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A new micromechanical model for predicting the failure locus of long fiber composites under
combined axial compression and in-plane shear is proposed. The model is based on a periodic
unit cell with centrally located imperfections. Predictions of the compressive behavior for
various biaxial loading ratios are made. The role of distribution of fiber imperfections in
predicting the biaxial strength is discussed. The failure locus calculated from the new model
is found to be in good agreement with experimental data available in the literature and less
conservative than that from the periodic model with uniform imperfections.
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1. Introduction

Experimental observations have shown that damage in long fiber composites due to axial com-
pression localizes into bands of highly bent fibers with distinct inclinations and widths, whose
normals lie in one plane (Kyriakides et al., 1995; Kyriakides and Ruff, 1997). This planar beha-
vior of kink bands explains why simplified two-dimensional finite element representations of the
composite microstructure with a ductile matrix are commonly used to reproduce the compres-
sion behavior. In the literature, there is a large variety of finite element models for analyzing
the plastic microbuckling. Although, the models differ in the constitutive equations employed
by authors to describe the behavior of composite constituents, the fiber waviness is typically
idealized with uniform imperfections. In general, two types of boundary conditions are enforced
in numerical studies of the compressive failure. In the first case, the longitudinal sides of the
model are free from constraints. The model with free boundary conditions is typically composed
of several dozen alternate layers of the fibers and matrix explicitly modeled by finite elements.
It has been used extensively by various research groups: see, for example, Kyriakides et al.
(1995), Kyriakides and Ruff (1997), Hsu et al. (1998), Vogler et al. (2001), Byskov et al. (2002),
Pimenta et al. (2009) and Prabhakar and Waas (2013). In the second case, periodic bounda-
ry conditions are prescribed on the longitudinal sides of the model. The model with periodic
boundary conditions usually consists of one fiber embedded in the matrix. The concept of the
periodic unit cell model has been employed for studying compressive failure in unidirectional
composites in papers by Guynn et al. (1992), Morais (1996), Hsu et al. (1999), Pansart et al.
(2009), Gutkin et al. (2010a), Barulich et al. (2016), Naya et al. (2017). Both types of boundary
conditions have advantages and limitations. On the one hand, the periodic boundary condi-
tions force deformation to be symmetric regardless of the geometry of the fiber waviness. This
means that the non-periodic model with a uniform waviness can ensure a realistic inclination
of kink bands, contrary to the periodic model with uniform waviness in which the kink-band
angle is indirectly set to zero degree. On the other hand, the free boundary conditions produce
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severe stress concentrations at the free surfaces which can lower the buckling stress. In order
to overcome these limitations, Romanowicz (2014) proposed a new approach based on the pe-
riodic model with centrally located imperfections. This approach is motivated by experimental
observations (Kyriakides et al., 1995; Kyriakides and Ruff, 1997; Czabaj et al., 2014) that fiber
imperfections are more severe in matrix-rich regions which are periodically distributed along
the transverse direction. A comparison of the new model with those reported in the literature
on the compressive failure showed that it both calculates the limit load well and, in addition,
predicts the post-critical events correctly. Recently, Wilhelmsson et al. (2018) investigated the
effects different fiber waviness characteristics on the compressive properties of unidirectional
non-crimp fabric composites. The results of this experimental study support the importance of
non-uniform imperfections in the modeling of the compression behavior.

Other experimental studies show that shear applied simultaneously with compression decre-
ases the strength of fiber-reinforced composites (Jelf and Fleck, 1994; Vogler et al., 2000). This
paper presents an extension of the periodic model with centrally located imperfections proposed
by Romanowicz (2014) to the case of combined compression and shear. In order to validate the
proposed model, a comparison with both the existing models and experimental results will be
presented. To date, the failure loci for the case of combined compression and shear have been
determined numerically from the classical approaches with uniform imperfections (Gutkin et al.,
2010b, 2011; Vogler et al., 2000). According to the classical models, there is no change in the
failure locus when the failure mode changes from fiber kinking to fiber splitting. The simula-
tions with non-uniform imperfections offer some important insights into the role played by the
distribution of imperfections in controlling the biaxial strength.

