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The objective function based on mesh quality metric has a major impact on smoothing
unstructured tetrahedral meshes. The ability of seven mesh quality metrics to distinguish
four kinds of poor-quality elements and their effects on the change of element shape are
analyzed in detail. Then, four better mesh quality metrics are chosen to construct objective
functions. In addition, the rational determination of searching direction and the optimal step
size in the optimization algorithm of solving the objective function are proposed. Finally,
comparisons with the other three objective functions are made according to different number
of elements, iteration limit, and the desired accuracy in the improved mesh. It is found
that with the increase of the number of elements, the time consumed during optimization
increases, but the changes of the worst quality element are different. The number of iterations
has little effect on the mesh quality and the time cost. The increasing of the desired degree
of accuracy will improve the mesh quality and cost more time. Furthermore, the approach
using objective function is compared with Freitag’s common approach. It is clearly shown
that it performs better than the existing approach.

Key words: objective function, mesh quality metric, optimization-based smoothing, mesh
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1. Introduction

The finite element and finite volume methods are invaluable tools for solving complex engineering
problems in structural analysis, fluid dynamics, electromagnetism, and many other areas (Do-
brzynski and Frey, 2008; Montenegro et al., 2009). These tools rely on the mesh, a discretization
of space into simple geometric pieces that makes numerical solution possible. Tetrahedral meshes
are a popular choice for discretization of three-dimensional domains, and can be generated by
advancing front techniques, Delaunay or Octtree methods. However, not every mesh is suitable
for numerical computation. Poorly-shaped tetrahedra in a mesh can result in numerical errors
and increase the time cost to find the solution (Munson, 2007; Park and Shontz, 2010). Hence,
there is a market for mesh improvement tools which can make the existing tetrahedra conform
to a given domain together with certain constraints for the size and shape of the elements.
Mesh improvement techniques can roughly be classified into two types of methods that mo-
dify mesh topology and those which do not. The first modifies topology by inserting or deleting
nodes as well as changing connectivity of nodes (Edelsbrunner and Shah, 1996). In contrast,
the second, known as the smoothing method (Xu et al., 2009; Tournois et al., 2009), preserves
mesh topology by applying appropriate node placement techniques. What we concern in this
context are node repositioning algorithms that preserve mesh topology. One of the most common
smoothing techniques is Laplacian smoothing, which relocates a single point to geometric center
of its directly connected neighboring nodes. This technique is computationally inexpensive and
simple to implement. But, it is less efficient in the case of tetrahedral meshes, since the variety
of adverse topological and geometrical configurations increases in 3D, which makes the Lapla-
cian smoothing fail (Mao et al., 2006). To address these problems, researchers have developed
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optimization-based methods (Hetmaniuk and Knupp, 2011; Vartziotis et al., 2009; Dong et al.,
2011) geared towards improving the element quality. The methods are formulated in terms of
design variables (one or more nodes to be repositioned), an improvement goal (quality metric,
objective function, and constraints), and the algorithm used to calculate an optimal solution.
In them, an objective function based on a suitable quality metric has a crucial impact on the
solution accuracy and efficiency. Unfortunately, little is known about the relative merits of using
one objective function over another in order to smooth a particular unstructured mesh. For
example, it is not known in advance which objective function will converge to an optimal mesh
faster or which objective function will yield a mesh with better quality in a given amount of time.
One objective function may converge faster than others, whereas another objective function may
improve the quality of meshes with heterogeneous elements more quickly than its competitors.

To answer the above questions, a study that compares seven quality metrics is conducted
to clarify their abilities of identifying poor-quality elements and assessing the change of ele-
ment shape. Then, the objective functions are investigated to represent the overall mesh quality
measured by quality metrics. After that, Section 3 gives our improvement to the optimization
algorithm. In Section 4, the factors that affect the optimizing effect, such as the element num-
ber, iteration limit and the desired accuracy in the resulting mesh, are discussed. And some
experimental results of our method and comparisons with other methods are given. In the last
Section, we will conclude our discussion.

