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A one-dimensional ubiquitiformal constitutive model for a bimaterial bar is proposed in this
paper. An explicit analytical expression for the effective Young modulus is then obtained,
which, unlike the fractal one, leads to a continuous displacement distribution along the
bar. Moreover, numerical results for concretes are calculated and found to be in agreement
with previous experimental data. In addition, some previous empirical and semi-empirical
constitutive models are also examined, which shows that each of these models can correspond
well to a ubiquitiformal one under a certain complexity.

Keywords: ubiquitiform, fractal, composite, displacement distribution, elasticity modulus

1. Introduction

Over the past decades, researchers have been concerned with the constitutive relationship of com-
posites, and it is of particular significance to understand how to obtain macroscopic material
properties from its microstructure. For this purpose, much theoretical, numerical and experimen-
tal work has been carried out, in which the influence of microstructure, properties of individual
components of the composites under consideration, as well as the interaction among the compo-
nents on the macroscopic material behavior are all taken into account. For example, concrete is a
one kind of widely used construction materials in practical applications, and several constitutive
models for concrete have been proposed, such as the Hirsch model (Hirsch, 1962), the Counto
model (Counto, 1964), the Hashin model (Hashin, 1962) and the three-phase composite circle
model (Zheng et al., 2006). Moreover, some experimental studies for concrete have also been car-
ried out. For example, Hirsch (1962) investigated experimentally the effects of both the aggregate
and the cement paste elastic moduli on the effective secant and dynamic elastic moduli; Stock et
al. (1979) performed an experimental research on the effect of the aggregate volume fraction on
the strength and the elastic modulus of concrete under both uniaxial tension and compression;
Vilardell et al. (1998) obtained experimentally stress-strain curves for mortar, wet-screened con-
crete and dam concrete at different ages. In addition, numerical simulations for the problem can
also be found in the literature. For example, by using the finite element method, Li et al. (2003)
predicted the elastic modulus of a kind of three-phase concrete and investigated the influence of
the aggregate area fraction and the elastic modulus ratios of both the aggregate and the interfa-
cial transition zone to the cement paste on the overall elastic modulus of concrete; Häfner et al.
(2006) used fast separation checks to place ellipsoidal and arbitrary shaped particles and stu-
died the influence of the concrete mix parameters and the particle shape on the effective elastic
properties.

On the other hand, since the pioneer work of Mandelbrot (1967, 1977, 1982) and Mandelbrot
et al. (1984), fractals have been extensively used to describe constitutive relations of composites.
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For example, based on the concepts of fractal strain and fractal stress, Carpinteri and Cornetti
(2002) obtained the constant displacement and the constant elastic modulus of a one-dimensional
stretched fractal bar under a uniaxial tensile load by using the renormalization group procedure
to the fractal Cantor set. Recently, Davey and Alonso Rasgado (2011) developed a new fractal
analytical procedure to obtain the finite displacement and the finite strain energy for a one-
dimensional bi-material bar. By constructing a map between a pre-fractal Cantor bar and a
continuous one-dimensional bar, they obtained first an analytical solution on the pre-fractal
bar from the solution of the effective continuum model, and then an analytical expression for
the fractal bi-material bar was obtained by an infinite limit process of the solution of the pre-
-fractal one. However, there are still some perplexities in the two fractal models (Carpinteri and
Cornetti, 2002; Davey and Alonso Rasgado, 2011). First, to determine the finite displacement,
elastic modulus and strain energy, the new density kinds of fractal parameters such as the frac-
tal strain, the fractal stress and the fractal length that defined on a unit fractal measure would
be used. However, as have been recently pointed out by Ou et al. (2014), such a concept of
fractal parameters seems now a little questionable, because that these fractal parameters are
both difficult to be determined in practice and have unambiguous physical meanings (Bažant
and Yavari, 2005). Next, the corresponding displacement distribution is in the form of a likely
devil’s staircase (see Fig. 1 and Fig. 4 in Carpinteri and Cornetti (2002), and Fig. 2 in Davey
and Alonso Rasgado (2011)), which is not continuous in internal boundaries between the two
components of the bi-material Cantor bar, and this is not the case for a real material in nature.
Finally, theoretically, such a solution can only be adopted for an idealized composite material
consisting of rigid aggregates and matrix layers of vanishing length and the elastic modulus,
which is apparent inconformity with the actual materials. In fact, in the opinions of the authors
of this paper, the aforementioned perplexities are resulted directly from the infinite iterative
procedure of fractals. According to Ou et al. (2014), the fractal approximation of a real physical
or geometrical object is questionable, especially when the measure of the considered object must
be taken into account, simply because of the divergence of the integral dimensional measure or
the singularity of the Hausdorff dimension of a fractal. In order to avoid such a problem in fractal
applications, a new concept of ubiquitiform was introduced by Ou et al. (2014), according to
which, a ubiquitiform is a finite order self-similar (or self-affine) physical configuration construc-
ted usually by a finite iterative procedure. In particular, a ubiquitiform has the same Hausdorff
dimension as that of the initial element, which is always integral in practice, and a physical
object in nature is a ubiquitiform. Recently, ubiquitiform has been applied successfully in the
softening constitutive model of concrete (Ou et al., 2019), heat transfer in a bimaterial bar (Li et
al., 2016), crack extension in concrete (Li et al., 2017), and fracture energy of concrete (Ou et al.,
2017).