2. Description of the micromechanical model

2.1. Microstructure generation

A unidirectional composite is idealized as a two-dimensional periodic array of imperfect fibers
and a matrix. Following Kyriakides et al. (1995) and Kyriakides and Ruff (1997), it is assumed
that the fiber imperfection is not uniformly distributed across the model. The imperfection
shown in Fig. la consists of a sinusoidal waviness of the fibers along the x; direction with a
variable amplitude in the xo direction. The amplitude of the imperfection has its maximum
at the center of the model and decays exponentially with the distance from the mid-width, as
follows

2
Vo = Acos%mexp{—g(%) } (2.1)
where A is the amplitude, A is the half-wavelength, b is the width of the model, « is the ratio
of the number of imperfect fibers to that of the total number of fibers in the model, { defines
how fast the amplitude diminishes. The models with non-uniform distributions of imperfections
characterized by ¢ = In(0.01) and o = 0.50, 0.76 and 1.00 are considered. The spacing of the
fibers is chosen so as to accommodate the fiber diameter dy = 7 um, and to respect the fiber
volume content Vy = 60%. The models have width b defined by the number of fibers ny = 59.
For a long wavelength and a small amplitude, the fiber misalignment angle can be approximated
by

TA

(9:)\

(2.2)

Base case calculations are performed for three amplitudes A = 2d;, 3dy, 4d; and 5d; and
one fixed length of the models L = 75d; corresponding to the half-wavelength A = L. This
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Fig. 1. Micromechanical model with a non-uniform distribution of fiber imperfections: (a) geometry,
(b) boundary conditions

Periodic boundary conditions
Periodic boundary conditions
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implies the maximum values of fiber misalignment angle ©,,,, at the centers of the models of
approximately 4.80°, 7.20°, 9.60° and 12°. Please note, that if ( = 0, Eq. (2.1) describes a fiber
imperfection which is uniformly distributed across the model. In this case, the amplitude of the
imperfection is fixed in the x5 direction. The models with uniform distributions of imperfections
characterized by ¢ = 0 and © = 1.03°, 1.71°, 2.40° and 3.42° are considered for comparison
purposes. Figure 2 illustrates the difference in the distribution of fiber imperfections between
the two cases.

(a) (b)

Fig. 2. Distribution of fiber imperfections: (a) uniform, (b) non-uniform

2.2. Finite element formulation

Two-dimensional finite element meshes made of plane strain, biquadratic elements with eight
nodes (Planel83) are generated for appropriate geometries of micromechanical models by using
ANSYS finite element code. The fiber and matrix layers each have 1575 and 2100 elements,
respectively. The mesh refinement is found to be adequate for a sufficient solution accuracy.
The boundary conditions are shown in Fig. 1b. In simulations of combined compression and
shear, the shear is applied first. The shear loading is set by two opposite shear forces at the
top and bottom sides so that the two sides remain plane. The model is then compressed in
the vertical direction by fixing the bottom side and prescribing a compressive force at the top
side. The biaxial loading ratio is defined by the relation k = 7/0. This two-step loading process
corresponds to the loading history used in biaxial testing. Periodic boundary conditions on the
longitudinal sides of the model are applied to reproduce the periodicity of fiber imperfections.
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The displacements of nodes on the right side of the model are related to the displacements of
their counterparts on the left side, as follows

ul? — ufef? =ut — ui™ for i=1,2 (2.3)

where u; is the displacement in the i-axis direction, n; and no is a pair of nodes facing each
other on edge 1 and edge 2, respectively, ref, and ref, is a pair of reference nodes on edge 1 and
edge 2. The assumption of transverse periodicity means that the lateral edges of the model do
not affect the state of stress within it. In order to simulate the post-buckling response effectively,
the arc-length method (Crisfield, 1981) is used. The minimum arc-length radius is defined by
the minimum multiplier of reference arc-length radius 7,,;, = 10~ and the number of substeps
n = 5000. Convergence of the iterative procedure has been achieved by requiring that the force
equilibrium is satisfied with a tolerance of tolp = 0.001.

2.3. Constituent properties

The material properties of the AS4/PEEK composite analyzed in this paper are listed in
Table 1. The fibers are assumed to be isotropic and linearly elastic solids which are perfectly
bonded to the matrix. The matrix is modeled within the framework of the finite deformations
as an elasto-plastic solid which hardens isotropically.

