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Dynamic characteristics of the vibration screening machinery is influenced by synchroniza-
tion between induction motors. Therefore, estimating the synchronous state between the
motors is a crucial process for designing the vibration screening machinery. In this paper,
two rotors excited with paralleled and counterrotating motors in a far resonance system are
concerned. To master the synchronization of the system, the dynamic model is firstly esta-
blished; then, the synchronous condition of the system is derived with the Poincaré method;
subsequently, the synchronous stability of the system is discussed by the Hamilton principle;
finally, some computation simulations are implemented to verify correctness of theoretical
analysis. The research result shows that the system actuated by rotors of the identical mass
is planar motion as the stable phase difference between the rotors is stabilized in the zero
phase. The system actuated by nonequivalent mass rotors exhibits spatial motion as the
stable phase difference stabilizes in a nonzero phase.
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1. Introduction

The synchronization phenomenon, defined by Huygens in 1665 through of observation motion
of two pendulum clocks hung in an elastic beam, is widely appeared in the world, such as music
synchronization in concert, communication synchronization in networks and flight synchroni-
zation of wild geese (Banaszewski and Schollbach, 1998; Xiao et al., 2017; Tang et al., 2019).
Blekhman (1988) found synchronization of a dual-motor excitation in a non-resonant system,
and proposed synchronization theory of the dual-motor system with the Poincaré-Lyapunov me-
thod, which guides the application of synchronization theory in theoretical research and practical
engineering. Czolczynski et al. (2012, 2013) and Kapitaniak et al. (2014) considered synchroni-
zation of a series of pendula installed on a horizontal beam, and the synchronous condition of
the system was derived by analytical methods and numerical computations. Those researches
revealed synchronous characteristics in nonlinear dynamic systems. Inoue et al. (1951) gave a
detailed description for synchronization of the dual-rotor excitation in a frequency-tripled vi-
bration system. Wen et al. (2009) used the Hamilton theory and average method to deduce
conditions of synchronization and synchronous stability. The core idea of these methods is se-
eking the balanced torque equation between the motor shafts in the synchronous state. The
author also described that the frequency-triple and frequency-multiple synchronization exists in
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a certain vibrating system. Then, Zhao et al. (2010a,b) studied a revised small parameter me-
thod to describe the synchronous process of rotor systems, which greatly simplifies the solving
process of the synchronization problem in rotor systems. Based on Zhao’s method, Zhang et
al. (2014, 2016, 2017) discussed the transmission mechanism of synchronous torques between a
cylindrical roller and a multi-rotor in a vibrating system. The author showed that the greater
value of the maximum of the synchronous torques, the greater the allowed difference of residu-
al torque between motors accomplishing synchronous operation of unbalanced rotors. Besides,
Balthazar et al. (2004, 2005) proposed some short comments on synchronous rotation of two
(or four) non-ideal unbalanced rotors supported by a flexible strut structure. In a particular
case the “Sommerfeld effect” was also considered. Nanha Djanan et al. (2013, 2014) explored
the system in which three motors worked on the same plate, and the synchronous operation of
the rotors depended on physical characteristics of the motors and the plate. Fang et al. (2014),
Hou et al. (2018), Fang and Hou (2018) considered synchronization and stability of an elasti-
cally coupled rotors in vibration systems, and found that synchronous characteristics of the
system were also influenced by stiffness of coupling springs. Sperling et al. (2000) presented a
two-plane automatic balancing device for equilibration of rigid-rotor unbalance. They did not
only limit to report results of numerical simulation, but also contained derivation of equation
of motion for the considered system as well as analysed of stability conditions on the basis of
an analytical approximation. In light of an active control strategy, Kong et al. (2016a,b) im-
plemented the synchronous state with the zero phase between three rotors by employing an
adaptive sliding mode algorithm to control three motors. The studies above were mainly rela-
ted to synchronization of mechanical systems in a two-dimensional surface, that is to say, the
objects of vibratory synchronization transmission vibrated in a plane. Paz and Cole (1992) and
Zhao et al. (2010a,b) discussed spatial synchronization of a vibrating spiral elevator excited by
two perpendicular unbalanced rotors as spatial motion of the elevator. Chen et al. (2016) gave
theoretical and experimental descriptions to spatial synchronization of two eccentric rotors with
a common rotational axis. These research studies promoted development of separating tech-
nology of the screening machinery and settlement of the common scientific issue of vibrating
synchronization.