In this paper, based on the concept of ubiquitiform, a ubiquitiformal constitutive model is
proposed to describe a one-dimensional bi-material bar under uniaxial tension, in which a ge-
neralized ubiquitiformal ternary Cantor set is used to describe the distribution of the matrix
material, and then explicit analytical expressions for both the effective elastic modulus and the
displacement distribution are obtained. Moreover, based on the ubiquitiformal constitutive mo-
del, the effective elastic moduli for some concrete materials are calculated numerically, and the
calculated results are compared with the previous experimental data. This article is divided into
the following five sections. After this brief introduction, in Section 2, a one-dimensional ubiquiti-
formal elastic constitutive model for a bi-material bar is developed, also presented are the explicit
analytical expression for both the displacement distribution and the effective elastic modulus.
In Section 3, the numerical results are presented and compared with the previous experimental
data, and some discussions are presented in Section 4. Finally, in Section 5, some conclusions are
given.
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2. Ubiquitiformal constitutive model for a bi-material bar

According to Ou et al. (2014), as a ubiquitiform, a physical object displays self-similarity only
in a finite scale range [δmin, δmax], where δmin and δmax are the lower and upper bound to scale
invariance, respectively. For a ubiquitiformal elementary cell of length δmax in a bimaterial bar,
the distributions of the matrix and the aggregate can be described properly by an N -th order
generalized ubiquitiformal ternary Cantor set that is constructed by a series of deletion process.
That is, the initial line element I0 = [0, δmax] is first divided into p equal parts, then the middle
p− 2 parts are deleted; subsequently, each remaining part is again divided into p equal smaller
parts, and the middle p−2 of the smaller parts are also deleted, and so on. After N times of such
a deletion operation, an N -th order generalized ubiquitiformal ternary Cantor set is generated,
as shown in Fig. 1.

Fig. 1. The N -th order generalized ubiquitiformal ternary Cantor set

In fact, this generalized ubiquitiformal ternary Cantor set can also be obtained from the
initial line element through a series of repeated self-similar compression maps in the following
form

S :















S1(x) =
x

p

S2(x) =
x+ (p− 1)δmax

p

(2.1)

by which, the N -th order generalized ubiquitiformal ternary Cantor set can be obtained after
N times of iteration, as

IN = S
N (I0) =

2
⋃

j=1

Sj(IN−1) (2.2)

and the complexity of the N -th order generalized ubiquitiformal ternary Cantor set is

D =
ln 2

ln p
(2.3)

Physically, as is shown in Fig. 2, in the ubiquitiformal elementary cell, elements I (remaining
parts) are assumed to consist of only the matrix material, and elements II (removed parts) are
assumed to include the aggregate and some of the matrix material.

Moreover, according to Li et al.(2016), there is

(1

p

)N
=
δmin
δmax

(2.4)

Eliminating the variable p from Eq. (2.3) and Eq. (2.4) gives

N = −D
ln(δmin/δmax)

ln 2
(2.5)
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Fig. 2. The distribution of the matrix material and aggregate in the bi-material bar

For convenience, from Eq. (2.4) and Eq. (2.5), the length ratio of the generalized Cantor set
(2/p)N can be written as

( 2

P

)N
=
( δmin
δmax

)(1−D)
(2.6)

