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In the paper, the influence of support compliances on the stability and the limiting slen-
derness ratio of compression helical springs was investigated. To analyze the stability of
helical springs, the concept of an equivalent column was applied and a general system of
supports described by three independent compliances was utilized. In the general case, the
solution obtained, which describes the critical force, depends on two rotational compliances
and a lateral compliance of a transverse shift of the support. The influence of the individual
compliances on the critical load and on the limiting slenderness ratio was studied. Simple
approximation formulas were proposed to describe these relationships.
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1. Introductory remarks

Helical springs, specially compression ones, fulfil different functions in the technique: do the
work, store energy, alleviate the impact, raise or take vibration and many others. Moreover,
they may be subjected to loss of stability.
A helical spring should be treated as a spatially curved bar. Such an approach, based

on Kirchhoff-Clebsh equations and geometrically non-linear theory, was developed by Nikolai
(1955). It was applied to the problems of stability of helical springs, among others, by Cherny-
shev (1946), Haringx (1948), Olenov (1977), Polishchuk (1977), Kernchen (1979). The equations
of this type were also used by Ponomariev (1948), Taborrak and Xiong (1989) and others to
derive equations of stability for the general behaviour of loadings. They are also used for de-
termination of displacements in springs with high deformability. The current configuration of a
spring under loading determined in this way can be treated as a precritical state (Chernyshev,
1958; Sutyrin, 1980). There are also attempts to build a finite element and, in this way, to solve
the problem of stability taking into account geometrical nonlinearities. Let us mention here, for
example, the paper by Mottershead (1982) on the dynamic stability. However, in most commer-
cial finite element programs such an element does not exists. All the above papers deal with
helical coil springs with a constant pitch.
Geometrically linear theory was developed by Trostel (1957) in connection with springs of

arbitrary shape. This approach was used in the papers by Czerwiński (1973) – parabolic spring,
Czerwiński (1975) – arbitrary geometry of a spring, Szafran-Gądek (1981) – elliptical spring,
to determine displacements. Lin and Pisano (1988) studied the geometry of helical springs of
arbitrary shapes.
An exact stability analysis of springs based on the theory of spatially curved bars is compli-

cated and difficult in practical applications. Hence, in most engineering applications, a concept
of an equivalent column is introduced. Such a column must account for compressibility of the
axis and shear effect.
First papers using the concept of an equivalent column to stability analysis of helical springs

are due to Hurlbrink (1910) and Grammel (1924). They took into account only the effect of
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change in the column length. They showed that there exists a limiting slenderness ratio below
which no bifurcation is possible at all. Biezeno and Koch (1925) pointed out that the effect of
shear should also be taken into account in the stability analysis of helical springs. However, they
overestimated the impact of shear effects, and in consequence, concluded that any spring, even
short, may be subjected to buckling. The correct solution, based on the concept of the equivalent
column and assuming zero pitch angle (helix slope), was obtained by Haringx (1942), Ponomariev
(1958) and others. These solutions have confirmed the existence of the limiting slenderness ratio,
which was also verified experimentally. Suitable solutions can be found in several monographs,
for example by Timoshenko and Gere (1961), Wahl (1963) and in application studies such as by
Żukowski (1954) or Branowski (1989.
Differences between Biezeno’s and Haringx-Ponomariev’s solutions result from different esti-

mations of the shear effect. This problem was investigated in detail by Ziegler (1982). He showed
that for helical springs the so-called modified approach is the proper way of taking the shear
effect into account, whereas Biezeno and Koch (1925) applied Engesser’s approach.
Equivalent columns were also introduced for buckling analysis under combined compression

and torsion. We can mention here papers by Ziegler and Huber (1950) and Satoh, Kunoh and
Mizuno (1988).
In all the above papers, the study of stability was based on linear theory. Nonlinear theory

of stability and equivalent column was used by Mizuno (1960) to study postcritical behavior of
cylindrical springs with a constant pitch.
All the above mention papers are based on the simplifying assumption of a very small pitch

angle: this angle was assumed to be zero. A more general equivalent column allowing for arbitrary
helix slope is due to Berdychevsky and Sutyrin (1983), but that concept proposed for general non-
linear problems is rather complicated and has not been applied to stability analysis. Krużelecki
and Życzkowski (1990) proposed a new, more refined and exact concept of an equivalent column
for buckling of helical springs of arbitrary shape. It accounts for a helix angle and possible
buckling in two planes and also takes into consideration axial compressibility and shear effects.
It ensures high accuracy of results also. Such an equivalent column, described by compression,
bending and shearing rigidities, gives the possibility to analyze stability of helical springs of
arbitrary shape.
Most of the papers deal with simply supported or clamped springs at both ends. In this paper

the influence of modes of supports and their compliances on stability and slenderness limiting
ratio is examined. The concept of an equivalent column is used.