In this paper, the dynamic model stems from the linear screening machine, which is used
to screen solid particles from the drilling fluid in drilling engineering. Dynamic characteristics
of the vibration screening machine are determined by synchronization of motors. An interesting
phenomenon is that the vibration locus of this screening machine is linear in a plane when the
rotors of identical mass operate in the opposite direction, which is in favor of transport of solid
particles in the drilling fluid. However, when unbalanced rotors of different mass operate in the
opposite direction, it becomes intractable to convey solid particles. In this paper, we will explain
why this phenomenon happens.

2. Dynamic model

From Fig. 1, it follows that the vibration screening machine consists of an induction motor, vi-
brating body, elastic element and foundation support, as shown in Fig. 1. A rigid vibrating body
of mass m3 is elastically supported via linear damping springs with stiffness kj and damping fj
in the j-direction (j = x, y, z, ψ, δ, υ). The unbalanced rotor i actuated by the induction motor
is modelled by a point mass mi (for i = 1, 2) with eccentricity radius r.

The transformation of reference coordinates is shown in Fig. 1b, and conversion sequence
of the reference coordinates is followed by (Gx′′′y′′′z′′′) → (Gx′′y′′z′′) → (Gx′y′z′). The cosine
matrices of rotation direction corresponding to the coordinates can be expressed by
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Fig. 1. Dynamic model of the vibration screening machinery; (a) dynamic model, (b) reference
coordinates

A1 =




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(2.1)

Considering infinitesimal rotation of the vibrating body in ψ-, δ- and υ-directions, matrices
A2, A3 and A4 are simplified as

A2 =







1 0 0
0 1 −ψ
0 ψ 1
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
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
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υ 1 0
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




(2.2)

In the rotating coordinate system Gx′′′y′′′z′′′, the centroid coordinates of unbalanced rotors
1 and 2 is written by

x′′′1 =







l cos β + r cosϕ1
0

l sin β + r sinϕ1






x′′′2 =







−l cos β + r cosϕ2
0

l sin β + r sinϕ2






(2.3)

The centroid coordinates of the unbalanced rotors in Gx′y′ can be obtained through trans-
formation of the rotation matrix R. Centroid displacements of the vibrating body in Oxyz is
assumed as xG = [x, y, z]

T, and so the centroid of the rotors in the coordinates Oxy can be
expressed by

x1 = xG +A1Rx
′′′

1

x2 = xG +A1R
′′′

2

(2.4)

where

R = A2A3A4 =







1 −υ δ
υ 1 −ψ
−δ ψ 1






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According to kinetic theory, kinetic energy of the system T can be written as in the following

T =
1

2
m3(ẋ

2 + ẏ2 + ż2) +
1

2
Jψψ̇

2 +
1

2
Jδ δ̇
2 +
1

2
Jυυ̇
2 +
1

2

2
∑

i=1

Jiϕ̇
2
i +
1

2

2
∑

i=1

miẋ
T
i ẋi (2.5)

In addition, potential energy of the system V can be expressed by

V =
1

2
kxx
2 +
1

2
kyy
2 +
1

2
kzz
2 +
1

2
kψψ

2 +
1

2
kδδ
2 +
1

2
kυυ
2 (2.6)

Moreover, dissipated energy of the system D can be obtained by

D =
1

2
fxẋ
2 +
1

2
fyẏ
2 +
1

2
fzż
2 +
1

2
fψψ̇

2 +
1

2
fδδ̇
2 +
1

2
fυυ̇
2 (2.7)

According to the Lagrange equation

d

dt

(∂T

∂q̇

)

− ∂(T − V )
∂q

+
∂D

∂q̇
= Q (2.8)

differential equations of motion of the system can be derived. In the system, a matrix
q = [x, y, z, ψ, δ, υ, ϕ1 , ϕ2]

T is chosen as the generalized coordinate matrix, and the generali-
zed force matrix of the vibrating system is given by

[

Qx Qy Qz Qψ Qδ Qυ Qϕ1 Qϕ2

]T
=
[

0 0 0 0 0 0 Me1 −Re1 Me2 −Re2
]T

(2.9)

Substituting Eqs. (2.5), (2.6), (2.7) and (2.9) into Eq. (2.8), the dynamic equation of the system
is written by