Denoting the elastic modulus of the matrix material, the aggregate, elements I and elements II
as Em, Ea, EI (= Em) and EII, respectively, and the cross-sectional area of the bar and of the
aggregate and matrix in element II as A, Aa and Am = A − Aa, respectively, it can be easily
shown that the effective elastic modulus of element II EII is

EII = Em + (Ea − Em)
Aa
A

(2.7)

To determine Aa, the following expression is used

Va =
[

1−
( δmin
δmax

)(1−D)]

δmaxAa = raδmaxA (2.8)

where Va is the volume of the aggregate included in the bimaterial bar, and ra is the ratio of
the aggregate volume to the total volume. Substituting Eq. (2.8) into Eq. (2.7), reaches

EII = Em +
ra(Ea − Em)

1− (δmin/δmax)(1−D)
(2.9)

To determine the effective elastic modulus Eeff of the bimaterial bar, the displacement di-
stribution along the ubiquitiformal elementary cell under a certain external load must be first
determined, which will be described in the following.

Consider the displacement distribution of a ubiquitiformal elementary cell fixed at the left
end under an axial external load F = σA, where σ is the stress acting on the cross section.
The displacement at the location s along the ubiquitiformal elementary cell is uN (s) = ∆uN (s),
where ∆uN (s) is the extension of the line segment [0, s]. Denoting the total initial lengths of
elements I and II in the line segment [0, s] as∆I(s) and∆II(s) = s−∆I(s), respectively, uN (s) can
be expressed by

uN (s) = ∆I(s)
F

EIA
+ [s−∆I(s)]

F

EIIA
(2.10)

Moreover, it is known that there are totally 2N elements I in the N -th ubiquitiformal elemen-
tary cell. Denoting the coordinates of the left and the right end of the j-th element I as xNj
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(j = 1, . . . , 2N ) and yNj (j = 1, . . . , 2
N ), respectively, with the boundary conditions of xN1 = 0

and yN2N = δmax, both x
N
j and y

N
j could be obtained by the self-similar compression mapping

Eq. (2.1). Therefore, for s ∈ (yNj , xNj+1), j = 1, . . . , 2N−1, namely, the point s belonging to the
j-th element II, there is ∆I(s) = j(1/p)

N δmax; for s ∈ (xNj , y
N
j ), j = 1, . . . , 2

N , namely, the po-

int s belonging to the j-th element I, there is ∆I(s) = (j − 1)(1/p)N δmax + s−xNj . Accordingly,
taking Eq. (2.4) into account, one obtains

∆I(s) =

{

jδmin yNj ¬ s < x
N
j+1

(j − 1)δmin + s− xNj xNj ¬ s < yNj
(2.11)

For the sake of convenience, ∆I(s) can be denoted as

∆I(s) =

s
∫

0

µI(s) ds (2.12)

where

µI(s) =

{

1 s ∈ element I
0 s ∈ element II

(2.13)

Substituting Eqs. (2.9) and (2.12) into Eq. (2.10), one gets the displacement distribution along
the bimaterial bar

uN (s) =
F

EmA

[ s
∫

0

µI(η) dη +
s−
∫ s
0 µI(η) dη

1 +
(

Ea
Em
− 1
)

ra
1−(δmin/δmax)(1−D)

]

(2.14)

and the total extension of the N -th order ubiquitiformal elementary cell ∆uN is

∆uN =
F

EmA
δmax

[

( δmin
δmax

)(1−D)
+

1− (δmin/δmax)(1−D)

1 +
(

Ea
Em
− 1
)

ra
1−(δmin/δmax)(1−D)

]

(2.15)

On the other hand, by the linear elastic constitutive relation, the total extension can be
expressed as

∆uN =
F

AEeff
δmax (2.16)

hence, from Eqs. (2,15) and (2.16), one obtains the effective elastic modulus of the bimaterial
bar

Eeff =
Em

(

δmin
δmax

)(1−D)
+

1−(δmin/δmax

)(1−D)

1+

(

Ea
Em
−1

)

ra

1−(δmin/δmax

)(1−D)

(2.17)

3. Numerical results and discussions

Substituting Eq. (2.6) into Eq. (2.14), yields

uN (s) =
F

EmA

[ s
∫

0

µI(η) dη +
s−
∫ s
0 µI(η) dη

1 +
(

Ea
Em
− 1
)

ra
1−(2/p)N

]

