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It is shown that it is possible to obtain such parameters as α and Q, which, when used
in the analytical formulae proposed by O’Dowd and Shih, can lead to stress distributions
similar to those obtained numerically. The numerical solution obtained after calibration of
the stress-strain uniaxial curve and assuming large strains is expected to be close to the
“real” stress distribution. Thus, the analytical solution after correction is also close to the
“real” stress distribution. These new values of α and Q can now be used in fracture criteria
proposed within the scope of classical nonlinear fracture mechanics.

Keywords: stress distribution in front of crack, HRR, constitutive equation calibration

1. Introduction – classical fracture mechanics and the stress distribution in

front of the crack

Classical elastic-plastic fracture mechanics was born in 1968 with the papers by Hutchinson
(1968) and Rice and Rosengren (1968). The Dugdale model (1960) had previously introduced
the plastic zone in front of the crack as a strip-yield zone under the strong assumptions of a
plane stress state and the Tresca yield condition only. The Hutchinson-Rice-Rosengren (HRR)
solution was also derived under the strong simplifying assumptions of a plane strain state, the
Ramberg-Osgood (RO) constitutive relationship and small strains. In the HRR solution, the
plastic stress intensity factor was replaced (McClintock, 1971) by Rice’s J-integral (Rice, 1968)
(see also Cherepanov, 1967) representing the amplitude of the singular field in front of the crack,
Eq. (1.1), and this theory has dominated the field of nonlinear fracture theory

(σij)HRR = σ0
( J

αε0σ0Inr

) 1

1+n

σ̃ij(n, θ) + . . . (1.1)

where J is the J-integral, σ0 is the yield strength, ε0 = σ0/E, E is Young’s modulus, n and
α are the power exponent and coefficient in the RO constitutive relation, respectively, In is a
function that depends on n, and this function can be found, e.g., in (Neimitz et al., computer
program), σ̃ij(θ, n) can also be found for selected n in (Neimitz et al., computer program) for
an arbitrary material for the plane stress, plane strain and three-dimensional cases, and r and
θ are the coordinates of the polar coordinate system located at the crack tip.
The fracture criterion using the J-integral is actually conservative, and the second term, the

Q-stress, which replaces all neglected terms in the asymptotic expansion for the stress field, was
introduced by O’Dowd and Shih (OS) (1991)

σij = (σij)HRR +Qσ0σ̂ij(n, θ) (1.2)

where Q, computed according to O’Dowd and Shih (1991), represents the difference between the
analytical (σθθ)HRR and numerical results (σθθ)FEM at the fixed normalized distance as shown as
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Q =
(σθθ)FEM − (σθθ)HRR

σ0
at θ = 0 γ =

rσ0
J
= 2 (1.3)

The reference value can be obtained as the HRR field (σθθ)HRR, Eq. (1.1), or as a numerical
result computed on the assumption of small-scale yielding (the boundary layer approach). This
problem was also discussed in detail by O’Dowd (1995). Equations (1.1) and (1.2) are derived
on the assumption of a plane strain.

This Q-stress was introduced to reduce the conservatism of the critical moment assessment
(Koçak et al., 2008; O’Dowd, 1995; Ainsworth and O’Dowd, 1995; Neimitz et al., 2007). Almost
at the same time as the OS paper was published (O’Dowd and Shih, 1991) (two years later),
Yang, Chao and Sutton (YCS) (Yang et al., 1993) derived a formula for the stress distribution
in front of the crack containing three terms. Both the OS and YCS formulae introduced an
important correction to the stress distribution in front of the crack; however, those approaches
still suffered from the strong assumptions of a plane strain and small strains. TheQ-stress cancels
out the difference between the numerical and analytical solutions in the case of the plane strain
assumption. The Q-stress is equal to zero for the plane stress; thus, this quantity must change
along the crack front, from the specimen axis (the state almost dominated by plane strain)
to the specimen surface (the state dominated by plane stress) when the 3D situation would be
considered. Using a measure of the stress triaxiality that could be Guo’s Tz parameter, the stress
distribution was corrected to introduce the specimen thickness effect on the stress level (Guo,
1997; Neimitz and Graba, 2008; Neimitz and Dzioba, 2015; Xiang and Guo, 2013)

σij = σ0
( J far

ασ0ε0In(Tz, n)r

) 1

1+n

σ̃ij(θ, n, Tz) (1.4)

where Tz is defined as

Tz =
σ33

σ11 + σ22
(1.5)

The functions σ̃ij(θ, n, Tz) and In(n, Tz) can be found using a computer program (Neimitz et
al.). Also the assumption of small strains was kept in this case.