Mẍ+ fxẋ+ kxx = m1r(ϕ̈1 sinϕ1 + ϕ̇
2
1 cosϕ1)−m2r(ϕ̈2 sinϕ2 + ϕ̇22 cosϕ2)

Mÿ + fyẏ + kyy = m1r sin θ(ϕ̇
2
1 sinϕ1 − ϕ̈1 cosϕ1) +m2r sin θ(ϕ̇22 sinϕ2 − ϕ̈2 cosϕ2)

Mz̈ + fzż + kzz = m1r cos θ(ϕ̈1 cosϕ1 − ϕ̇21 sinϕ1) +m2r cos θ(ϕ̈2 cosϕ2 − ϕ̇22 sinϕ2)
Jψψ̈ + fψψ̇ + kψψ = m1rl sin 2θ sin β(ϕ̇

2
1 sinϕ1 − ϕ̈1 cosϕ1)

+m2rl sin 2θ sinβ(ϕ̇
2
2 sinϕ2 − ϕ̈2 cosϕ2)

Jδ δ̈ + fδδ̇ + kδδ = m1rl[ϕ̈1 cos(ϕ1 − β)− ϕ̇21 sin(ϕ1 − β)]
−m2rl[ϕ̈2 cos(ϕ2 − β)− ϕ̇22 sin(ϕ2 − β)]

Jυ ϋ + fυυ̇ + kυυ = m1rl sin 2θ cos β(ϕ̈1 cosϕ1 − ϕ̇21 sinϕ1)
−m2rl sin 2θ cosβ(ϕ̈2 cosϕ2 − ϕ̇22 sinϕ2)

J1ϕ̈1 =Me1 −Re1 +m1r sinϕ1(ẍ+ lδ̈ sin β)
+m1r cosϕ1(z̈ cos θ − ÿ sin θ + lϋ cos β sin 2θ + lδ̈ cos β − lψ̈ sin β sin 2θ)

J2ϕ̈2 =Me2 −Re2 −m2r sinϕ2(ẍ+ lδ̈ sin β)
+m2r cosϕ2(z̈ cos θ − ÿ sin θ − lϋ cos β sin 2θ − lδ̈ cos β − lψ̈ sin β sin 2θ)

(2.10)

In the synchronous or steady state, velocity of the motors is stabilized at its rated speed,
hence, acceleration of the motors ϕ̈i is approximately equal to zero. Therefore, introducing a
small parameter µ, the Poincaré form of the last two formulas of Eq. (2.10) can be given (Fang
et al., 2014; Fang and Hou, 2018; Hou et al., 2018)

J1ϕ̈1 = µΦ1 J2ϕ̈2 = µΦ2 (2.11)
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where

µΦ1 =Me1 −Re1 +m1r sinϕ1(ẍ+ δ̈l sin β)
+m1r cosϕ1(z̈ cos θ − ÿ sin θ + lϋ cos β sin 2θ + lδ̈ cos β − lψ̈ sin β sin 2θ)

µΦ2 =Me2 −Re2 −m2r sinϕ2(ẍ+ δ̈l sin β)
+m2r cosϕ2(z̈ cos θ − ÿ sin θ − lϋ cos β sin 2θ − lδ̈ cos β − lψ̈ sin β sin 2θ)

(2.12)

3. Synchronism of two rotors

In th steady state of the vibrating system, accelerations of the motors ϕ̈1 and ϕ̈2 are approxi-
mately equal to zero, and velocities of the motors ϕ̇1 and ϕ̇2 are stabilized at the rated speed ω,
i.e., ϕ̈1 = ϕ̈2 = 0 and ϕ̇1 = ϕ̇2 = ω. In order to obtain the non-dimensional approximate solution
of the system, the following dimensionless parameters

η1 =
m1
M

η2 =
m2
M

ζx =
fx

2
√
Mkx

ζy =
fy

2
√

Mky
ζz =

fz

2
√
Mkz

ζψ =
fψ

2
√

Jψkψ
ζδ =

fδ
2
√
Jδkδ

ζυ =
fυ

2
√
Jυkυ

rl =
l

le

(3.1)

are introduced into Eq. (2.10), and so the first six formulas in Eq. (2.10) can be rewritten as