(3.1)
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To obtain the displacement distribution in theN -th order basic ubiquitiformal cell of a bimaterial
bar under uniaxial tension by using Eq. (3.1), some necessary material parameters must be
determined first, which include the lower and the upper bound to scale invariance δmin and δmax,
respectively, the ratio ra of the aggregate volume to the total volume, and the elastic moduli of
the matrix material Em and the aggregate Ea. Moreover, the complexityD is obtained directly by
the mass distribution function or the gradation and the volume ratio of the aggregate (Carpinteri
et al., 2003), and then the parameter p and N can be determined from Eq. (2.3) and Eq. (2.4),
respectively.
For a one kind of practical concrete materials (Stock et al., 1979), there are Em = 11.6GPa,

Ea = 74.5GPa, and ra = 60%. According to Ou et al. (2019), for concrete, the lower bound to
scale invariance δmin can be expressed as a function of the tensile strength, as

δmin = 221.38f
−3.24
t (3.2)

where ft is the tensile strength of the concrete, and the unit of δmin and ft are µm and
MPa, respectively. For the concrete presented in Stock et al. (1979), ft = 2.38MPa, and then
δmin = 13.33µm. Moreover, by using gradation curve 3 of the aggregate in Road Note 4 (Road
Research laboratory, 1950), the mass distribution function of the aggregate can be fitted as
W (d) = (d/dmax)

0.68, where d is the diameter of the aggregate, and the maximum diameter of
the aggregate dmax = 19mm. For a representative volume, the upper bound to scale invariance
is taken as δmax = 5dmax = 95mm. Furthermore, from the mass distribution function of the
aggregate W (d), the probability density function for the size distribution of the aggregate can be
obtained as f(d) = 2.32d2.32min/d

3.32, where dmin = 150µm. Subsequently, by a numerical integral
approach (Carpinteri et al., 2003), the complexity of any cross section of the bimaterial bar can
be determined as 1.86, and then the complexity of the generalized ubiquitiformal Cantor set can
be determined approximately as D = 0.86. Finally, substituting the value of the complexity D
into Eq. (2.3) gives p = 2.24, and then, from Eq. (2.5), N = 12 can be determined.
By virtue of the above obtained values of the material parameters, the numerical result of

the dimensionless displacement distribution along the N -th order ubiquitiformal elementary cell
can be calculated from Eq. (3.1) and presented in Fig. 3.

Fig. 3. Dimensionless displacement distribution along the N -th ubiquitiformal elementary cell for a one
kind of concrete (Stock et al., 1979)

It is interesting and of great significance to compare this numerical result with that obtained
from some fractal models (Carpinteri and Cornetti, 2002; Davey and Alonso Rasgado, 2011).
It can be seen from Fig. 3 that there is an approximately linear distribution of the particle
displacement along the ubiquitiformal elementary cell, which implies also a linear constitutive
relation for the bimaterial bar under the tensile loads. Moreover, it can be noticed from Fig. 3
that the displacement distribution is continuous even at any internal interface between the two
materials, which is consistent with the experimental observations under the uniaxial tension.
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On the contrary, however, by using the fractal models for the same problem, the corresponding
displacement distribution forms a likely devil’s staircase as shown in Fig. 1 and Fig. 4 in Car-
pinteri and Cornetti (2002), and Fig. 2 in Davey and Alonso Rasgado (2011), which is obviously
not the case, although it was declared (Carpinteri and Cornetti, 2002; Davey and Alonso Ras-
gado, 2011) that the fractal model can be applied to an idealized composite material consisting
of relatively small particles of infinitely high elasticity modulus embedded in a relatively large
matrix of an infinitely low elasticity modulus. In fact, from the physical point of view, such an
idealized fractal composite material implies that E1 = 0 and E2 =∞, which is not reasonable.
Theoretically, such a difficulty comes from the infinite iterative procedure of a fractal set, or, in
other words, from the singularity of the integer dimensional measure of a fractal set. Moreover,
from Eq. (2.17), the numerical results of the effective elastic moduli for the four kinds of concrete
with different aggregate volume ratio (Stock et al., 1979) are obtained, as listed in Table 1. Also
listed, for comparison, are the material properties and parameters of the four kinds of concrete,
where Eexp represents the experimental data of the effective elastic modulus, and er is the rela-
tive error of Eeff with respect to Eexp. It can be seen from Table 1 that the calculated numerical
results are basically in agreement with the experimental results.