Fig. 1. Stress – distance from the crack front curves following numerical and analytical Eqs. (1.1)
and (1.4) computations (Neimitz and Graba, 2008)

Figure 1 demonstrates the strong influence of the out-of-plane constraint when the assump-
tion of plane strain is neglected. The results obtained using OS, YCS or Guo’s Tz parameters
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are generally compared with the finite element method results. However, in the finite element
method, it remains the case that small strains and the RO constitutive equations are still assu-
med.
The HRR model requires two parameters from the RO constitutive equation (ε11 =

α(σ11/σ0)
n, uniaxial version), that is, α and n. The approach used to determine these material

parameters is not unique using experimental data and the engineering stress-strain relationship;
this problem was discussed in detail by O’Dowd (1995).

2. Numerical computation of the stress field in front of the crack

Numerical computations of the stress field in front of the crack require a constitutive equation,
which can be introduced either as the RO formula to compare the results with analytical re-
sults or can be a stress-strain curve obtained in the uniaxial test if one wishes to obtain the
results possibly close to the “real” values. To make the model as close as possible to the real
environment in front of the crack in an elastic-plastic material, finite strains must be assumed,
and 3D geometry must be used. Moreover, to be as close as possible to the real environment in
front of the crack, the true stress-logarithmic strains should be calibrated (Bai and Wierzbicki,
2008). The calibration should take into account the triaxiality parameter, η = σm/σe where σm
and σe are the first stress tensor invariant and the effective stress, respectively; and the Lode
angle/parameter. The calibration influences the stress distribution in front of the crack as shown
in Fig. 2. Note that after the calibration, which takes into account material softening at the last
stage of loading (Bai and Wierzbicki, 2008; Neimitz et al., 2018), the results are acceptable from
the physical point of view; the curves go down towards the crack tip before the stress maximum
is reached. It is not particularly important what specimen shape is used for the calibration as
long as the stress triaxiality is suitably high. The stress maximum after calibration (material N,
temp. +20◦C, Table 1) is lower by 2.6% than the results obtained by computation without
calibration. The stress maximum lies in the range from 1291MPa to 1297MPa for the results
of computations performed using calibrated stress-strain curves. The differences between the
distances of the stress maximum from the crack tip are within the range of 4µm.

An exemplary result of such calibration according to the procedure presented in (Neimitz et
al., 2018) is shown in Fig. 2.

Fig. 2. Stress distribution in front of the crack: curve 1 – true stress-log.strain curve extrapolated as a
linear function, no calibration; curve 2 – true stress-log.strain curve extrapolated as a power function,
no calibration; curve 3 – after calibration including material softening (material N, temp. +20◦C
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The curves in Fig. 2 were obtained from a single-edge-notch-bend (SEN(B)) specimen. Thick-
ness of the specimen was B = 12mm, and widthW = 24mm. These specimen dimensions satisfy
the requirements of the plane strain. One half of the specimen thickness was divided into 11 lay-
ers. The distributions shown in Fig. 2 were computed for the central layer. Large strains were
assumed, and J2 plasticity was incorporated. Linear, hexagonal C3D8 elements (ABAQUS) with
full integration were used. The crack tip was blunted by a 12µm radius. The size of the finite
elements increased with increasing distance from the crack tip. The size of the smallest ele-
ment was 27µm. Thickness of the layers through the thickness decreased towards the specimen
external surface. The thinnest layer was 0.27ṁm.

The mechanical properties of the materials tested in the research programs are listed in
Table 2.

Table 2. Mechanical properties of the tested materials

Heat
Microstructure

Temp. E ReL ReH Rm n
treatment [◦C] [GPa] [MPa] [MPa] [MPa]

S355JR
steel,

symbol NW

Normalized
and annealed
(600◦C, 150 h)