ẍ+ 2ζxωxẋ+ ω
2
xx = ω

2(η1r cosϕ1 − η2r cosϕ2)
ÿ + 2ζyωyẏ + ω

2
yy = ω

2(η1r sin θ sinϕ1 + η2r sin θ sinϕ2)

z̈ + 2ζzωzż + ω
2
zz = ω

2(η1r cos θ sinϕ1 + η2r cos θ sinϕ2)

ψ̈ + 2ζψωψψ̇ + ω
2
ψψ = ω

2
(η1rrl sin 2θ sin β

le
sinϕ1 +

η2rrl sin 2θ sin β

le
sinϕ2

)

δ̈ + 2ζδωδδ̇ + ω
2
δδ = ω

2
[−η1rrl

le
sin(ϕ1 − β) +

η2rrl
le
sin(ϕ2 − β)

]

ϋ + 2ζυωυυ̇ + ω
2
υυ = ω

2
[−η1rrl sin 2θ cos β

le
sinϕ1 +

η2rrl sin 2θ cos β

le
sinϕ2

]

(3.2)

where

ωx =

√

kx
M

ωy =

√

ky
M

ωz =

√

kz
M
ωψ =

√

kψ
Jψ

ωδ =

√

kδ
Jδ

ωυ =

√

kυ
Jυ

le =

√

Jψ
M
≈
√

Jδ
M
≈
√

Jυ
M

Thus, the displacement responses of the vibrating body can be expressed as follows

x = rµx[η1 cos(ϕ1 − γx)− η2 cos(ϕ2 − γx)]
y = rµy sin θ[η1 sin(ϕ1 − γy) + η2 sin(ϕ2 − γy)]
z = rµz cos θ[η1 sin(ϕ1 − γz) + η2 sin(ϕ2 − γz)]

ψ =
rrlµψ sin 2θ sin β

le
[η1 sin(ϕ1 − γψ) + η2 sin(ϕ2 − γψ)]

δ =
rrlµδ
le
[η2 sin(ϕ2 − γδ − β)− η1 sin(ϕ1 − γδ − σβ)]

υ =
rrlµυ sin 2θ cos β

le
[η2 sin(ϕ2 − γυ)− η1 sin(ϕ1 − γυ)]

(3.3)
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where µj = 1/
√

(1− n2j)2 + (2ζjnj)2, (j = x, y, z, ψ, δ, υ), and γj = tan−1(2ζjnj)/(1−n2j ), γj are
lagging phase angles in the j-direction, in which nj = ωj/ω.

3.1. Synchronous condition

Based on the approximate solutions above, the synchronous condition and synchronous sta-
bility between the rotors can be determined with the Poincaré method (Fang and Hou, 2018).
In addition, the phase angle of the rotors can be assumed as

ϕ1 = ωt+ α1 ϕ2 = ωt+ α2 (3.4)

When the asynchronous motors operate in the steady state, the phase difference between the
rotors is noted as

α = α1 − α2 (3.5)

According to Eq. (3.3), the two-order derivative of x, y, z, υ, δ and ψ with respect to time t can
be calculated. Substituting ẍ, ÿ, z̈, ϋ, δ̈ and ψ̈ into Eq. (2.12), and then integrating and averaging
this equation related to t over period T , respectively, synchronous indexes P1 and P2 can be
obtained

P1 =
1

T

T
∫

0

µΦ1 dt =Me1 −Re1 +
1

2
mr2ω2[η21Ws0 +Ws cosα+Wc sinα]

P2 =
1

T

T
∫

0

µΦ2 dt =Me2 −Re2 +
1

2
Mr2ω2[η22Ws0 +Ws cosα−Wc sinα]

(3.6)

where

Ws0 = −µx sin γx − µy sin2 θ sin γy + µz cos2 θ sin γz
− µψr2l sin2 2θ sin2 β sin γψ − µυr2l sin2 2θ cos2 β sin γυ − µδr2l sin γδ

Ws = η1η2µx sin γx − η1η2µy sin2 θ sin γy + η1η2µz cos2 θ sin γz
− η1η2µψr2l sin2 2θ sin2 β sin γψ + η1η2µυr2l sin2 2θ cos2 β sin γυ + η1η2µδr2l sin γδ

Wc = η1η2µx cos γx − η1η2µy sin2 θ cos γy + η1η2µz cos2 θ cos γz
− η1η2µψr2l sin2 2θ sin2 β cos γψ + η1η2µυr2l sin2 2θ cos2 β cos γυ + η1η2µδr2l cos γδ

(3.7)

As shown in Eq. (3.7), the values Ws0 and Ws are defined as sine coefficients of the lagging
phase γj (j = x, y, z, ψ, δ, υ) and Wc are denoted as cosine coefficients of the lagging phase γj.