Table 1. The material properties and the comparison between the numerical results of the
effective elastic modulus of concrete and the experimental data (Stock et al., 1979)

ra ft δmin δmax Em Ea D Eeff Eexp er
[%] [MPa] [µm] [mm] [GPa] [GPa] [–] [GPa] [GPa] [%]

20 1.84 30.69 95 11.6 74.5 0.97 14.11 17.8 −20.73
40 1.86 29.63 95 11.6 74.5 0.93 17.91 21.4 −16.31
60 2.38 13.33 95 11.6 74.5 0.86 27.43 29.0 −5.41
80 2.78 8.06 95 11.6 74.5 0.72 48.58 41.3 +17.63

It is also seen from Eq. (2.17) that the effective elastic modulus Eeff of a bimaterial bar
depends on the aggregate volume ratio ra and the complexity D as well as on the lower and the
upper bound to scale invariance. In the following, it will further be shown that, under certain
δmin, δmax and ra, the variation of the effective elastic modulus for the bimaterial bar will be
limited to a finite range of [Eeff min, Eeff max]. In the physical point of view, the infimum Eeff min
and supremum Eeff max represent the effective elastic modulus of the bimaterial bar under the
series and the parallel modes, respectively, of the distribution of the matrix material and the
aggregate. In fact, it can be solved from Eq. (2.8) that

D = 1−
ln(1− raA/Aa)
ln(δmin/δmax)

(3.3)

Thus, under certain δmin, δmax and ra, it can be verified from Eq. (3.3) that the complexity D
is a monotone increasing function of Aa/A, and reaches up to its maximum at Aa/A = 1, at
which the distribution of the matrix material and aggregate takes the series mode. Accordingly,
there is

Dmax = 1−
ln(1− ra)
ln(δmin/δmax)

(3.4)

On the other hand, considering the mass conservation of the aggregate under a certain value
of ra, the parallel mode of the distribution of the matrix material and aggreate can be realized
when the total dirtribution length of the aggregate la reaches up to its maximum, namely, the
length of a ubiquitiformal elementary cell δmax, which implies that p→∞, and then, from Eq.
(2.3), there is

Dmin = 0 (3.5)
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Fig. 4. The relationship between Eeff and D for the concretes (Stock et al., 1979)

Finally, the numerical results of the relationship between the effective elastic modulus Eeff
and the complexity D for concretes with different aggregate volume ratio ra (Stock et al., 1979)
are calculated and presented in Fig. 4, and that for the relationship between the effective elastic
modulus Eeff and the aggregate volume ratio ra under different values of the complexity D
are also calculated and presented in Fig. 5. Moreover, the calculated numerical results of the
function Eeff (D, ra) can be presented as a curve surface in the three dimensional space as shown
in Fig. 6.

Fig. 5. The relationship between Eeff and ra for the concretes (Stock et al., 1979)

Fig. 6. The dependence of Eeff on ra and D for the concretes (Stock et al., 1979)
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4. Discussions

It is seen from the above descriptions that the measures of all the physical quantities used in
the ubiquitiformal model are regular on the integer dimensions and can be measured normal-
ly. The ubiquitiformal displacement distribution is also continuous, in line with the continuity
assumption of traditional continuum mechanics, which implies the availability of the ubiquitifor-
mal model. On the other hand, in the fractal description of such a problem, some embarrassing
questions are inevitable, because of the singularity of the integral dimensional measure of the
object under consideration and the unreasonable fractal approximation to a ubiquitiform, as
have pointed out by Ou et al. (2014). For example, according to Carpinteri and Cornetti (2002),
to maintain a finite displacement, all the measures of some physical quantities such as the stra-
in, stress and the cross-sectional area become singular, or, in other words, the concept of the
so-called fractal strain, the fractal stress and the fractal area must be introduced. Consequently,
a discontinuous displacement distribution is inevitable, which obviously violates the fundamen-
tal assumption of continuity in traditional continuum mechanics. Similarly, Davey and Alonso
Rssgado (2011) proposed a piecewise-linear mapping between a one-dimensional rod and an
n order pre-fractal ternary Cantor set, by which the fractal solution is obtained by taking the
limit n → ∞. However, during the infinite limiting process, the dimensions of some physical
quantities such as the stress and the Young modulus change abruptly, which implies that some
fractal physical quantities must be introduced. It should be emphasized here that waking up
to the questions resulted from the singularity of the integral dimensional measure in practical
applications is of important significance. On the one hand, the measure is related to the fractal
dimension, so it is meaningless to compare the measures of two objects with different fractal
dimensions, but most of the scientific criteria are established based on such a comparison. For
example, it is obviously meaningless to compare the values of the fracture energy of two frac-
ture surfaces with different fractal dimensions. On the other hand, the fractal quantities such
as the fractal strain, fractal stress, fractal strength and the fractal fracture energy defined on
the unit fractal measure are both difficult to be determined in practice and have a unambiguous
physical meaning. However, these difficulties will be avoided completely with the concept of a
ubiquitiform.
Certainly, there have been some constitutive relations for a two-phase material, and some