Table 1. Mechanical properties of the AS4/PEEK composite and its constituents

AS4 fiber PEEK matrix AS4/PEEK composite
E; vy 0'2— E,, U, I k E o, Vi
[GPa] | [] | [GPa] | [GPa] | [] | [[] | [MPa] | [GPa] | [GPa] | [%]

| 214 0263 ] 345 | 614 [0356 [01] 40 | 128 | 121 | 60 |

Due to using the Drucker-Prager plasticity model (Drucker and Prager, 1952), a linear de-
pendency of yielding on the hydrostatic stress is taken into account in this paper. In terms of
the first invariant of stress I1 and the second invariant of the deviatoric part of stress .Jo, the
yield function is given as

F=E VR k (24

where p is the pressure sensitivity factor, k is the flow stress of the material under pure shear.
Motivated by experimental results found in the literature (Kinloch and Young, 1983; Quinson et
al., 1997), a value of u = 0.1 is adopted in this paper. Please note, that if 4 = 0, Eq. (2.4) reduces
to the von Mises yield function. An associative flow rule is used to characterize the plastic flow.
Micromechanical models require in-situ properties of matrices that differ from bulk properties
(Gregory and Spearing, 2005). Here, the hardening curve of the matrix is identified so that the
unit cell prediction matches the measured in-plane shear response reported for the AS4/PEEK
composite system (Vogler et al., 2000). For this purpose, a two-dimensional unit cell model with
perfectly straight fibers and periodic boundary conditions is used. Figure 3 shows a comparison
of the measured shear response and that obtained from the unit cell model. Agreement with the
experimental data is quite good.

3. Results and discussion

3.1. Failure predictions under combined axial compression and in-plane shear

The micromechanical models must be calibrated before they are used for predicting the
microbuckling strength of fiber reinforced composites under combined axial compression and
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Fig. 3. Calibration of the Drucker-Prager plasticity model

in-plane shear. In order to determine imperfection characteristics, a parametric analysis under
pure compressive loading is carried out for two imperfection types. The effect of imperfection
parameters is discussed in Romanowicz (2014) and will not be repeated here. In the case of the
AS4/PEEK composite, the model with a non-uniform distribution of imperfections characterized
by a = 0.76 and O,,,, = 9.60° shows good agreement with the measured compressive strength
o. = 1.21 GPa reported by Kyriakides et al. (1995). A similar calibration has been carried out
for the uniform model. It was found that the model prediction for © = 2.40° matched well with
the experimental strength data for that fiber reinforced composite.

1.4
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1o}
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0 1.0 1.2 1.4
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Fig. 4. Effect of the biaxial loading ratio x on the compressive stress-strain curve of the AS4/PEEK
composite system. The solutions obtained from the model with non-uniform imperfections

Based on the above-mentioned parameters, the failure process under combined axial compres-
sion and in-plane shear is then modeled. The effect of shearing applied before axial compression
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Fig. 5. Effect of the biaxial loading ratio k£ on the compressive stress-strain curve of the AS4/PEEK
composite system. The solutions obtained from the model with uniform imperfections

on the compressive response is shown in Figs. 4 and 5 for two imperfection types. In each case,
calculations are carried out for eight biaxial loading ratios x given in these figures. The com-
pressive curves are shifted from the point of zero strain because the initial shearing produces
some compressive strain. It can be seen that the presence of the initial shear loading decreases
significantly the compressive strength and reduces the sharpness of the snap-through behavior
after the limit load. It is interesting to note that a similar effect is observed in the case of
pure compression for which the buckling instability weakens as the imperfection parameters «
and O, increase (Romanowicz, 2014). Moreover, as the value of the ratio  increases, the limit
load occurs at a lower applied strain level. For sufficiently large values of k, the stress-strain
curves exhibit no apparent instability. This finding suggests that another mode of failure is
operating.

