becomes more important, and the yield evolution happens at the very beginning of torsion.

Another important notice from Fig. 2 is that dependence on the pre-tension exists in the
size effect observed in pure torsion tests like in Fleck et al. (1994) and Dunstan et al. (2009).
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For example, the wire of size 2a = 2l with ε = 3.00% has a lower yield strength than that of size
2a = 4l without any pre-tension, when the surface strain is smaller than 0.05. It is also lower
than that of 2a = 8l without any pre-tension, when the surface strain is 0.025 and under. From
this study, we conclude that the size effect related to the strain gradient is strongly influenced
by the pre-tension that wires have experienced before torsion.

The competition between gradient-related extra hardening and pre-tension, which is afore-
mentioned, can be shown more clearly in Fig. 3. During the torsion stage, at material points
closer to the wire central axis, the extra hardening effect due to strain gradient is stronger,
which decreases quickly with increasing r. On the other hand, for a fixed radial position r, the
current yield strength σt is strongly dependent on the pre-tension ε. When the pre-tension is
pretty large, for example, ε = 3.00%, σt approximately shows a homogeneous distribution with
respect to r. Additionally, the yield strength with ε = 0 is higher than that with ε = 3.00% when
r ∈ (0, 4.97)µm, and vice versa beyond this range. Similarly, the yield strength with ε = 0.07%
is higher than that with ε = 3.00% when r ∈ (0, 2.57)µm, and vice versa beyond this range.
This kind of phenomenon is actually the competition between the gradient extra hardening and
the pre-tension strain hardening. From this viewpoint, again, we argue that the deformation
history experienced by wires before torsion strongly influences the torsional yield evolution.

Fig. 3. Reference stress σt
0
(a) and current yield strength σt (b) versus radius r for torsion of wires with

the pre-tension strain 0, 0.07%, 0.16%, 0.50%, 1.00% and 3.00%, respectively, when the twist increases
monotonically to κ = 500

The combination of the pre-tension strain hardening and the following gradient-related extra
hardening is also analyzed at the position r = a, i.e. the wire surface, as shown in Fig. 4. Since the
tensile deformation is kept when torsion begins later on, for a nonzero pre-tension, the effective
stress σte already has a nonzero value which is inherited from the pre-tension. Furthermore, the
initial value of σte increases with the increasing pre-tension strain ε. Of course, the curve without
pretension, i.e. ε = 0, starts from zero initial effective stress. Once the torsion begins, however,
the effective stress shows a profound inverse dependence on the pre-tension. For example, when
the surface strain is 0.05, the wire with a higher pre-tension strain has a lower effective stress.
This can be explained as follows. After the torsion starts, the extra hardening due to strain
gradient comes into play. According to Eq. (3.16), the current yield strength is related to the
factor

√
3lκ/(

√
3ε + rκ), which decreases with the increasing ε. In Fig. 4, the wire diameter is

on the same level of plastic characteristic length l, thus the gradient extra hardening is profound
and even dominant in this case. As a result, the extra hardening takes over strain hardening and
dominates the evolution of the current yield strength.
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Fig. 4. The total effective stress σt
e
|r=a, versus the surface strain in the wire of diameter 2a = 2l and

with the pre-tension strain 0, 0.07%, 0.16%, 0.50%, 1.00% and 3.00%, respectively

Fig. 5. Evolution of the normalized torque T/a3 versus the surface strain under various pre-tension
strains and wire diameters: (a) 2a = 2l, (b) 2a = 4l and (c) 2a = 8l

The cyclic response is investigated in Fig. 5, where wires with different diameters and va-
rious pre-tension strains are simulated. As studied in Liu and Soh (2016), both the anomalous
Bauschinger effect and plastic softening may occur, which can be predicted by the proposed
strain gradient elasto-plasticity. Kiener et al. (2010) experimentally observed similar phenome-
na. From Fig. 5, the anomalous Bauschinger effect appears when the wire diameter is 2a = 2l,
but disappears in thicker wires, showing an explicit size effect. The pre-tension tends to weaken
the dependence of wire diameter or, in other words, the gradient-related extra hardening, which
can be observed for variable wire diameter. The reason has been given before, namely due to
the competition mechanism between gradient extra hardening and pre-tension strain hardening.
Plastic softening, which corresponds to the shrinkage of the yield surface, are commonly observed
for all wire sizes and pre-tension diameters. This is due to the argument that strain gradient is
purely elastic under the present elasto-plastic decomposition. Meanwhile, it is influenced by the



Influence of pre-tension on the torsion of microscale Cu wires... 1063

degree of extra hardening. For a larger wire diameter, the gradient extra hardening is weaker
and, therefore, the plastic softening also weakens, but remains observable. On the other hand,
both the anomalous Bauschinger effect and plastic softening quickly becomes weaker and weaker
with increasing loading cycles. This is because in each cycle some plastic strain is produced and
remains permanent, whereas no permanent strain gradient appears. As a result, cycle by cycle,
the gradient-related extra hardening weakens continuously according to Eq. (3.16).

5. Conclusions

The tension-torsion of microscale copper wires is investigated based on the proposal of a simpli-
fied strain gradient elasto-plasticity. In the present theory, elastic lengths and, therefore, higher
order stress are excluded, and no geometric decomposition of strain gradient has been introdu-
ced, leading to the nececeity of a single plastic characteristic length. The numerical results by
this simplified model agree very well with those by the original theory in Liu and Soh (2016).

Torsional responses of wires with pre-tension show some important differences when com-
pared with their counterparts under pure torsions. For a fixed-sized wire, with increasing pre-
tension strain, the torsional yield strength decreases under monotonic torsion, and shows a weak
anomalous Bauschinger effect and plastic softening under cyclic torsion. Particularly, for mono-
tonic torsions, the yield strength of wires with a larger diameter and larger pre-tension strain can
be significantly higher than that of wires with a smaller diameter and smaller pre-tension strain
within a certain range of torsion surface strains. This indicates strong coupling between the size
effect due to the gradient-related extra hardening and the effect of pre-tension strain hardening.
The latter tends to weaken the former. This can be an informative hint to the controversial
issues among experimental data in torsion tests by different research groups. The torsion yield
strength strongly depends on the manufacturing history of wires.

Additionally, during the torsion stage of wires with pre-tension, there may or may not be an
initial elastic stage. Furthermore, the elastic range also depends on the magnitude of pre-tension
strain. For a wire with pretty larger pre-tension strains, e.g. 3.00%, the wire may keep evolving
plastically from the very beginning of torsion. This can be explained by considering the following
two factors. One is that the pre-tension weakens the gradient-related hardening appearing in the
torsion stage, and the other is that large enough pre-tension may already lead to considerable
plastic deformations before torsion starts.

Last but not least, we have taken copper wires as an example in this study. Nevertheless, the
present model is deemed quite general and also works for other metal materials. It is essentially
material-dependent for the anomalous Bauschinger and plastic softening effect to appear or not,
both of which may be captured by the proposed theory.
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