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The present paper deals with the buckling of thin-walled square tubes with intermediate
stiffeners under torsion when the shear lag phenomenon and distortional deformations are
taken into account. A plate model (2D) was adopted for the tube. The tubes were assumed to
be simply supported at their ends. The values of critical loads of the tubes were determined
with three methods, namely: analytical-numerical method (ANM), finite difference method
(FDM) and finite element method (FEM).
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1. Introduction

Thin-walled cold-formed steel (CFS) members (columns, beams and girders) are very widely
used in constructions. The capacity to resist loads in thin-walled beams is limited not only by
their strength but, first of all, by stability.
In the stability analysis of thin-walled structures, the following numerical methods are often

applied: finite strip method (FSM), finite element method (FEM) and global beam theory
(GBT).
The FSM is broadly used for analysis of elastic stability due to very high computational

capabilities, low computational costs and easy implementation to thin-walled elements. The
method is restricted mainly to simple geometries and boundary conditions. Therefore, a series
of new variants or enhancements are needed to be introduced to the FSM.
In the FEM, two sorts of analyses are usually carried out: (i) elastic stability analysis, that is

to say, the eigenproblem, and (ii) nonlinear post-buckling analysis to determine the performance
curve in the whole range of structure operation. Papers (Adany, 2018; Adany et al., 2018)
deal with the constrained finite element method (cFEM) employed for the buckling analysis of
columns with opened cross-sections.
An application of the GBT allows for determination of participation of various buckling

modes within the whole range of structure operation. Understanding of the complex phenomenon
of coupled buckling is thus possible. In (Martins et al., 2017), distortional failure of steel beams
simply supported was presented with the direct strength method (DSM). In (Martins et al.,
2018), the interactive buckling of a lipped channel was analysed with the generalized beam
theory (GBT). The development in the theory of coupled instabilities of thin-walled structures
was discussed in (Hancock, 2018).
In (Rendal et al., 2017), a semi-analytical finite strip method (SAFSM) for the buckling

analysis of thin-walled structures under general loading, including shear, was presented. A local
and distortional buckling analysis of thin-walled tubes with a regular convex polygonal section
under uniform torsion with the cFSM was studied in (Rendal et al., 2018). Attention was also
paid to the necessity to account for all non-linear components of the in-plane shear strain, which
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resulted in membrane instabilities. Stability of thin-walled tubes with regular cross-sections, from
triangle to octagon, and the same circumference, subjected to torsion, was analysed. The full
Green’s strain tensor within nonlinear stability problems was already considered in (Kolakowski
and Krolak, 2006; Kolakowski and Mania, 2013; Kolakowski and Teter, 2000; Królak et al., 2001;
Teter and Kołakowski, 2003, 2004).
In (Królak et al., 2001), stability and load carrying capacity of thin-walled orthotropic tubes

under torsion and compression or bending was analysed. Regular polygons, from square to
icosagon, were considered. The problem was solved with the analytical-numerical method (ANM)
and the finite element method (FEM). In the ANM described in (Królak et al., 2001), the full
Green’s strain tensor for thin-walled plates, the second Piola-Kirchhoff’s stress tensor, the shear
lag phenomenon, an effect of cross-sectional distortions, as well as coupled conditions between
all the walls of structures were included.
The present paper was inspired by Rendal et al. (2018). Stability of steel square and octagonal

tubes of the same circumference but different lengths, subject to torsion, was analysed with
the ANM discussed in (Królak et al., 2001). In the case of square tubes, cross-sections with
C- and L-shaped intermediate stiffeners and without stiffeners were considered. Intermediate
stiffeners divide each plate into two smaller plate bands and, depending on the stiffener shape
and dimensions, reinforce the whole plate (Kolakowski and Teter, 2000; Teter and Kołakowski,
2003, 2004). When the plate is bent at least by 45 degrees, this increases significantly the plate
stiffness. The results obtained for “smooth” cross-sections were compared to the FEM results
attained with the ANSYS software package and with the results from the finite difference method
(FDM).

2. Formulation of the problem

In (Królak et al., 2001), the analytical-numerical method was described in detail. In the investi-
gations discussed here, steel tubes were subject solely to torsion. Thus, only the following crucial
assumptions are presented below.
Prismatic thin-walled tubes built of plates connected along longitudinal edges were conside-

red. The tubes were simply supported at their ends (Królak et al., 2001). In order to account
for all buckling modes, a plate model (i.e., 2D) of thin-walled structures was applied. Moreover,
it was assumed that the material the structure obeyed Hooke’s law.
For each plate component, precise geometrical relationships (i.e., full Green’s strain tensor)

were assumed in order to consider both out-of-plane and in-plane bending of the i-th plate
(Kolakowski and Krolak, 2006; Kolakowski and Mania, 2013; Kolakowski and Teter, 2000; Królak
et al., 2001; Teter and Kołakowski, 2003, 2004)
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and

κxi = −wi,xx κyi = −wi,yy κxyi = −2wi,xy (2.2)

where: ui, vi, wi – components of the displacement vector of the i-th plate along the xi, yi, zi
direction, respectively, and the plane xiyi overlaps the central plane before its buckling.
The solution to the problem was assumed in the form of trigonometric series along the

longitudinal direction of the tubes, whereas the exact transition matrix method and the nume-
rical method of the transition matrix using Godunov’s orthogonalization were used along the
transverse direction.