Now, the possible synchronous motion of the system is analyzed. We find from Eqs. (3.6)
and (3.7)

(M e1 +Me2)− (Re1 +Re2) +
1

2
Mr2ω2[(η21 + η

2
2)Ws0 + 2Ws cosα] = 0

M e2 −Me1 − (Re2 −Re1)−
1

2
mr2ω2(η21 − η22)Ws0 =Mr2ω2Wc sinα

(3.8)

Equation (3.8)1 can be used to find the approximation of the rated speed ω when the motors
operate in the synchronous state. The term of Me1 +Me2 is the sum of the average electro-
magnetic torque of the two induction motors; the term of Re1 + Re2 is the sum of the average
friction torque of the two rotors; the other terms represent the load torque in the two rotors.
Therefore, Eq. (3.8)1 is the equation of the vibrating torque between the rotors when the system
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operates in the steady state. Equation (3.8)2 can be employed to search the approximations of
the phase difference α when the motors are operating in the synchronous state. Therefore, Eq.
(3.8)2 is the relationship of the synchronous torque between the rotors and the difference of the
residual torque between the two motors. According to Eq. (3.8)2, the synchronous torque TSys
and the difference of the residual torque TDiff are specified as

TSys =Mrω2|Wc| TDiff = TRes2 − TRes1 (3.9)

where

TRes1 =Me1 −Re1 +
1

2
Mr2ω2η21Ws0 TRes2 =Me2 −Re2 +

1

2
Mr2ω2η22Ws0

are considered as the residual torque in motor 1 and 2, respectively.
Substituting Eqs. (3.9) into Eq. (3.8)1, and rearranging it, the phase difference between the

rotors can be expressed by

α = arcsin
TDiff

TSys sgn (Wc)
(3.10)

As shown in Eq. (3.10), the phase difference between the rotors is a function related to parameters
TDiff and TSys. On account of | sinα| ¬ 1, the synchronous condition of the system is expressed
by

TSys ­ |TDiff | (3.11)

According to Eq. (3.11), to guarantee synchronous operation between the rotors, the synchronous
torques of the system should be greater than or identical with the difference of the residual torque
between the two motors.
The coefficient of the synchronous ability of the system ς can be defined by

ς =
∣

∣

∣

TL
TSys

∣

∣

∣ (3.12)

where TL is the maximum load torque in the two motors, i.e., TL = 0.5Mr2ω2[(η21 + η
2
2)Ws0 +

2Ws]. The smaller the coefficient of the synchronous ability, the greater the possibility of im-
plementing synchronous motion between the motors. When the value of ς is larger than 1, it
is difficult to implement synchronous operation between the rotors. The coefficient of the syn-
chronous ability ς is related to the load torque TL and synchronous torque TSys, which is the
function of parameters η1, η2, rl, θ, β and ζj (j = x, y, z, ψ, δ, υ). As shown in Fig. 2, the coeffi-
cient of synchronous ability ς is decreased with an increase in the parameters rl and β, inversely,
the coefficient ς is increased with an increase in the parameter θ. In other words, the smaller
the distance l and angle β between the two motors, the greater the possibility of implemen-
ting synchronous motion between the rotors; but the small value of angle θ is in favor of the
implementation of synchronous operation in the vibrating system.

3.2. Synchronous stability

According to Eq. (3.10), two solutions of the phase difference α between the rotors can be
obtained from numerical analysis, however, which one is a stable value should be discussed by
the Hamilton principle. In light of Eqs. (2.5) and (2.6), Hamilton’s action quantity during the
period, represented by S, can be written as in the following

S =
1

2π

2π
∫

0

L dϕ =
1

2π

2π
∫

0

(T − V ) dϕ (3.13)
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Fig. 2. Coefficients of the synchronous ability when η1 = 0.02 and η2 = 0.04; (a) rl = 0.5, (b) rl = 1,
(c) rl = 2, (d) rl = 3

In light of Eq. (3.3), substituting the first-order derivative of Eq. (3.2) related to time t into
Eqs. (2.5) and (2.6), and Hamilton’s action quantity S, one obtains

S = −1
4
mr2ω2Wc cosα (3.14)

