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This work presents an extended form of the Aifantis strain-gradient plasticity theory through
dependence of the plastic free energy on the Burgers tensor. The constraints of codirectiona-
lity for the deviatoric stress and irrotationality of the plastic distortion are assumed. These
provide the basis for expressing the work done by the microstress conjugate to the Bur-
gers tensor as the sum of the work done by the microscopic hyperstress vector and scalar.
The principle of virtual power is used to establish the microforce balance, which provides
the relationship between the resolved shears, plastic microstress and the microscopic hyper-
stresses. The microforce balance, when augmented with relevant constitutive relations that
are consistent with the free-energy imbalance, results in a non-local flow rule depicted as
a nonlinear second order partial differential equation in terms of the accumulated plastic
strain with concomitant boundary conditions. It is shown in this work that the plastic mi-
crostress is purely dissipative and cannot account for backstress whenever the defect energy
is dependent on the Burgers tensor.
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1. Introduction

Strain-gradient plasticity theory deals with the study of deformation of plastically deformed
bodies resulting from the development of internal microforces, which are work-conjugate to the
measures of plastic strain and its gradients. In conventional or classical plasticity theories, the
strain-gradient terms are not accounted for. However, the importance of strain-gradient plasti-
city is noted in a number of experimental results conducted over the past four decades by Ashby
(1970) who showed that the flow strength of the material increases as the average particle size
and spacing decrease. This observation cannot be captured by the present framework of classi-
cal plasticity. The strain-gradient plasticity theories motivated by experimental results (Ashby,
1970; Fleck et al., 1994) and the theoretical work of Aifantis (1984) and Mualhaus and Aifantis
(1991), necessitate the introduction of intrinsic material length scales for dimension consistency.
Conversely, the modelling of material behaviour at small length scale in the approximate range of
the micron scales (i.e. say for instance, 500 nanometres to 50 micrometres) will incorporate size-
-dependence parameters by accounting for strain-gradient terms. In fact, it has been shown by a
number of experiments that at a small length scale, the strength of metallic components during
inhomogeneous plastic deformation is size-dependent with obvious phenomena that materials
with smaller components are actually stronger than others (Hutchinson, 2000; Stelmashenko et
al., 1993; Stolken and Evans, 1998).
The pioneer work of Aifantis (1984) on the development of strain-gradient plasticity theory –

which seems to generalize the classical plasticity – results in a non-local flow rule accomplanied
by boundary conditions. This non-local flow rule is a nonlinear second order partial differential
equation in the magnitude of the plastic strain rate.
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Equivalent form of the Aifantis flow rule was obtained by Gurtin et al. (2010) who used
the codirectionality hypothesis and the Fleck-Hutchinson virtual power principle (Fleck and
Hutchinson, 2001). It was assumed that the plastic microstress – which is work-conjugate to
the plastic spin – expressed through its resolution to the flow direction, had energetic and
dissipative parts. However, one may ask: To what extent the plastic microstress is used during
plastic deformation? The answer is provided in this work.

2. Kinematic relations

Let u denote the displacement vector of an arbitrary particle in a plastically deformed polycry-
stalline solid body B undergoing infinitesimal deformation, then the gradient of displacement
vector ∇u has the definition1

∇u = He +Hp trHp = 0 (2.1)

where He is the elastic part of the displacement gradient which characterizes stretching and
rotation of the material structure, while Hp is called the plastic distortion and characterizes the
defect through the material structure. Taking the symmetric part of (2.1) we have2

sym∇u = Ee +Ep trEp = 0 (2.2)

where Ee = symHe is the elastic strain and Ep = symHp is called the plastic strain.
The accumulated plastic strain ep is defined via the plastic strain rate as

ėp = |Ėp| (2.3)

with the given initial condition

ep(X, 0) = 0 (2.4)

By (2.3) and (2.4) it is clear that the time derivative ėp(X, t) ­ 0 for all time t. Thus, ep(X, t)
is an increasing function of time.
Let Np denote the flow direction defined by

Np =
Ėp

|Ėp|
for Ėp 6= 0 (2.5)

Whenever |Ėp| 6= 0, then there is flow. Ėp in terms of the accumulated plastic strain rate ėp and
the flow direction is given by