Ferrite
containing
spheroidized
carbide particles

+20 210 382 368 470 8.93

−50 212 390 396 526 7.19

S355JR steel, Normalized
Ferrite-pearlite +20 197 367 375 496 7.9

symbol N at 950◦C

The results presented in Figs. 1 and 2 show different pictures of the stress distributions in
front of the crack for the same material, specimen geometry and external loading. The researcher
faces an important problem. If one wishes to use the classical engineering approach and the
fracture criterion based on the J-integral, the small strain, plane strain and RO constitutive
equation must be used. The more advanced approach using the OS or YCS solutions can also be
used based on certain theories published previously (Koçak et al., 2008; O’Dowd, 1995; Ainsworth
and O’Dowd, 1995; Neimitz et al., 2007; Guo, 1997; Neimitz and Graba, 2008; Neimitz and
Dzioba, 2015; Xiang and Guo, 2013). However, when using these approaches, one knows that the
stress distribution in front of the crack is not correctly computed for two reasons: the small strain
assumption and the RO constitutive equation, which in most cases is not uniquely determined.
The question arises: can one minimize the differences between the stress distributions computed
analytically using Eq. (1.2) and numerically, computed in such a way that the result is close to
the “real” distribution? This problem is discussed in the next Section.

3. Analytical solutions vs. numerical solutions

It is assumed that the numerical solution is based on the following conditions:

a) The real stress-strain curve is obtained in the uniaxial tensile test and converted to the
real stress-logarithmic strain and properly calibrated.

b) Finite strains and J2 theory of plasticity are incorporated.

c) A 3D model of the specimen is employed.

These conditions provide results that are the closest to the real stress distribution in front
of the crack. In a real situation (i.e., the 3D case), the pure plane strain condition (Tz = 0.5) is
not often met close to the crack front. The situation close to the plane strain is observed in the
central part of the specimens tested. The Tz parameter is greater than 0.4 in the domain from
0 to 0.45mm from the crack front for the specimens tested in the present research program. All
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tested specimens satisfy the requirements of the plane strain. Thus, the stress distribution in
the central part of the specimen will be considered in this paper, and this stress distribution is
considered the reference result and is used to correct the stress distribution obtained using Eqs.
(1.1) and (1.2) (O’Dowd and Shih, 1991).

In the first step on the way to force the stress distribution in front of the crack, as computed
using Eq. (1.2), to be as close as possible to the stress distribution computed using the finite
element method, the constitutive equation is calibrated. The modified Bai-Wierzbicki (2008)
procedure is applied and the results are published in (Neimitz et al., 2018). Calibration was
performed using four different specimen geometries characterized by a high triaxiality factor η
and a wide range of the Lode parameter values. In addition, the softening of material due to the
massive voids growth and coalescence was introduced. In the further analysis, the calibration
procedure including material softening due to the void growth and coalescence was implemented.
Computations were performed at the presumed onset of the crack growth. The stress distribu-
tions were recorded for the central layers of the specimens (selected curves are shown in Fig. 2).
For this layer, the J-integral was also computed.

In the second step, three points are selected along the curve representing the crack opening
stress tensor component σ22. An exemplary stress distribution is shown in Fig. 3.

Fig. 3. Stress distribution in front of the crack computed numerically, material N, temp. +20◦C

The curve in Fig. 3 was recorded for material N (temp. +20◦C). Each of the selected points
has two coordinates σ22 and r. These coordinates were introduced into Eq. (1.2), and three
equations were obtained with three unknowns: α, n and Q. Notably, no unique solution of this
set of equations exists in most cases. Thus, in the third step, it was assumed that the curve
passing through the selected points along the curve, as in Fig. 3, is the power function, as in
Eq. (1.1), and that the exponent n is the same as obtained in the stress-strain relation in the
uniaxial tensile test and used in the HRR formula, Eq. (1.1). The curve in Fig. 3 was obtained
using finite elements in conjunction with calibrated constitutive equations, starting from the true
stress-logarithmic strain curve. It is also assumed that the Q-stress in Eq. (1.2) is not constant
(in fact it is not; see the OS paper (O’Dowd and Shih, 1991)), but that the variations are not
strong. To ensure agreement with the OS postulate, the reference value of the Q-stress should
be measured at the normalized distance from the crack front γ = rσ0/J = 2. Thus, the formula
used to determine the parameters in modified Eq. (1.2) is as follows

σ22 = σ0
( J

σ0ε0Inαr

) 1

1+n

σ̃22(n, θ) + (Qγ=2 +∆Q)σ0 (3.1)
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or using the normalized distance from the crack front γ = rσ0/J

σ22 = σ0
( E

σ0Inαγ

) 1

1+n

σ̃22(n, θ) + [Qγ=2 + β(γ − 2)]σ0 (3.2)

In Eq. (3.2), ∆Q is replaced by β(γ−2), assuming a linear relationship. Thus, Eq. (3.2) contains
three unknowns: α, β and Qγ=2. Now selecting three points along the curve as in Fig. 3, a set
of three algebraic equations with three unknowns can be obtained, and this set of equations has
a unique solution. The computational results are shown below.