According to (Kong et al., 2016a), the phase difference corresponding to Eq. (3.10) satisfied
to the minimum Hamilton’s action is stable. In other words, the second-order derivative of S
related to α in Eq. (3.13) should be greater than zero, i.e.

d2S

dα2

∣

∣

∣

∣

∣

α=α0

> 0 (3.15)

Substituting Eq. (3.14) into Eq. (3.15), the condition of synchronous stability can be expressed
as

Wc cosα > 0 (3.16)

As shown in Eq. (3.15), if Wc > 0, the phase difference α located in the region of (−π/2, π/2) is
stable; and if Wc < 0, the phase difference α located in the region of (π/2, 3π/2) is stable; when
Wc = 0, the parameters of the system cannot satisfy the synchronous condition in Eq. (3.11).
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4. Numerical analysis

In this Section, some numerical analysis is carried out to discuss the stable phase difference,
which can be calculated according to Eqs. (3.10) and Eq. (3.16). The phase difference is deter-
mined by the parameters TDiff and TSys. These parameters are functions of frequency ratios nj
(j = x, y, z, ψ, δ, υ), damping ratios ζj, mass ratios (η1, η2) and geometrical parameters (l, β, θ).
However, the synchronous state of the system is less influenced by the damping ratios as the
damping coefficients are very small in the vibration screening machine. Moreover, the system is
a far resonance system, and so the value of frequency ratios is greater than or equal to 5. The-
refore, mass ratios and geometrical parameters are important to the synchronous investigation
in this paper. The values of the parameters corresponding to general engineering application are
nj = 5 (j = x, y, z, ψ, δ, υ), ζj = 0.07, rl = {0.5, 1, 2, 3}, and β = {0, π/6, π/4, π/3}.

Fig. 3. Synchronous torque when η1 = η2 = 0.02; (a) rl = 0.5, (b) rl = 1, (c) rl = 2, (d) rl = 3

Firstly, we considered mass of the unbalanced rotors to be identical, and so the mass ratios
(η1, η2) between the rotors and the vibrating body should be identical, i.e., η1 = η2. Thus, Eq.
(3.8)2 is simplified as Me2−Me1− (Re2−Re1) =Mr2ω2Wc sinα. As the two motors are of the
same type, the parameters of the motors are also alike. In this case, the difference of residual
torque in motor 1 and 2 should be zero, i.e., M e2−Me1− (Re2−Re1) = 0. Therefore, Eq. (3.8)2
is further rewritten as sinα = 0, and there are two solutions for α in this situation, i.e., α = 0 or
α = π, which is stable solution determined by Eq. (3.16). According to Eq. (3.16), the stability
of the phase difference is influenced by the synchronous torque Wc. If Wc < 0, the condition
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of synchronous stability of the system is replaced by cosα < 0; if Wc > 0, the stability of the
system is replaced with cosα > 0. Therefore, the synchronous torque Wc is a key coefficient to
determine the stability of the phase difference. The values of the synchronous torque between
the two rotors are shown in Fig. 1 when η1 = η2 = 0.02. As illustrated in this figure, the value
of the synchronous torque Wc is greater than zero when η1 = η2. As a result, the condition of
synchronous stability in the system can be expressed by cosα > 0. On account of sinα = 0, the
phase difference between the motors is stabilized at α = 0. On the other hand, the synchronous
torque Wc is gradually increased with an increase in rl, decreased with an increase in β, and
first increased and then decreased with the increase of θ.

Secondly, consider the mass of the unbalanced rotors to be different, and so the mass ratios
(η1, η2) of the rotors and the vibrating body should be nonequivalent, such as η1 = 0.02 and
η2 = 0.04. Thus, Eq. (3.8)2 is further rewritten as sinα = − sin[(η21 − η22)Ws0/2Wc] on account
of Me2 − Me1 − (Re2 − Re1) = 0, and there are two solutions for α in thid situation, i.e.,
α = − arcsin[(η21 − η22)Ws0/2Wc] or α = π + arcsin(η21 − η22)Ws0/2Wc]. The solution is stable
and determined by Eq. (3.16). The stable phase difference between the motors in this case is
illustrated in Fig. 4. It follows that the phase difference is influenced by parameters rl, β and θ.
The greater the parameters β and rl, the greater stable phase difference between the motors.
However, the phase difference is irregularly fluctuated with changes in the parameter θ. Of
course, the stable phase difference can be also obtained when the mass ratio (η1, η2) is equal to
other values. As the space limitation, the peculiar example is only calculated numerically.