Figure 6 clearly shows that a variation of the maximum axial stress obtained from a fiber
located at the center of a non-uniform model is a representative of the evolution of this stress
in other fibers. The effect of the initial shear loading on the stress state in fibers for all cases
considered above is shown in Figs. 7 and 8. It can be seen that shearing causes an increase in
the tensile stress in the central fiber during the shear loading stage. As the value of the ratio x
increases, the central fiber reaches the buckling instability at a lower applied strain level. For
small values of k, the axial response during the compressive loading stage is similar to the case
of pure compression. This means that the axial stress in the central fiber decreases first, reaches
a negative value and then starts to increase again. The minimum value of the axial stress defines
the resistance to bending. It is evident from these figures that the resistance to bending of
the central fiber decreases with increasing the applied shear loading. For large values of k, the
buckling instability is inhibited by the presence of high tensile stress in fibers arising from shear
loading. Finally, for sufficiently large values of , the fiber buckling mechanism is replaced by
the stable fiber bending mechanism in which the axial stress in fibers increases constantly and
has no minimum value. Such behavior has not been observed in the uniform model (( = 0) in
which the minimum value exists for large values of k. These results provide further support that
unidirectional composites fail in a stable manner for large values of .
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Fig. 6. Comparison of the axial stress in several fibers predicted from the model with non-uniform
imperfections
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Fig. 7. Effect of the biaxial loading ratio x on the fiber axial stress in the AS4/PEEK composite system.
The solutions obtained from the model with non-uniform imperfections

Moreover, it is evident from these figures that the fiber axial stress can exceed the tensi-
le strength required for fiber breaking. The tensile strength for AS4 carbon fiber is 3.45 GPa
(Kyriakides et al., 1995). It is apparent, first of all, that the breaking load of fibers decreases
with increasing the applied shear loading for the two model types. It is also obvious from these
figures that the load at which fibers break is lower in the case of a non-uniform distribution
of imperfections. Because non-uniform models have larger initial misalignment angles than uni-
form ones, the tensile stress in fibers starts at lower applied strain levels in the cases with
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Fig. 8. Effect of the biaxial loading ratio x on the fiber axial stress in the AS4/PEEK composite system.
The solutions obtained from the model with uniform imperfections
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Fig. 9. Distributions of the maximum axial stress and the effective plastic strain at the interfaces
between the matrix and the central fiber at the post buckling stage of deformation predicted from the
model with non-uniform imperfections

non-uniform imperfections compared to the corresponding cases with uniform imperfections. As
a result of this, the model with the non-uniform distribution of imperfections is better suited
to deal with the fiber breaking mechanism. This means that the distribution of fiber imperfec-
tions plays a significant role both in predicting the limit load as well as in understanding failure
mechanisms.
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An exemplary evaluation of kink bands in the non-uniform model under pure compressive
loading is shown in Fig. 9. By comparing the locations of the maximum tensile stress with the
locations of the maximum plastic strain at the interface between matrix and the central fiber, it
can be seen that fibers will start breaking due to excessive bending in regions of the most intense
plastic deformation. Thus, it is reasonable to suppose that the composite during compressive
loading fails within kink-bands first by local matrix shearing leading to split formation between
the fibers and then by fiber breaking. To summarize, on the one hand, characteristics of the
localization process such as the kink-band angle and the kink-band width can be evaluated
from contours of the effective plastic strain in the matrix. On the other hand, values of the
maximum tensile fiber stress can be useful in identifying the ultimate failure. Experimental
observations of kink band formation in the presence of shear loading (Vogler et al., 2000) show
that the kink band inclinations in the PEEK matrix composite vary from 10°-15° which are
somewhat lower than the values measured in similar tests under pure compression. The kink
band formation under combined axial compression and in-plane shear can be evaluated from
the contours of the effective plastic strain in the matrix at three stages of deformation which
represent different responses of the material, namely the beginning of plastic flow, the limit
load and the post-buckling behavior. The development of plastic deformation predicted from
the model with the non-uniform distribution of imperfections for x = 0.0125 and 0.05 is shown
in Figs. 11 and 12. For comparison purposes, the growth of the kink band across this model
for the pure compression case (k = 0) is illustrated in Fig. 10. The propagation of kinking is
observed in two inclined bands that are separated from each other and clearly defined. Due to
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Fig. 10. Contour plots of the effective plastic strain for K = 0 at three stages of deformation
corresponding to (a) the beginning of plastic flow (e17 = 0.43%), (b) the limit load (g11 = 0.99%),
(c) the post buckling (e11 = 1.56%)
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the periodicity in the transverse direction, the solution shown in Figs. 10-12 can be regarded as a
single band that spreads out from one maximum fiber misalignment to another through a region
of initially straight fibers. It is easy to see that microbuckles initiate inside the models at the
regions of higher misalignment. After the load begins to drop, the fibers in these models rotate.
As the bending curvature increases, the bands of the most intense plastic deformation become
increasingly more inclined with respect to the horizontal direction. The maximum plastic strains
in these bands at the post-buckling stage are also located at the regions of higher misalignment.
As it has been mentioned before (Fig. 9), the initiation of fiber breaks is expected to take place in
these zones. The kink band inclinations calculated at this stage show good agreement with those
measured in the experiments just before fiber breaking. It is interesting to note that models with
larger values of x tend to have smaller inclination angles. Moreover, both the kink band width
and the plastic deformation grow larger with the increasing ratio x. This means that the region
where fibers undergo significant bending is also expanding. As a result of this, the post-limit
load response is less unstable for larger values of k.
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Fig. 11. Contour plots of the effective plastic strain for x = 0.0125 at three stages of deformation
corresponding to (a) the beginning of plastic flow (e117 = 0.28%), (b) the limit load (g11 = 0.92%),
(c) the post buckling (e11 = 1.30%)