2. Equations of stability of compression helical springs

The concept of an equivalent column proposed by Hurlbrink (1910), Grammel (1924), Haringx
(1942) and developed by Krużelecki and Życzkowski (1990) allows a helical spring to be treated in
stability problems as a column with the appropriate rigidities. Because of much higher sensitivity
of shearing on stability of a spring in comparison with a column having a solid cross-section,
this effect should be also taken into account.
A helical spring – an equivalent column – with an initial length H0 which is loaded by a

compressive force P is considered. Because of high compressibility, a helical spring becomes
shorter and its actual length is H. In that state described by large displacements with changes
of geometry taken into account, a small bending described by a linear theory is imposed, and
this way the critical state of the helical spring is investigated.
The differential equations of bucking of a spring for any type of support can be written in

the following form
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dw

dx
= θ + χ

dθ

dx
= −

M

EI

dM

dx
= Q+ P

dw

dx

dQ

dx
= 0 (2.1)

where x denotes the actual coordinate along the axis of the compressed spring (0 ¬ x ¬ H), w is
the lateral displacement, θ is the inclination of a normal to the cross-section against the central
axis of the undeformed column (the angle of rotation of a cross-section caused by bending),
M is the bending moment, Q represents the shear force in the spatial frame. In equation (2.1),
the shearing effect is represented by the term χ according to the so-called modified approach
discussed by Ziegler (1982)

χ =
Q+ Pθ
GA

(2.2)

The actual bending EI, shearing GA and axial EA rigidities were defined in the paper by
Krużelecki and Życzkowski (1990). It turned out that for the problem under consideration we
can use a simplified model of an equivalent column, namely assume that the helix angle is equal
to zero. Then, the current rigidities can be written as follows

EA = (EA)0 =
EIwH0

2π(1 + ν)R30n0
EI = (EI)0

H

H0
GA = (GA)0

H

H0
(2.3)

where

(EI)0 =
H0EIw

π(2 + ν)R0n0
(GA)0 =

H0EIw
πR30n0

(2.4)

and Iw = πd4/64, d is the diameter of the wire, R0 and n0 denote the initial radius and the
original number of coils of the spring, respectively, E stands for the Young modulus and ν is
the Poisson ratio. Such formulas describing the rigidities of a spring with the helix angle equal
to zero can be also found in the papers by Haringx (1948), Żukowski (1954), Timoshenko and
Gere (1961). The set of differential equations (2.1) of the first order can be transformed into one
equation of the forth order

d4w

dx4
+ k2

d2w

dx2
= 0 (2.5)

for which the general solution can be written in the form

w(x) = A sin kx+B cos kx+ Cx+D (2.6)

where

k =

√

P

EI

(

1 +
P

GA

)

(2.7)

Helical compression springs used in different technical applications are supported and fa-
stened in many different ways. Influence of coil spring mountings on their selected operational
properties are presented in the book by Michalczyk and Slawiński (2011). Analysis of modes
of supports leads to the conclusion that the ends of a spring should be supported elastically
taking one end as a support immovable in the space. Such a general way of support, presented
in Fig. 1, can describe possible behavior of the ends of a real spring. A similar attempt to the
system of supports for analysis of stability of solid columns was applied by Życzkowski (1988).
The coordinate system is associated here with the bottom support which is treated as immovable
one. The quantities C1 and C2 in Fig. 1 characterize the rotational compliances of the lower
and upper supports, respectively while C3 describes the lateral compliance of a transverse shift
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Fig. 1. General case of the spring support

of the upper end. So, assuming, for example C1 = 0, it denotes that rotation of the lower end
of the spring is completely blocked whereas C1 = ∞ means a simply supported end. On the
other hand C3 = 0 denotes that lateral movement of the upper end is completely blocked while
C3 =∞ indicates that later displacement of this end is free.
The boundary conditions for the considered general system of supports in the actual confi-

guration (compressed spring) can be written as follows

w(0) = 0 − C1M(0) = θ(0) C2M(H) = θ(H) C3Q(H) = −w(H) (2.8)

Taking into account equations (2.1) and (2.2), boundary conditions (2.8) take the form

w(0) = 0 C1EIw
′′(0)− w′(0)− w(H)

1
C3GA

= 0

C2EIw
′′(H) + w′(H) + w(H)

1
C3GA

= 0

C3EIw
′′′(H) + C3P

(

1 +
P

GA

)

w′(H)−
(

1 +
P

GA

)

w(H) = 0

(2.9)