2. Tetrahedral mesh quality metrics

The direct measure of mesh quality is to see the precision and speed of numerical solution using
the mesh. Obviously, it cannot directly be used for the examination and improvement of mesh
the quality. Therefore, different quality metrics were raised by researchers from various respects.

In many mesh quality metrics, their properties have been assumed or stated without proof.
Although those metrics claim that their properties appear obvious, we believe they should be ve-
rified rigorously. We consider several commonly used tetrahedral mesh quality metrics as shown
in Table 1. The range of the quality metrics is in the interval [0, 1]. Each metric attains a maxi-
mum value only for the regular tetrahedron. Larger values of the metrics represent good quality
tetrahedra (close to a regular tetrahedron) and smaller values represent poor-quality tetrahedra
(close to degenerate). Our goal is to provide a number of useful results on tetrahedral mesh
quality metrics that may lead to a better assessment of tetrahedron, and get better objective
functions which are deduced by those metrics for mesh quality improvement.

Table 1. Different quality metrics

‘ Label ‘ Expression ‘ Range ‘ Used in reference ‘
1
a1 6/6V/ KZ Si) .H%ax‘SLJ} [0,1] | Geuzaine and Remacle (2009)
i=1 /=L,
q2 Vmax - V)/Vmax [0, 1] Lo (1997)
5 3
q3 6\/§V/<\/ Y L§> [0,1] | Nie (2003)
j=1
q4 3r/R [0,1] | Parthasarathy et al. (1994)
qs Loin/Limax [0,1] | Shewchuk (2002)
q6 min (61, 03,03, 04) [0,1] | Si and Gartner (2011)
¢ | 1— maX(me;(;GO, 60*6%712'”) 0,1] | Lo (1997)

Nomenclature: V is the tetrahedral volume, V4, is the maximum volume of an equilateral cell
whose circumscribing radius is identical to that of the mesh element. L;, j = 1,...,6 are its
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edge lengths, Ly, is min L;, L4, is max L. S; is the surface area of a triangular facet, r is
insphere radius, R is circumsphere radius, Qq: and @, are the maximum and minimum
angles between the edges of the element, [;; is the length of the edge joining vertices 7 and

12V
\/ T [+ lik)? = 5]

0 = 2 arcsin

J,k#i
NN

2.1. Numerical tests

To find out whether quality metrics are equivalent, mainly two aspects are considered. The
first is the number of nodes to be moved, and the second is the evaluation made on four kinds
of poor-quality tetrahedra (see Fig. 1). Furthermore, mesh improvement approaches normally
move one node at each iteration. However in the paper, the conditions of moving one node, two
and three nodes are all investigated.

()

(a)

Fig. 1. Some poor-quality tetrahedra: (a) no short edges, but four nodes are nearly coplanar, (b) only
one short edge, (c) only two relatively short edges, (d) three shorter edges are in the same plane

Specific test cases are designed, as shown in Table 2. Let (to,¢1,t2,t3) denote a tetrahedron
with four pairwise disjoint nodes t; € R3,i € {0,...,3}, which is positively oriented (as shown in
Fig. 2). Let u control each node’s position in the tetrahedron (see in Table 2), where 0 < u < 1.
When w =1, it is a regular tetrahedron.

Fig. 2. Sketch of a tetrahedral element

2.2. Numerical results

Results of this numerical test with respect to node movement are depicted in Figs. 3 and 4. It
can be indicated that mesh quality vary significantly for a given quality metric with movement
of the nodes. It means that the node position and hence the geometry of the tetrahedron has
big influence on the quality metric. For ¢5 and ¢7 in Fig. 3, when u approaches to zero, their
values grow larger (g5 = 0.578792, ¢7 = 0.504104), so they cannot judge the tetrahedron whose
four nodes are nearly coplanar. Such type of tetrahedrons may be considered as a well-shaped
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Table 2. Test cases
. No. of
Coordinates for each node of .
No. nodes Instruction
tetrahedron
moved

1 | t0(0,0,0), t1(1,0,0), 1 when u — 0, 4 nodes are nearly copla-
t2(0.5, \f/2 0), nar, see Fig. la
t3(0.5,1/3/6,/6u/3)