Fig. 4. Stable phase difference when η1 = 0.02 and η2 = 0.04; (a) rl = 0.5, (b) rl = 1, (c) rl = 2,
(d) rl = 3
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To understand variation tendencies of the key parameters of the system, the relationship
among the phase difference, synchronization torque and angle θ should be discussed. Firstly,
considering the mass of the unbalanced rotor to be identical, as shown in Figs. 5a and 5b, it can
be seen that the phase difference is stabilized in zero forever, and the synchronization torque
is gradually increased with an increase in the parameter rl. Secondly, considering the mass of
the unbalanced rotor to be different, it follows that the phase difference is no longer a single
zero solution with the variation parameter rl, but the synchronization torque is also gradually
increased with an increase in the parameter rl. The analysis further verifies that the synchronous
state between the motors is mainly determined by the mass of the unbalanced rotors, and the
synchronization torque is influenced by the distance between the motors and unrelated to the
phase difference. Therefore, for designing the vibrating screen, such as the proposed model in
this paper, the installation position between the motors and the mass of the rotors should be
carefully chosen, in this case, the ideal dynamic characteristics of the system can be obtained.

Fig. 5. The relationship among the phase difference, synchronization torque and angle θ;
(a) η1 = η2 = 0.02, rl = 3, (b) η1 = η2 = 0.02, rl = 4, (c) η1 = 0.02, η2 = 0.04, rl = 3,

(d) η1 = 0.02, η2 = 0.04, rl = 4

According to Eqs. (3.3), (3.4) and (3.5), the dynamic characteristics of the vibrating body
can be estimated with the stable phase difference between the rotors. Combining the theory of
rigid body dynamics with the synchronous state between the rotors, the dynamic characteristics
of the vibrating body can be also ascertained in light of Fig. 1. Table 1 shows oscillation of the
vibrating body in different directions. Symbol N represents no vibration in the corresponding
direction, oppositely, symbol Y represents vibration in the corresponding direction. It follows
that when η1 = η2, the vibrating body oscillates in the plane coordinate system Oyz and swung
around the axis x. In this case, thw material on the vibrating body vibrates in the Oyz plane
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to the is benefit of material transport; when η1 6= η2, the vibrating body oscillates in the space
coordinate system Oxyz and swung around axis x, y and z. In this case, the material on the
vibrating body moving in the space coordinate system Oxyz decreases the transport efficiency.

Table 1. Oscillation of the vibrating body

Samples
Direction

x y z ψ δ υ

η1 = η2 N Y Y Y N N

η1 6= η2 Y Y Y Y Y Y

5. Computer simulations

This Section refers to the case when the unbalanced rotors with the same mass are actuated by
the motors in the far resonance system. The values of parameters are as follows: kx ≈ ky ≈ kz =
98596, kψ ≈ kδ ≈ kυ = 19719, fx ≈ fy ≈ fz = 207, fψ ≈ fδ ≈ fυ = 150, θ = π/4, β = π/3,
m1 = 4, m2 = 4, m3 = 100, r = 0.05, l = 0.5, Jψ ≈ Jδ ≈ Jυ = 20. The values of parameters are
η1 = 0.04, η2 = 0.04, ωx ≈ ωy ≈ ωz ≈ ωψ ≈ ωδ ≈ ωυ = 31.4, ζx ≈ ζy ≈ ζz ≈ ζψ ≈ ζδ ≈ ζυ = 0.07,
rl = 1. With implementation of computation simulations, the dynamic characteristics of the
system are found and shown in Fig. 6. As can be seen in Fig. 6a, the velocities of the motors,

Fig. 6. The dynamic characteristics of the system when η1 = η2 = 0.02; (a) velocity of the motor,
(b) phase difference between the motors, (c) displacement of the vibrating body, (d) rotary oscillating of

the vibrating body
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supplied by the electric source at the same time, are consistent in the total operation stage,
and so the rotors actuated by the identical motors, are synchronous in such values. The phase
difference between the rotors is stabilized at zero in the whole range, as shown in Fig. 6b, which
is in good agreement with the theoretical results from Section 4. In this case, the displacement
of the vibrating body in the x-, y-, and z-directions is shown in Fig. 6c. As the stable phase
difference is always located in zero, the amplitude of the vibrating body in the x-direction is zero,
therefore, the vibrating body driven with the motors oscillates in the plane Oyz. The driving
force, produced by the unbalanced rotors, may result in rotary oscillation of the vibrating body,
such as shown in Fig. 6d. The rotary amplitudes of the vibrating body in the δ- and υ-directions
are zero, however, the body oscillates in the ψ-direction (around axis x) due to the zero phase
between the rotors. It can be seen from the analysis above, the vibration screening machinery
oscillates in the Oyz plane and swung around axis the x when the stable phase difference between
the rotor is stabilized in zero.