Boundary conditions (2.9) lead to four homogeneous algebraic equations for which the con-
dition of non-trivial solution gives

√

H2P

EI

(

1 +
P

GA

){(C3P

H
− 1

)[(

1 +
P

GA

)−1

− EIC1C2P
]

+ (C1 + C2)
EI

H

}

sin

(

√

H2P

EI

(

1 +
P

GA

)

)

−

[

2− PH(C1 + C2)
(C3P

H
− 1

)]

cos

(

√

H2P

EI

(

1 +
P

GA

)

)

+ 2 = 0

(2.10)

Equation (2.10) is written in the carrent configuration, which means that it is expressed by
the actual rigidities (GA) and (EI) and the actual (after copression) length H of the spring.
Since, the critical loading P is “hidden”, in the actual rigidities as well as in the actual length
of the spring one has to express (2.10) by the initial quantities. Taking into accout that

H = H0
(

1−
P

(EA)0

)

(2.11)
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and utilizing (2.3) and (2.4), we obtain

λ

√

pcr
2 + ν
2 + 2ν

(

1−
1 + 2ν
2 + 2ν

pcr
)

{

[1− (1 + ψ3)pcr]
[

λ2pcrψ1ψ2
2 + ν
2 + 2ν

−

(

1−
1 + 2ν
2 + 2ν

pcr
)−1]

+ ψ1 + ψ2

}

sin

(

λ

√

pcr
2 + ν
2 + 2ν

(

1−
1 + 2ν
2 + 2ν

pcr
)

)

−

{

2 + λ2pcr(ψ1 + ψ2)[1− (1 + ψ3)pcr]
2 + ν
2 + 2ν

}

· cos

(

λ

√

pcr
2 + ν
2 + 2ν

(

1−
1 + 2ν
2 + 2ν

pcr
)

)

+ 2 = 0

(2.12)

where

λ =
H0
R0

pcr =
Pcr
(EA)0

ψ1 = C1
(EI)0
H0

ψ2 = C2
(EI)0
H0

ψ3 = C3
(EI)0
H30

(2.13)

and λ denotes the slenderness ratio of the spring, pcr is the dimensionless critical force and
ψi means the dimensionless compliance of supports. Equation (2.12) allows one to determine
the critical force in terms of dimensionless compliances of supports. In (2.12), the rotational
compliances ψ1 and ψ2 occur in pairs. It means that this equation is symmetrical with respect
to these quantities and it also means that the replacement of ψ1 by ψ2 and vice versa does not
cause change in the critical loading. The critical loading depends also on the slenderness ratio λ;
for larger values of λ the critical force is smaller. If the slenderness ratio is small enough, the
buckling of the spring does not occur. It means that the relation pcr = pcr(λ) has its own return
point which corresponds to the limiting slenderness ratio λlim below which no buckling occurs.
Equation (2.12) also allows one to determine such limiting slenderness ratios for any mode of
supports (for any values of compliances).

3. Support compliances vs. stability of helical springs

We analyze here relationships between modes of the support expressed by support compliances
and stability of compressed helical springs. We limit our considerations to some chosen variants
of the supports for which the classical fittings of ends of the springs constitute particular cases
of the supports. Analysis is based on general solution (2.12) obtained via application of the
equivalent column concept.

3.1. Rotational compliances

In this case, we analyze the influence of the rotational compliances ψ1 and ψ2 on the stability
and on the limiting slenderness ratio of a helical compression spring. Since equation (2.12) is
symmetrical with respect to ψ1 and ψ2, the dependence of the limiting slenderness ratio on
these compliances should be common for ψ1 and ψ2. To find appropriate relationships, we
assumed the values of ψ3, namely ψ3 = ∞ or ψ3 = 0 which refer to free movement and to
completely blocked movement of the upper end of the spring, respectively, whereas ψ1 and ψ2
varies between the limiting values, ∞ ¬ ψi ¬ 0, where i = 1 or 2. That leads to analysis of
three systems of supports for which three pairs of the particular (limiting) cases of supports are
presented in Fig. 2.
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Fig. 2. Particular cases of the supports for analysis of the influence of ψ1 or ψ2