Stability of thin-walled square tubes with intermediate stiffeners under torsion 657

The computations within the FDM and the FEM were conducted in the present study as
well. In the FDM, according to the classic theory of thin isotropic plates, it was assumed that
the two last terms were neglected in each expression describing strains (2.1). The FDM consists
in substitution of respective derivatives of displacements in the equilibrium equations, plate
interaction conditions and boundary conditions by the corresponding differential quotients. In
the equilibrium equations, central differential quotients were assumed, whereas in the remaining
equations of the problem – left-hand-side and right-hand-side differences. When derivatives were
substituted by quotients, a linear system of algebraic equations was formulated. This system
corresponded to the problem of eigenvalues and allowed for determination of values of critical
loads and their corresponding buckling modes. In the calculations of, e.g., the square cross-
-section, the number of assumed nodes was equal to 1044.

Fig. 1. SHELL281 element

Fig. 2. FEM numerical model of the square tube

In order to validate the calculation results attained with the finite difference method (FDM),
an ANSYS package based on the FEM was used. The SHELL281 (second order) finite element
was applied in modelling. Figure 1 shows this shell element. An example of the numerical model
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of the square profile subject to constrained torsion together with boundary conditions is depicted
in Fig. 2. One profile end was fixed, whereas the second one was subject to loading in the form of
the moment applied to the node lying in the centre of gravity of the cross-section. The load was
transferred on the profile nodes (in the torsion plane) by MPC (contact) elements. For instance,
the numerical model of the profile, whose length is equal to L = 500mm, includes 2857 nodes.

3. Analysis of the calculation results

Square tubes with C-shaped (Fig. 3a) and V-shaped (Fig. 3b) intermediate stiffeners of the
same dimensions bs or without stiffeners but with an octagonal cross-section (Fig. 3c), subject
to torsion, were investigated. The following geometrical dimensions of the cross-sections under
consideration were assumed (Fig. 3):

• square cross-section without stiffeners: b = 100mm, bs = 0mm, t = 2mm;

• square cross-section with stiffeners: b = 100mm, bs = 8mm, t = 2mm;

• regular octagonal cross-section: b = 50mm, t = 2mm;

and the following material constants: E = 200GPa, ν = 0.3.

Fig. 3. Cross-sections of thin-walled tubes: (a) square with C-stiffeners, (b) square with V-stiffeners,
(c) regular octagonal

The computations were performed with the ANM code developed in (Królak et al., 2001).
The results were compared to the FDM and the FEM for “smooth” tubes (i.e., for square and
octagonal profiles) of a few selected lengths and the FEM for square tubes with C-stiffeners.
The values of tangential critical stresses for various lengths L of the tubes are listed in Table 1.
The values of critical moments can be determined on the basis of commonly known formulas for
the material strength analysis.

In (Królak et al., 2001), the ANM solution was predicted in the form of trigonometric series.
The developed code allows a large number of terms to be considered in the series. For the ANM
results shown in Table 1, the following numbers of terms in the series m were assumed for
various lengths: for L = 50mm – 7, L = 100mm – 11, L = 200mm – 11, L = 500mm – 21,
L = 1000mm – 21, L = 2000mm – 21. The analysis of the convergence of the results of critical
loads for m±3 has been carried out and a very good agreement of the values has been attained.
The most unexpected results are obtained for the square cross-section of tubes for the ANM.

For these reasons, the results were given in the Appendix for subsequent set values in the seriesm.
As can be seen from the Appendix, the results of buckling stresses τcr stabilize with the increase
of m and no signs of numerical errors have been noticed.
If the results from the ANM are compared, it can be seen that the lowest critical values are

obtained for the ”smooth” square cross-section, then for V-stiffeners, whereas the highest for
C-stiffeners. In the case of the octagon, the values of critical loads are between the values for



Stability of thin-walled square tubes with intermediate stiffeners under torsion 659

Table 1. Critical loads τcr of steel tubes of various lengths

Cross-sections of tubes Methods
Buckling stresses τcr [MPa]

Length L [mm]
50 100 200 500 1000 2000

Square

ANM 1637 479 198 140 131 129
FDM – – 495 417 431 529
FEM – – 558 428 410 408
[11] 675 375 375 375 375 375

Regular octagon

ANM 2871 1637 990 703 510 353
FDM – – 1310 895 730 –
FEM – – 1174 785 547 –
[11] 1500 1075 650 400 335 335

Square – C-stiffeners
ANM 3474 1786 1177 794 486 442
FEM 3207 2004 1189 832 592 473

Square – V-stiffeners ANM 2917 1133 758 539 464 417

[11] – Rendal et al. (2018)

V-stiffeners and C-stiffeners, except for three cases, namely: for L = 50mm and the two longest
tubes.