3.2. Comparison with experiments and other simulations

As it is shown in Fig. 13, the failure locus in the stress plane obtained from the non-uniform
model consists of two curves that differ in mode of failure. The first curve plotted as a solid
line indicates the region where the fiber buckling failure occurs. The second curve plotted as a
dotted line is associated with the stable fiber bending and refers to the cases in which the axial
stress in the central fiber has no minimum value.
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Fig. 12. Contour plots of the effective plastic strain for x = 0.05 at three stages of deformation
corresponding to (a) the beginning of plastic flow (e11 = 0.56%), (b) the limit load (£11 = 0.80%),
(¢) the post buckling (£11 = 1.20%)
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Fig. 13. Comparison of the failure loci predicted from micromechanical models with experimental
results for the AS4/PEEK composite system
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The limit loads obtained from the model with non-uniform imperfections for various loading
ratios are compared both with predictions based on the uniform distribution of imperfections
and with experimental data available in the literature (Vogler et al., 2000). Biaxial tests for the
AS4/PEEK composite have been carried out sequentially, first shear, then compression. The
results of this comparison are summarized in Fig. 13. It can be seen from this figure that the
compressive strength predicted from both models in the first region decreases almost linearly
with increasing the applied shear loading. In the second region, the failure loci change from li-
near to nonlinear. It can be seen that the model with fixed amplitude imperfections shows lower
biaxial strength than the model with decaying amplitude imperfections. What is surprising is
that the latter case has a larger fiber misalignment angle than the first case. This finding sugge-
sts that the effect of fiber waviness on failure in shear is opposite to that in compression. This
means that the waviness of the fibers in unidirectional composites promotes fiber microbuckling
and inhibits matrix shearing. Although the two model types follow the trend of the experimen-
tal points, the case with non-uniform imperfections is in better agreement with the measured
biaxial strength than the case with uniform imperfections. Thus, the classical approach based
on the uniform distribution of imperfections underpredicts the microbuckling strength of fiber
reinforced composites under combined axial compression and in-plane shear. Please note that
a small calibration error for the model with uniform imperfections is visible in Fig. 13 at zero
shear strength (7. = 0). A better calibration of this model would move the model predictions
down and, as a result of this, the effect of underestimation would be even larger.

As it has been shown in the previous Section, the models with initially wavy fibers are only
destined to predict the fiber microbuckling behavior. For very large values of x, the unidirectional
composites fail by stable fiber bending. In this case, the models with initially wavy fibers overrate
the failure stress because the fiber waviness acts as a barrier that blocks the in-plane shear
deformation.

4. Conclusions

A numerical study has been performed to demonstrate that the periodic unit cell model with
centrally located imperfections is able to reproduce fiber microbuckling that governs the failure
of fiber reinforced composites in the case of compression combined with low and moderate
shear. In particular, the proposed model better simulates the reduction in compressive strength
resulting from the application of an additional shear stress than the classical model with uniform
imperfections. Moreover, the kink-band inclination calculated from the proposed model at the
post-buckling stage is in the same range as that measured in experiments. It has also been found
that the buckling instability is inhibited by the presence of high tensile stress in fibers arising
from the shear loading. The simulations show that when the applied shear stress is sufficiently
large, the fiber microbuckling mechanism lapses and unidirectional composites fail by stable
fiber bending.
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