2 | 10(0,0,0), t1(1,0,0), 2 there is one short edge when u — 0;
£2(0.5,4/3u/2,0), nodes ty and t3 are moved, at least
t3(0.5u, v/3u/6,v/6u/3) one poor-quality triangle in the tetra-

hedron, see Fig. 1b

3 | t0(0,0,0), t1(1,0,0), 2 there are two short edges when u — 0
t2(1 — 0.5u,v/3u/2,0), and the nodes to and ¢3 are moved, at
t3(0.5u, v/3u/6, v/6u/3) least two poor-quality triangles in the

tetrahedron, see Fig. 1c

4 | t9(0,0,0), t1(u,0,0), 3 there are three short edges in the sa-
t2(0.5u, v/3u/2 + u/2,0), me plane when v — 0 and the nodes
t3(0.5, —v/3/2 4 2v/3u/3,v/6u/3) t1, to and t3 are moved, three poor-

quality triangles in the tetrahedron,
see Fig. 1d

5 | t0(0,0,0), t1(3,0,0), t2(5,3,0), 1 node t3 moves along the line AB

A(0.6,1.2,1.0), B(1.2,2.4,1.0)

6 | to(+v/3/3,0,0), t1(—/3/6,0.5,0), 1 node #3 moves in the z = v/6/3 plane
t2(—+/3/6,-0.5,0), along the circle whose radius is 0.5
t3(0.5 cos(2mu), 0.5sin(2mu), v/6/3)
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Fig. 3. Change of different metrics with u: (a) in case 1, (b) in case 2, (¢) in case 3, (d) in case 4
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tetrahedron during the mesh optimization, which greatly affects the quality of the final mesh.
As shown in Fig. 4a, when the distance between node t3 and A increases, the values of ¢,
43, 5, g6 and ¢y increase progressively, while the values of ¢o and ¢4 decrease progressively.
It suggests that different mesh quality metrics might be not equivalent. In other words, the
quality of elements may be good according to one metric. In contrast, it may be bad when
measured by other metrics. That is, opposite optimization directions may be got by different
metrics. From Fig. 4b, the values of ¢i, ¢5, g5 and g7 change periodically, while the values
of g9, g3 and ¢4 keep constant. In fact, the volume of the tetrahedron V and the length of
each edge Y9 | L? are constant in case 6 V = v/2/12, 3% | L? = 6.75). So the change of u
cannot result in the change of ¢o, q3 and ¢4 in the case. So it can be concluded that their
evaluations on the change of element shape are different, too. The metrics of ¢1, g5, gs and ¢7
can reflect the change of element quality induced by motion of the nodes, while ¢s, g3 and ¢4
cannot.
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Fig. 4. Change of different metrics: (a) with the distance of t3 and A in case 5, (b) with u in case 6

From the above analysis, we can see that ¢; and gg have better performances on the evalu-
ation of poor-quality elements and the change of element shape.

2.3. Objective functions

To assess the overall quality of the mesh, both the average and the worst element quality can
be adopted. However, a single bad tetrahedron can ruin a simulation: one large dihedral angle
can induce an arbitrarily large and incorrect strain in the simulation of a mechanical system
(Klingner and Shewchuk, 2008), hence we focus on the minimum local element quality.

We associate with the mesh a continuous function to measure the mesh quality as measured
by one or more geometric properties of elements as a function of their node positions. The
objective function we used is

F(X) = 1— min q(X;) (2.1)

1<i<n

We improve the worst element quality by minimizing the objective function, where f(X) is the
overall mesh quality measured by the worst-quality element in the mesh, X is the position of
the free node and n is the number of elements in the mesh. Let ¢(X;) measure the quality of
the i-th element. A specific choice of ¢ is an element quality metric.
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We define the objective function as f; which is constructed by the quality metric ¢;. In the
same way, f3, f4 and fg correspond to g3, g4 and gg. In order to investigate the smoothness of
these typical objective functions, we let one node of a tetrahedron move only in one plane. In
Fig. 5, four nodes of the two tetrahedra are fixed at the coordinates A(0,0,0), B(v/3/2,0.5,0),
C(v/3/2,-0.5,0), and D(v/3/3,0,4/6/3), and the fifth node E moves freely along X and Z
axes. When node FE is moved, the distribution of the four objective functions is shown in
Fig. 6. The lighter the region is, the lower the object functions value is. We can see that the
objective function fg is a nonsmooth function of node positions (see Fig. 6d), because with
the node movement, the identity of the objective function (and the gradient of the function)
can change abruptly. Unfortunately, our smoothing algorithm (Section 3) cannot cope with this
nonsmoothness. Hence, comparisons with other three objective functions are made according to
different number of elements, iteration limit, and the desired accuracy in the next section.