Ėp = ėpNp (2.6)

Given that T is the elastic macrostress (which is symmetric) then the codirectionality hypothesis
asserts that the direction of the plastic strain rate coincides with the direction of the deviatoric
stress such that

To

|To|
=
Ėp

|Ėp|
= Np (2.7)

This is called the codirectionality constraint.
On the basis of (2.5), sym∇u̇ can be written as

sym∇u̇ = Ėe + ėpNp with trNp = 0 (2.8)
1The gradient of a vector a would be denoted as ∇a and would be written in component form as

ai,j = ∂ai/∂xj for i, j = 1, 2, 3. The gradient of a scalar field φ would be denoted as ∇φ and written as
φ,i= ∂φ/∂xi.
2The symmetric part of the second order tensor A is defined by symA = (A +AT)/2, where AT is

the transpose of the tensor A. In component form, we have ( symA)ij = (Aij +Aji)/2.
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3. Streamline virtual power principle and force balances

The streamline virtual principle is based on the power balance principle in which the stress T is
known to be symmetric a priori. Also the plastic strain rate is written in terms of the accumulated
plastic strain rate. A theory not accounting for the plastic strain gradient has the streamline
power balance to be written as3

∫

P

b · u̇ dV +

∫

∂P

t · u̇ dA =

∫

P

T : Ėe dV +

∫

P

τpėp dV (3.1)

where b is the body force on a subregion P of B, and t is the macrotraction force on the
boundary ∂P , so that the sum of integrals on the left handside of (3.1) is called the power-
-expenditure by external forces. Also τp is the plastic stress resolved to the flow direction. τp is
assumed to be power-conjugate to the accumulated plastic strain rate. The sum of integral at
the right hand side of (3.1) is called the power expenditure by the internal microstresses.

Our objective is to formulate a model that accounts for the plastic strain gradient. We will do
this by introducing for the Burgers tensor without plastic rotation. This assumption is motivated
from the knowledge of the fact that dislocation in the material arising from plasticity theory is
also explsined through the Burgers vector. However, a plasticity theory based on the Burgers
tensor must necessarily take into account the plastic rotation, except if from the outset one
assumes that there is not plastic rotation. Most strain gradient theories however, do not accept
the plastic rotation and, also because for reason of complexity in the flow rule, we will assume
the absence of plastic rotation.

The Burgers tensor is defined by (in the absence of plastic rotation)4

G = CurlEp (3.2)

The Burgers tensor rate in terms of the accumulated plastic strain rate ėp and the flow direc-
tion Np following (2.6) is

Ġ = Curl(ėpNp) (3.3)

In component form and using the product rule of differentiation, we have

Ġij = ǫipqė,
p
pN
p
jq + ǫipqė

pNpjq,p (3.4)

In invariant form we have5

Ġ = (∇ėp×)Np + ėpCurlNp

Since G is a geometric quantity, there exists a microstress S power-conjugate to Ġ. Thus, we
can write S : Ġ as

S : Ġ = S : (∇ėp×)Np + (S : CurlNp)ėp

This implies that we have

S : Ġ = SijǫipqNjq ė,
p
p + SijǫipqN

p
jq,pė

p

3The inner products a · b and A : B are defined as aibi and AijBij , respectively.
4The component of the curl of the tensor field A denoted as CurlA or ∇×A is expressed as ǫipqAjq,p

where, ǫipq is the permutation symbol.
5Given a nonzero vector a, the component of the second order tensor (a×) is expressed as ǫikjak.
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Let the vector ξ and the scalar φ be defined as

ξk = SijǫikqN
p
jq φ = SijǫipqN

p
jq,p (3.5)

then by definition of ξ and φ in (3.5), we have

S : Ġ = ξ · ∇ėp + φėp (3.6)

We shall refer to ξ and φ as the microscopic hyperstress vector and microscopic stress scalar,
respectively. Following Gurtin (2004), the power balance in the absence of plastic spin in the
Burgers tensor rate Ġ is given by6

∫

P

b · u̇ dV +

∫

∂P

t(n) · u̇ dA =

∫

P

[T : Ėe + τpėp + S : Ġ] dV (3.7)