Fig. 4. Stress distributions in front of the crack, computed numerically, using Eq. (1.1), using Eq. (3.2)
and Eq. (3.2) for Q = 0: (a) material N, temp. +20◦C, (b) material NW, temp. +20◦C,

(c) material NW, temp. −50◦C

The HRR curves obtained using Eq. (1.1) were drawn with the power exponent n listed in
Table 1 and α = 1 in the plastic region and a linear relation in the elastic region, according to
the suggestions by O’Dowd (1995) as an option well representing both the elastic and plastic
behaviour of the material in finite element computations. The quantities In and σ̃22(n, θ) were
found using a computer program (Neimitz et al.). Table 2 presents the numerical results and the
J-integral, which was identical in computing all curves for each material. The computed values
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of α, β and Qγ=2 are also listed in Table 3. The first term in Eqs. (3.1) and (3.2) is identical
to Eq. (1.1), except the constant α. The second term in Eqs. (3.1) and (3.2), the Q term, is
different than in Eq. (1.2) and it is defined as

Q =
(σ22)FEM LS − (σ22)HRR α

σ0
(3.3)

where (σ22)FEM LS is the stress distribution computed numerically using the option of large
strains and calibrated constitutive equations. It is so called the reference stress distribution and
replaces the term (σ22)FEM in Eq. (1.3). The term (σ22)HRR α is identical to Eq. (1.1), except
the constant α which now is computed, not assumed to be equal to 1.

Table 3. Parameters obtained and used in computations

Material N, Material NW, Material NW,
temp. +20◦C temp. +20◦C temp. −50◦C

n 7.9 8.93 7.19

In 4.68 4.61 4.75

σ̃22(n, θ) 2.41 2.46 2.38

α 1.016 1.98 0.18

β −0.092 −0.1 −0.037

Qγ=2 −0.448 −0.328 −153

γ1, γ2, γ3 2, 3.5, 5 2, 3.5, 5 2.5, 3.5, 5

J [kN/mm] 60.67 42.66 58.65

σ0 [MPa] 367.4 382 390

4. Concluding remarks

It is shown in Section 3 that it is possible to obtain such parameters as α and Q, which, when
used in the analytical formulae, Eqs. (1.1) and (1.2), can lead to stress distributions similar to
those obtained numerically (except for the region directly at the crack front). We expect that
the numerical solution obtained after calibration of the stress-strain uniaxial curve and assuming
large strains is close to the “real” stress distribution. Thus, after corrections, the analytically
obtained stress distribution is also close to the “real” stress distribution. The third parameter β
used in the stress distribution adjustment, makes the numerical and analytical results almost
identical over the long distance ahead of the crack front.
Numerical results obtained after uniaxial stress-strain curve calibration are used in the so

called local approach to fracture mechanics (Neimitz et al., 2018; O’Dowd, 1995; Shery et al.,
205). Analytical HRR solution (Hutchinson, 1968; Rice and Rosengren, 1968; Dugdale, 1971;
McClintock, 1971; Rice, 1968; Cherepanov, 1967) and later extensions of this theory (O’Dowd
and Shih, 1991; Koçak et al., 2008; O’Dowd, 1995; Ainsworth and O’Dowd, 1995; Neimitz et al.,
2007; Yang et al., 1993) are used in classical “engineering” fracture mechanics. Conservatism of
fracture prediction following from the criterion

JI = JIC (4.1)

can be reduced replacing JIC by JIC Q where the JIC Q is the plane strain critical J value which
is computed using the Q stress according to one of theories:
— Xiang and Guo (2013)

JIc Q = JIC
(
1−

Q

σC/σ0

)n+1
2

(4.2)
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— Neimitz et al. (2007)

JIC Q = JIC
(
1−

Q

σmax22 /σ0

)1+n
(4.3)

— Neimitz and Dzioba (2015)

JIC Q = JIC [1 + b(−Q)
k] (4.4)

where σC is the critical stress to be found experimentally, σ
max
22 is the maximum value of the

crack opening stress computed numerically using the option of large strains (see Fig. 4), b, k are
constants which can be found using the procedure shown in (O’Dowd, 1995; Sherry et al.,
2005a,b) or selected data in (Koçak et al., 2008). Equations (4.2)-(4.4) can still be used with the
Qγ=2 values computed according to the procedure shown in this paper, and this value together
with α and β makes analytical (engineering) and numerical (close to the real) stress distributions
close to each other.
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