Fig. 7. The dynamic characteristics of the system when η1 = 0.02 and η2 = 0.04; (a) velocity of the
motor, (b) phase difference between the motors, (c) displacement of the vibrating body, (d) rotary

oscillating of the vibrating body

To verify correctness of the theoretical analysis, some numerical simulations are carried out.
This Section refers to the case when the unbalanced rotors with different mass are actuated by
the two motors in the far resonance system. The values of parameters are following: kx ≈ ky ≈
kz = 98596, kψ ≈ kδ ≈ kυ = 19719, fx ≈ fy ≈ fz = 207, fψ ≈ fδ ≈ fυ = 150, θ = π/4, β = π/3,
m1 = 4, m2 = 2, m3 = 100, r = 0.05, l = 0.5, Jψ ≈ Jδ ≈ Jυ = 20. The values of parameters
corresponding to Eq. (3.1) are η1 = 0.04, η2 = 0.02, ωx ≈ ωy ≈ ωz ≈ ωψ ≈ ωδ ≈ ωυ = 31.4,
ζx ≈ ζy ≈ ζz ≈ ζψ ≈ ζδ ≈ ζυ = 0.07, rl = 1. The dynamic characteristics of the system are shown
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in Fig. 7. As can be seen in Fig. 7a, the velocities of the motors, supplied by the electric source
at the same time, are different at the start stage as the rotational inertia of the rotor is strikingly
different. It should be noted that the velocities of the two rotors are compatible to each other
in at steady operation stage. The phase difference between the rotors is stabilized at −0.1863
at the synchronous stage, as shown in Fig. 7b, which is in good agreement with the theoretical
analysis (Fig. 4b). The displacement of the vibrating body in the x-, y-, and z-directions is
shown in Fig. 7c. The stable phase difference is nonzero, the vibrating body is vibrating in the
x-, y-, and z-directions; therefore, the vibrating body driven with the motors oscillates in the
space coordinate system Oxyz. The driving forces, produced by the unbalanced rotors, result
in rotary oscillation of the vibrating body, as shown in Fig. 7d. The vibrating body oscillates
in the ψ-, δ- and υ-directions on account of the nonzero phase between the rotors. It can be
seen from analysis above that the vibration screening machine oscillates in the Oxyz plane and
swung around the axis x, y and z when the stable phase difference between the rotor is stabilized
in nonzero.

6. Conclusions

In this paper, two unbalanced rotors excited with paralleled and counterrotating motors in a
far resonance system are concerned, whose dynamic characteristics are considered as spatial
synchronization on account of the existence of spatial installation of the motors. Based on
the dynamic equation of the system, the synchronous condition between the rotors is derived
with the Poincaré method. According to the synchronous condition, to guarantee synchronous
operation of the rotors, the synchronous torques between the motors should be greater than or
identical with the difference between the residual torques of the two motors. Two solutions of the
phase difference can be obtained through solving the synchronous condition, however, whether
it is stable can be deduced by the Hamilton principle. Therefore, the synchronous stability is
determined by the synchronous torque, i.e., if the synchronous torque is greater than zero, the
phase difference located in the region (−π/2, π/2) is stable. If the synchronous torque is smaller
than zero, the phase difference α located in the region (π/2, 3π/2). When the synchronous
torque is equal to zero, the parameters of the system cannot satisfy the synchronous condition.
According to the stable phase difference between the rotors, the dynamic characteristics of the
vibration screening machine can be predicted. The research result shows that the vibration
screening machine actuated with the unbalanced rotors of identical mass exibits planar motion
as the stable phase difference between the rotors is stabilized in zero. The vibration screening
machine actuated with the unbalanced rotors of various mass moves spatially as the stable phase
difference is stabilized in a nonzero value.
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