Higher values of τcr for C-shaped intermediate stiffeners can be explained by higher flexural
rigidity than in the case of V-stiffeners. Comparing the results for the C- and V-shaped stiffeners
and the octagon, one can state that the C-stiffener yields higher values of τcr than the octagon,
that is to say, this shape of the stiffener is more rigid than the bending of the adjoining walls
in the octagon, except L = 1000mm. The lowest values of τcr were attained for V-stiffeners,
except the case of L = 2000mm. The stiffener shape plays a less and less important role with
an increase in the tube length L for L ­ 1000mm.

For C-stiffeners, the results of calculations conducted with the FEM have been presented
as well. A very close agreement between the ANM and FEM results has been obtained. The
maximum difference equals 1.2.

In Table 1, the ANM results have been compared to the FDM and FEM results for “smooth”
tubes for a few selected lengths. The critical load τcr for the FEM decreases both for the square
and octagonal cross-section with an increase in length L. A similar situation takes place with
the values of τcr from the FDM for the octagon. For the square cross-section, the lowest value
of τcr was attained for L = 500mm, and the highest one for L = 2000mm.

For the square cross-section, the values of τcr for the ANM are 2.5-4 times lower than the
values obtained from the FDM and the FEM, whereas for the case of the octagonal cross-section,
the differences from various methods are lower as they do not exceed 1.5 times. The outcomes
from the FEM are lower than from the FDM. It can be caused by the fact that the strains were
assumed according to the classic theory of thin-walled beams in the FDM, which was confirmed
by the conclusions in (Rendal et al., 2018). The SHELL281 (second order) finite element not
covering all these components of the full strain tensor has been applied in the FEM.

In (Rendal et al., 2018), the results are depicted on diagrams. For the sake of this paper, the
lowest approximate values of the critical loads τcr for the “smooth” square (Fig. 4 in (Królak
et al., 2001)) and for the octagon (Fig. 12 in (Rendal et al., 2018)) were read. The values of τcr
are listed in Table 1 as well. For the square cross-section, the values τcr attained in (Rendal et
al., 2018) are constant in practice for the lengths under consideration, except L = 50mm. For
L = 50mm, the critical load is 2.4 times lower than for the ANM, whereas for L = 100mm –
1.3 times lower. For the remaining lengths, lower values of τcr were obtained with the ANM.
In the case of the octagon, values of τcr (Rendal et al., 2018) decreased with an increase in the
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tube length. They are up to 2 times lower than the ANM for the length L ¬ 1000mm, whereas
for L = 2000mm, they are only 1.1 times lower.

Fig. 4. Buckling mode of a single wall of the square profile of the length L = 500mm (FDM)

Fig. 5. Buckling mode of the square profile of the length L = 500mm (FEM)

In Figs. 4 and 5, the buckling modes for “smooth” square tubes determined with the FDM
and the FEM for L = 500mm are presented. In Figs. 6 and 7, analogous plots for L = 1000mm
are depicted. In the case of the FDM, the buckling modes for a single wall are shown. As can be
easily seen, the numbers of halfwaves along the longitudinal direction obtained with both the
methods are the same for the given length.
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Fig. 6. Buckling mode of a single wall of the square profile of the length L = 1000mm (FDM)

Fig. 7. Buckling mode of the square profile of the length L = 1000mm (FEM)

The above considerations draw special attention to different behaviour of the “smooth”
square tube when compared with the octagonal tube for all the results under analysis. The
FDM and FEM results for various lengths L are of similar nature.

An introduction of intermediate stiffeners for the square cross-section results in a considerably
higher critical loads, which are close to the values attained for the octagonal tube.

The presented results indicate that an analysis of causes of such significant discrepancies is
needed. The coefficients at each nonlinear term (2.1) assumed in the ANM can easily facilitate
this task by zeroing various combinations of these terms and tracking the effects of alternations
on the values of τcr.
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4. Conclusions

Constrained torsion of thin-walled square tubes with C- and V-shaped intermediate stiffeners
and without them but with an octagonal cross-section was analysed. In the ANM, the shear
lag phenomenon and distortional deformations were taken into account. Intermediate stiffeners
increased significantly the values of critical loads, which were close to the results for the octagonal
tube of the same circumference. The presented results of computations attained with three
various methods, namely: ANM, FDM and FEM, were compared to the results listed in (Rendal
et al., 2018). Considerable differences in the obtained outcomes were pointed out. The present
study is to be treated as an initial analysis of the problem under consideration. Therefore, it
requires further comprehensive analysis.

Appendix

Table A1 shows the critical load values τcr obtained for the square cross-section of tubes in the
case of the ANM for subsequent numbers of terms in the series m.

Table A1. Critical loads τcr of steel square tubes using ANM

L [mm]
Buckling stresses τcr [MPa]

Numbers of terms in the series m
3 5 7 9 11 21

100 480 479 479 479 479 –

200 199 198 198 198 198 –

500 171 143 142 142 142 140

1000 199 145 132 131 131 131

2000 285 199 159 138 133 129
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