By (3.6), we have

∫

P

b · u̇ dV +

∫

∂P

t(n) · u̇ dA =

∫

P

[T : Ėe + τpėp + ξ · ∇ėp + φėp] dV (3.8)

Since the term T : sym∇u̇, when Ėp = 0 would give a rise to the boundary term Tn · u̇
leading to the macrotraction condition Tn = t(n), then the term ξ · ∇ėp would give a rise to
the traction condition, so that we can slightly modify power balance (3.8) to take into account
the microtraction scalar η(n) power-conjugate to ėp on ∂P . Thus, (3.8) will take the form

∫

P

b · u̇ dV +

∫

∂P

t(n) · u̇ dA+

∫

∂P

η(n)ėp dA =

∫

P

[T : Ėe + τpėp + φėp + ξ · ∇ėp] dV (3.9)

By using the virtual velocity ν in the list of basic rate-like kinematic variables ν = (ũ, Ẽe, ẽp)
satisfying

sym∇ũ = Ee + ẽN (3.10)

we have the virtual power which takes the form

∫

P

b · ũ dV +

∫

∂P

t(n) · ũ dA+

∫

∂P

η(n)ẽp dA =

∫

P

[T : Ẽe + τpẽp + ξ · ∇ẽp + φẽp] dV (3.11)

By assuming that ẽp = 0 consistent with (3.10) we have

∫

P

b · ũ dV +

∫

∂P

t(n) · ũ dA =

∫

P

T : ∇ũ dV (3.12)

Applying the divergence theorem, we have7

∫

P

(DivT+ b) · ũ dV =

∫

∂P

(Tn− t(n)) · ũ dA (3.13)

6In Gurtin (2004) τpėp is written as T : Ėp. In this work, we note that τp = Tp : Np so that
τpėp = Tp : ėpNp = Tp : Ėp, where Tp is called the plastic microstress.
7The divergence of the second order tensor field A denoted as DivA is expressed in component form

as Aij,j , while the divergence of the vector a denoted as Diva is expressed as ak,k.
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By fundamental lemma on calculus of variation, we have the following macroscopic force balance

DivT+ b = 0 in P (3.14)

and the macrotraction condition given by

Tn = t(n) on ∂P (3.15)

Consistently with (3.10), assume that ũ = 0, so that the virtual power balance becomes
∫

∂P

η(n)ẽp dA =

∫

P

[T : Ẽe + τpẽp + ξ · ∇ẽp + φẽp] dV (3.16)

Since ũ = 0 then Ẽe = −ẽpNp. Thus we can write

T : Ẽe = −(T : Np)ẽp = −τ ẽp

where τ = T : Np is called the resolved shears. (3.16) can be written as
∫

∂P

η(n)ẽp dA =

∫

P

[(τp + φ− τ)ẽp + ξ · ∇ẽp] dV (3.17)

By the divergence theorem, (3.17) becomes
∫

∂P

(η(n) − ξ · n)ẽp dA =

∫

P

[τp + φ− τ − Div ξ]ẽp dV (3.18)

By fundamental lemma on calculus of variation, we have the microscopic force balance given as

τ = τp + φ− Div ξ (3.19)

with the microtraction condition given as

ξ · n = η(n) (3.20)

4. Free-energy imbalance

Here we assume that the free-energy function ψ = ψ̂(Ee,G) is a function of the elastic strain
and the Burgers tensor. But since the inner product S : Ġ can be written in terms of the
accumulated plastic strain rate and its gradient with the knowledge that the energetic part of S
is the derivative of the free-energy with respect to the Burgers tensor (cf. Gurtin, 2004; Poh and
Peerling, 2016). We can assume the free energy as a function of the elastic strain, accumulated
plastic strain and the gradient of the accumulated plastic strain, i.e.