Fig. 6. Distribution for different objective functions: (a) fi1, (b) f3, (¢) f1, (d) fo
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3.1.

3. Optimization algorithm

The overall optimization algorithm

The optimization-based smoothing directly attacks the element distortion problem. Instead
of applying a heuristic-based movement to each node as done in the Laplacian smoothing, the
optimization-based smoothing seeks to minimize the distortion of the elements connected to

each

node. Let & denote a one-dimensional array. The overall smoothing scheme is presented.

Algorithmic details for each of the major steps in this scheme are below.

Input: a given random initial mesh, objective function f(X), a fixed poor-quality threshold

value ~;
Output: high-quality mesh:

)
2)

3.2.

Compute the number of nodes and elements in the initial mesh

Calculate the quality of the initial mesh based on the chosen quality metric, and store
poor-quality elements whose quality are less than v in @

In &, select a poor-quality element randomly and determine its adjacent region

Build a locally isolated optimization region and calculate the value of the objective function
in the region using Eq. (2.1)

Calculate the optimal solution (see Section 3.2) which is used to adjust all nodes’ locations
in the region simultaneously, and get the best location of X

Repeat steps 3 to 6 until there are no poor-quality elements in @.

The algorithm of calculating the optimal solution

The algorithm for calculating the optimal solution is presented in Table 3.

Table 3. Determination of optimal solution by Algorithm 1

Algorithm 1: calculate optimal solution

1: function SOLUTION (f(X), \g,&, X2, N) < f(X) = objective function
Ao = initial step size
¢ = desired degree of accuracy
N = iteration limit
XY = initial coordinate for node X

2:  get free node HY and k = 0 <« H? = Hessian matrix
k = current iteration
30 min f(XF + \pdb) <« d* = optimal search direction
compute \j, using line search algorithm <« )\, = optimal step size

(see algorithm 2 in Section 3.3)
XEH = XK+ Nk
if |f(XF) — f(XK)| <eor k> N then
X — X1 and break < X, = optimal point coordinate
else AXFH = XFH1L _ Xk Agh = ghtl _ gk q g+l = f(x) gradient at node X} +!
R — prk o AXRAXDT | HyAgy (Agy)TH S
no =M T TAXOTAGT © T(agh)THE Ak
dEF = R g1

go to step 3

9: end function
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3.3. Line search algorithm

It is well known that the line search methods play a very important role in optimization
problems. We prepare for locating a local minimum in the optimization problem with no con-
strains. All methods have in common the basic structure. At each iteration, a direction d* is
chosen from the current location X,,. The next location, X1, is the minimum of the function
along the line that passes through X,, in the direction dﬁ. The line search algorithm is shown
in Table 4.

Table 4. Line search algorithm

Algorithm 2: line search algorithm
1: function LINE_.SEARCH (51, o(f(X), X9, ho,a)) < f(X) = objective function

e1 = allowable error
o(f(X), X2 hg,a) = function
for search region

[a1,b1] see Algorithm 3
2:  compute 1 = ay + 0.382(by — ay) < /11, V1 = initial tentative point
vi =aj; +0.618(by —ay) and Set i =1 1 = current iteration
if |,ul- — I/Z'| < &1 then
return A} = £4% and break < \} = optimal step size
else if f(u;) < f(v;) go tostep 7
else f(ui) > f(vi) go to step 8
set a1 = a;, biy1r = vi, Vigr = iy f(vi) = f(1a)
compute p;+1 = 0.618a;4+1 + 0.382b;11 and f(piy1)

t=14+1 gotostep3

In order to find the minimum of the function f(X) : R — R, we need to bracket it.
To bracket a minimum means fining a triple a,b,c € R, a < b < ¢, such that f(a) < f(b)
and f(b) < f(c). This indicates that the minimum is in the interval [a,c]. The interval search
algorithm is given in Table 5.