models are proposed to determine the Young modulus. For instance, besides the above mentioned
series and parallel models, there are the Hirsch (1962) and the Counto (1964) models which can
be written, respectively, as

1

Eeff
=
(

1−
2Z

π

)( ra
Ea
+
1− ra
Em

)

+
2Z

π

( 1

raEa + (1− ra)Em

)

Z = 0.785 (4.1)

and

1

Eeff
=
1−
√
ra

Em
+

1

Em(1−
√
ra)/
√
ra + Ea

(4.2)

In principle, each of these models is constructed under certain empirical assumptions of the
geometric direction of the matrix material and aggregate, with some empirical parameters such
as Z in the Hirsch model introduced. Comparing with these existing empirical or semi-empirical
models, the ubiquitiformal model confirms the ubiquitiformal characteristic of the distribution
of the matrix material and aggregate, which leads to a more definite description of the internal
structure of bimaterials. Moreover, the ubiquitiformal model can describe the constitutive beha-
vior of a bimaterial in a more all-round way. For example, besides the aggregate volume ratio ra,
the aggregate gradation, another important material property, can also be taken into account in
the ubiquitiformal model. For comparison, the numerical results of the effective Young modulus
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for the concretes (Stock et al., 1979) calculated by using the ubiquitiformal model and the four
above-mentioned models are presented in Fig. 4, in which the complexities of the series, parallel,
the Hirsch and the Counto models are all calculated from Eq. (2.17). It can be seen that, in
fact, all the four aforementioned models correspond to a ubiquitiformal model under a certain
complexity.
In addition, from Eq. (2.17), the numerical results of the effective elastic modulus for the

four kinds of concrete with different aggregate volume ratio (Stock et al., 1979) are obtained
and listed in Table 2. Eeff 1 represents the effective elastic modulus when the complexity is D1,
and er(D) and er(E) are the relative errors of D1 with respect to D and the relative errors
of Eeff 1 with respect to Eeff , respectively. It can be seen from Table 2 that the complexity D
strongly influences the value of the effective elastic modulus Eeff . Moreover, it can also be seen
that much attention should be paid in the future to determination of the complexity D in order
to further improve the numerical results.

Table 2. The influence of the complexity D on the effective elastic modulus Eeff of the concrete
(Stock et al., 1979)

ra D Eeff D1 Eeff 1 er(D) er(E)
[%] [–] [GPa] [–] [GPa] [%] [%]

20 0.97 14.11 0.96 14.86 −1.03 +5.31
40 0.93 17.91 0.92 19.03 −0.01 +6.21
60 0.86 27.43 0.85 29.00 −1.16 +5.73
80 0.72 48.58 0.71 50.11 −1.39 +3.16

The evaluation of the effective elastic modulus is applicable for tension. Certainly, further
discussions on torsion and bending are still needed in future.

5. Conclusion

A ubiquitiformal linear elastic constitutive model for a bimaterial bar is proposed, in which,
the bimaterial bar is regarded as a generalized ubiquitiformal ternary Cantor set. Based on this
new ubiquitiformal model, the explicit analytical expressions for the effective Young modulus
and the displacement distribution are obtained. The ubiquitiformal model leads to a reasonably
continuous displacement distribution along the bimaterial bar, while the corresponding fractal
displacement distribution is a likely devil’s staircase.
Moreover, taking the aggregate volume ratio and the aggregate gradation into account, the

numerical results of the effective Young modulus for some concretes are calculated and found to
be in agreement with the previous experimental data.
In addition, some empirical and semi-empirical constitutive models in the previous literature,

such as the series, parallel, the Hirsch and the Counto models are re-examined. It is found that
each of these models can correspond well to a ubiquitiformal one under a certain complexity.
Comparing with these empirical and semi-empirical constitutive models, the ubiquitiformal one
can describe the constitutive behavior of bimaterials in a more all-round way.
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