ψ = ψ̂(Ee, ep,∇ep) (4.1)

The free-energy imbalance states that the rate of increase of the total free-energy in the body
cannot exceed the total power expenditure by external forces. A consequence of this is the
inequality which notes the power balance principle
∫

P

ψ̇ dV ¬

∫

P

[T : Ėe + τpėp + φpėp + ξ · ∇ėp] dV (4.2)

In local form (4.2) reduces to the inequality

ψ̇ −T : Ėe − τpėp − ξ · ∇ėp = −δ ¬ 0 (4.3)

where δ is called the dissipation. This inequality would be used to derive the constitutive relations
for the microstresses.
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5. Constitutive relations

We shall assume that the free-energy admits the decomposition

ψ = ψ̂(Ee, ep,∇ep) = ψ̂e(Ee) + ψ̂p(ep,∇ep) (5.1)

into elastic and plastic parts, respectively. Since the Burgers tensor G relates the accumlated
plastic strain ep and its gradient ∇ep from (3.4), we can write the plastic free energy ψ̂p(ep,∇ep)
as a function of the Burger tensor through the assumed relation

ψ̂p(ep,∇ep) = ψ̂pG(G) (5.2)

Consistent with the free-energy imbalance (4.3), we have

(∂ψe

∂Ee
−T
)
: Ėe +

(∂ψ̂p

∂ep
− τp − φ

)
ėp +

(∂ψ̂p

∂ep
− ξ
)
· ∇ėp ¬ 0 (5.3)

Using the Coleman-Noll procedure, it is conventional to have the elastic stress as

T =
∂ψ̂e

∂Ee
(5.4)

In this present work, we assume that the microstress S contains the energetic part Sen and the
dissipative part Sdis. It has been established that the energetic microstress Sen is (see Gurtin,
2004)

Sen =
∂ψ̂pG(G)

∂G
(5.5)

Given that φen and ξen are the energetic parts of φ and ξ, then it is obvious that

φen =
∂ψ̂p

∂ep
ξ =

∂ψ̂p

∂∇ep
(5.6)

Equation (5.6) is obtained from the fact that

ψ̇p = ψ̇pG = S
en : Ġ = φenėp + ξen · ∇ėp =

∂ψ̂p

∂ep
ėp +

∂ψ̂p

∂∇ep
· ∇ėp

It would be assumed that the microstresses φ and ξ can be additively decomposed as

φ = φen + φdis ξ = ξen + ξdis (5.7)

where φdis is the dissipative part of φ and ξdis is the dissipative part of ξ.

By substituting (5.4) and (5.6) into inequality (5.3), we have the dissipation inequality given
as

δ = τpėp + φdisėp + ξdis · ∇ėp ­ 0 (5.8)

Remark: From this inequality, it is obvious that the microstress τp is purely dissipative and
cannot explain the backstress whenever the defect energy is dependent on the Burgers
tensor (see Gurtin et al., 2010; Han and Reddy, 2013). This also implies that the unresolved
plastic stress Tp (see footnote 6) is purely dissipative.
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6. Flow rule

Microforce balance (3.19) can be written as

τ − (φen − Div ξen) = τp + φdis − Div ξdis (6.1)

The term in bracket of the left hand side of (6.1) is called the backstress. The general flow rule
using equations (5.6) and (5.7) is

τ −
[∂ψ̂p

∂ep
− Div

( ∂ψ̂p

∂∇ep

)]
= τ̂p(ep,∇ep) + φdis(ep,∇ep)− Div ξdis (6.2)

Based on the Aifantis model, it would be assumed that τ̂p(ep,∇ep) = Y (ep) where Y (ep) > 0
is called the coarse-grain flow resistance. In Gurtin et al. (2010), it is assumed that the plastic
free energy can take the form

ψ̂p(ep,∇ep) =
1

2
β(ep)|∇ep|2 (6.3)

with the condition that β(ep) > 0 and dβ(e
p)

dep
­ 0; so that if we let g = ∇ep then

φen =
1

2

dβ(ep)

dep
|g|2 ξen = β(ep)g (6.4)

Borokinni and Ajayi (2017) showed that ξdis = 0 and φdis = 0 (so that S is purely energetic)
given codirectionality constraint (2.7). Thus, a more general form of the Aifantis flow rule is
given as8

τ −
(1
2
β′(ep|g|2 − Div (β(ep)g))

)
= Y (ep) (6.5)

where β′(ep) = dβ(ep)/dep. By the rule of differentiation, it is obvious that

Div (β(ep)g) = β(ep)Divg + β′(ep)|g|2 = β(ep)∆ep + β′(ep)|∇ep|2 (6.6)

By substituting (6.6) into (6.5), we get a modified Aifantis flow rule given as

τ −
(1
2
β′(ep)|∇ep|2 + β(ep)∆ep

)
= Y (ep) (6.7)

The term β′(ep)|∇ep|2/2 describes softening behaviour.