4. Numerical experiments

The preferred objective functions may differ depending on the circumstances. The factors that
may be significant in determining the subproblems are quality metric, element number, iteration
limit, desired accuracy in the resulting mesh, mesh type (structured vs. unstructured), and
dimension (planar vs. volume). To make the investigation manageable, we limit the number of
free parameters to a fixed mesh type (unstructured), quality metric (see ¢1), and optimization
algorithm (see Section 3). The free parameters are the number of elements, iteration limit and
desired accuracy in the resulting mesh. For each parameter to be investigated, we create a set of
meshes in which we isolate the interesting parameter, allowing it to vary, while simultaneously
holding the other parameters as constant as possible. A series of meshes were generated for
the impeller geometry shown in Fig. 7. The machine employed for this study is equipped with
Intel P4 processor (2.67 GHz). The 32-bit machine has 1 GB of RAM.

4.1. Effect of the element number

With regards to the effect of the element number on the optimization results, a series of
initial meshes for the impeller with different number of nodes (V'), elements (FE), and the
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Table 5. Search interval algorithm

Algorithm 3: search interval algorithm

1: function

=

SEARCH_INTERVAL ( f(X),Xg,ho,a)) <« f(X) = objective function

X9 = initial coordinate for node X
ho = initial step size
o = coefficient larger than 1
compute fy = f(XY) and Set j = 0 <« j = current iteration
Xt = XJ + h; and compute f(X7 1)
if (X7 < f(XJ)  then go to step 6
else  go to step 7
hjt1 = ahj, X=X}, X = X!
F) =fX3 ), j=5+1
if j =0 then h; = —h;, X, = X/, go to step 3
else @ = min{ X}, XJ*1} b = max{X}, X/}
return a and b

Fig. 7. Impeller model

worst quality element (M;,) based on ¢; were investigated, as shown in Table 6. The number
of elements increases from approximately 45000 to 400000 (iteration limit N = 50, desired
accuracy € = 107°).

Table 6. Initial meshes for the impeller

Model | V. | E | My |

Impeller

9563 | 45513 | 0.0014
22680 | 122027 | 0.0013
38693 | 214167 | 0.0024
70128 | 401696 | 0.0019

The final mesh quality measured by ¢; and time for three objective functions with different
element numbers are acquired and plotted in Fig. 8. It is found that with the increase of the
element number, the time during optimization increases for the three objective functions, while
the worst element quality varies only slightly. And no matter which objective function is used in
the algorithm, the mesh quality is greatly improved compared with that before the optimization.
The first objective function can obtain the highest mesh quality, and the corresponding time
consumed is shortest. The objective function f3 obtains the poorest results.
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Fig. 8. Final mesh quality and time cost for different element numbers

4.2. Effect of the iteration limit

To investigate the effect of the iteration limit N on the optimization results, the third
set of mesh in Table 6 is chosen, in which the number of nodes and elements are 38693 and
214 167, respectively. In addition, the worst element quality is 0.0024. For the given random initial
tetrahedron, the solution has been iteratively applied until a fixed desired accuracy of 10~ has
been achieved.

Figure 9 shows the mesh quality and time cost for the three objective functions with different
iteration limits. It is obvious that with the increment of the iteration limit, the change of mesh
quality and time are not obvious. The time consumed increases slightly only for f3. So, the
iteration limit has little effect on the mesh quality and time cost for different functions.

(@) 007 (®) 75
[—o—f] —a—f, —%—f, ]

[—o—f, —a—f, —%—f, ]

=
=
= 0.06}
b1
‘é’ 45F
]
goosp o v W
% 30F ¥ o « « w oy
= e—o o o o o
0 * = x % = ¥
= 0.04f
15F
‘ I I ) 0 I I I
0.03 20 40 60 80 20 40 60 80
Iteration limit Iteration limit

Fig. 9. Final mesh quality and time cost for different interaction limits

4.3. Effect of the desired accuracy

The research on the effect of desired accuracy on the optimization results is carried out
on the third set of the mesh, too. The iteration limit N is set to 50. As shown in Fig. 10,
it is observed that with the increment of the desired accuracy, the mesh quality and the time
consumed increase. The first objective function has the greatest improvement over the other
functions in the mesh quality. It is followed by f4 and then f3. For the time cost, the order is

fi<fa<f3.
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Fig. 10. Final mesh quality and time cost for different desired accuracy

4.4. Comparison with other methods

The objective function which is constructed by f; is better than other objective functions
when the element number, iteration limit, and desired accuracy change. To evaluate our mesh
improvement algorithm, comparison with Freitag and Ollivier-Gooch’s method (Freitag and
Ollivier-Gooch, 1997) whose objective function is deduced by minimum sine of the dihedral
angles is made. And two cases of the mesh (TIRE and RAND2) come by courtesy of Freitag
and Ollivier-Gooch. TIRE is a tire incinerator with 2570 nodes and 11 099 tetrahedral elements.
Its initial mesh quality can be found in Table 7. RAND2 are lazy triangulations generated by
inserting randomly located nodes into a cube one by one. Each node is inserted by splitting
one or more tetrahedra into multiple tetrahedra. The random meshes have horrible quality
and poor dihedral angles at both extremes. The RAND2 mesh has 5086 nodes and 25704
tetrahedral elements; its initial quality can be found in Table 7. Table 7 compares the minimum
and maximum dihedral angles reported by Freitag and Ollivier-Gooch to that achieved by our
mesh improvement algorithm. It can be seen that the mesh quality is bad before the optimization,
and there are badly shaped elements whose dihedral angles tend to be 0° or 180°. Dihedral
angles are improved to be between 2° and 178° for Freitag and Ollivier-Gooch’s algorithm with
smoothing, and between 10° and 156° for our proposed algorithm.

Table 7. Statistics of the examples before and after optimization

Before optimization After optimization
Model | Method Minimum Maximum Minimum Maximum
dihedral angles | dihedral angles | dihedral angles | dihedral angles
Freitag’s o o 13.67° 161.71°
TIRE proposed 0-66 178.88 15.27° 150.39°
Freitag’s o o 1.91° 177.69°
RAND2 proposed 0-10 179.84 10.31° 156.55°

The two mesh optimization algorithms have been implemented and tested for RAND2 with
the distribution of dihedral angles, as shown in Fig. 11. Figure 11a shows the initial RAND2
mesh, and Figs. 11b and 11c show the optimized mesh by Freitag’s algorithm and the proposed
algorithm, respectively. It can be seen that they can both successfully eliminate poorly shaped
elements from the mesh. Comparing with Freitag’s algorithm, the proposed algorithm is more
successful in eliminating poor dihedral angles at both extremes.
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Fig. 11. Mesh quality improvement for RAND2 with two algorithms; (a) initial mesh, (b) optimized
after Freitag’s algorithm, (c) optimized after proposed algorithm

5. Conclusions

Seven shape metrics are compared by carrying out six numerical tests aiming at comparing
their abilities to identify poor-quality elements and assessing the change of element shape. An
optimization-based smoothing algorithm for tetrahedral mesh quality improvement is proposed,
and the method used to calculate an optimal solution including the determination of the optimal
search direction and step-size is studied.

The effects of element number, iteration limit and desired degree of accuracy on the perfor-
mance of three different objective functions are assessed. The practical examples show that no
matter which objective function is used in the proposed optimization-based smoothing method,
the mesh quality can be significantly improved. With the increase of element number, the time
consumed during optimization increases for the three objective functions. The iteration limit
has little effect on the mesh quality and consuming time for different functions. The increasing
of the desired degree of accuracy will improve the mesh quality and cost more time. For all the
objective functions, when the element number, iteration limit and desired degree of accuracy
change, the worst element quality will be improved in the following sequence, f3 < fi < fi.
For the time of optimization, the arrangement is f; < f4 < f3. The results obtained with the
approach for the objective function fi is compared with some common approach. It is clearly
shown that it performs better than the existing approach.
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