7. Simple boundary condition and variational formulation of the flow rule

Consider microtraction condition (3.20). The global power expenditure by the microtraction η(n)
on the boundary ∂B of the body B is given as
∫

∂B

(ξ · n)ėp dA =

∫

∂B

η(n)ėp dA (7.1)

For a simple boundary condition, we assume that the power expenditure by the microtrac-
tion η(n) is zero, so that in local form we have

(ξ · n)ėp = 0 on ∂B (7.2)

8In the Aifantis model, β is assumed to be a constant.
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For microscopically simple boundary conditions, we have

ėp = 0 on Γhard ξ · n = 0 on Γfree (7.3)

where Γhard and Γfree are complementary subsurfaces called the microscopically hard and free
surfaces, respectively. Γhard is that part of the boundary ∂B which does not allow the flow
of dislocation while Γfree is the part of ∂B that allows the flow of dislocation through the
boundary ∂B.
Next, we show that given a test field f satisfying f = 0 on Γhard, then the weak form∫

B

[τpf − τf + φf + ξ · ∇f ] dV = 0 (7.4)

is equivalent to microforce balance (3.19) with the microtraction condition

ξ · n = 0 on Γfree (7.5)

The use of the divergence theorem implies that (7.4) becomes
∫

B

[τp − τ + φ− Div ξ]f dV +

∫

Γfree

(ξ · n)f dA = 0 (7.6)

By fundamental lemma on calculus of variation, it is obvious that (3.19) and (7.5) are satis-
fied. Hence, assuming that the constitutive equations for the microstresses and the macrostress
hold, then flow rule (6.2) on B and boundary conditions (7.3) are together equivalent to the
requirement that (7.4) is satisfied for all test fields.

8. Plastic free-energy balance

Assume the null expenditure of microscopic power with simple microscopic boundary condition
(7.3), then

∫

B

˙̂
ψ
p

(ep,∇ep) dV =

∫

B

(φenėp + ξen · ∇ėp) dV

=

∫

B

(φėp + ξp · ∇ėp) dV −

∫

B

(φdisėp + ξdis · ∇ėp) dV
(8.1)

By the divergence theorem, and noting the assumption of the null microscopic power-
expenditure, we have
∫

B

˙̂
ψ
p

(ep,∇ep) dV =

∫

B

(φ− Div ξ)ėp dV −

∫

B

(φdisėp + ξdis · ∇ėp) dV (8.2)

Recall that the microforce balance has form (3.19), so that we have
∫

B

˙̂
ψ
p

(ep,∇ep) dV =

∫

B

τ ėp dV −

∫

B

(τpėp + φdisėp + ξdis · ∇ėp) dV (8.3)

Equation (8.3) is the plastic free-energy balance, and the consequence of this balance is that the
rate of increase in the defect energy ψ̂p is less or equal to the plastic working9. Thus, we have
the inequality
∫

B

˙̂
ψ(ep,∇ėp) dV ¬

∫

B

τ ėp dV (8.4)

The integral on the right-hand side of inequality (8.4) is called the plastic working.

9It should be recalled by (5.8) that the dissipation is nonnegative
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9. Conclusion

This work has shown that the work done by the microstress S – work-conjugate to the Burgers
tensor G = ∇ × Ep – admits the additive decomposition into the work done by a microstress
scalar φ and a microscopic hyperstress ξ which are work-conjugate to the accumulated plastic
strain and its gradient, respectively. This formulation leads to microscopic force balance for the
associated system of microforces. The microforce balance is augmented with the constitutive
relations for the microforces to obtain the flow rule, in the form of a partial differential equation
generalizing the Aifantis flow rule. It is shown that the plastic microstress is dissipative while
the energetic contribution to the flow rule comes from the microstress S via φ and ξ.
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