In the first case, it is assumed that only ψ1 can vary (∞ ¬ ψ1 ¬ 0) whereas ψ2 = 0 and
ψ3 = ∞. The particular systems of supports for the limiting values of compliances referring to
this case are presented in Fig. 2a. In the second case, we examine the influence of ψ2 on pcr
and λlim. It means that only ψ2 can vary (0 ¬ ψ2 ¬ ∞) whereas ψ1 = 0 and ψ3 = ∞. The
limiting systems of supports are shown in Fig. 2b. In the third case, presented in Fig. 2c, we
analyze the influence of ψ1 and ψ2 on the assumption that ψ3 = 0. As in the first and second
case, the same ψ3 =∞ is assumed, and we can consider these two cases together. Substituting
ψ2 = 0 and ψ3 = ∞ or substituting ψ1 = 0 and ψ3 = ∞ into (2.12) and assuming that only
the first mode of buckling is considered, equation (2.12) can be rewritten as follows

λ

√

pcr
2 + ν
2 + 2ν

(

1−
1 + 2ν
2 + 2ν

pcr
)

= π − arctan

(

ψiλ

√

pcr
1 + 2ν
2 + 2ν

(

1−
1 + 2ν
2 + 2ν

pcr
)

)

(3.1)

where i = 1 or 2. In the limit case ψi =∞, we obtain

pcr =
1 + ν
1 + 2ν

(

1±

√

1−
1 + 2ν
2 + ν

π2

λ2

)

λlim = π

√

1 + 2ν
2 + ν

(3.2)

whereas for ψi = 0 we have

pcr =
1 + ν
1 + 2ν

(

1±

√

1− 4
1 + 2ν
2 + ν

π2

λ2

)

λlim = 2π

√

1 + 2ν
2 + ν

(3.3)

In Fig. 3a, curves pcr = pcr(λ) for the considered particular cases of supports are presented
where the upper parts of the curves, marked by dashed lines, refer to the regions above the
return points (marked with circles in Fig. 3a). The upper parts of the curves do not describe
the real buckling loadings. For 0 ¬ ψi ¬ ∞, the curves can be obtained numerically from (3.1)
and they are located between the limiting cases. Such a curve obtained for ψi = 0.8 is also
presented in Fig. 3a. All these curves have the return points for the same value of pcr, namely
for pcr = (1 + ν)/(1 + 2ν) but for different values of λlim which depend on values of ψi. The
relationship λlim = λlim(ψi) can be obtained numerically from equation (3.1) and it is presented
in Fig. 3b (full line). That curve can be approximated with a very good accuracy by

λlim =
0.9 + 0.56ν − 0.16ν2

0.4 + ψi
+ π

√

1 + 2ν
2 + ν

i = 1, 2 (3.4)

and is shown in Fig. 3b by the dashed line (both lines overlap).
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Fig. 3. Critical force vs. slenderness ratio (a), limiting slenderness ratio vs. rotational compliance ψi for
ν = 0.3 and ψ3 =∞

The third case, presented in Fig. 2c, shows a study of the impact ψ1 and ψ2 on the stability
and the limiting slenderness ratio of the spring on the assumption that ψ3 = 0. Substituting
ψ3 = 0 into (2.12) and assuming that only the first mode of buckling is considered, equation
(2.12) can be rewritten as follows

λ

√

pcr
2 + ν
2 + 2ν

(

1−
1 + 2ν
2 + 2ν

pcr
)

{

(1− pcr)
[

λ2pcrψ1ψ2
2 + ν
2 + 2ν

−

(

1−
1 + 2ν
2 + 2ν

pcr
)−1]

+ ψ1 + ψ2

}

sin

(

λ

√

pcr
2 + ν
2 + 2ν

(

1−
1 + 2ν
2 + 2ν

pcr
)

)

−

[

2 + λ2pcr(ψ1 + ψ2)(1 − pcr)
2 + ν
2 + 2ν

]

cos

(

λ

√

pcr
2 + ν
2 + 2ν

(

1−
1 + 2ν
2 + 2ν

pcr
)

)

+ 2 = 0

(3.5)

For the limiting values of ψi (ψi = 0 and ψi = ∞), closed solutions (3.4) can be written as
follows:
— for ψ1 = ψ2 = 0

pcr =
1 + ν
1 + 2ν

(

1±

√

1− 16
1 + 2ν
2 + ν

π2

λ2

)

λlim = 4π

√

1 + 2ν
2 + ν

(3.6)

— for ψ1 = ψ2 =∞

pcr =
1 + ν
1 + 2ν

(

1±

√

1− 4
1 + 2ν
2 + ν

π2

λ2

)

λlim = 2π

√

1 + 2ν
2 + ν

(3.7)

For 0 < ψi <∞, only numerical solutions to (3.5) can be obtained. Such a sample solution for
ψi = 0.8 together with solutions (3.6) and (3.7) for the limiting cases is presented in Fig. 4a.
All curves in Fig. 4a have the return points for the same value of pcr, namely for

pcr = (1 + ν)/(1 + 2ν), but for different values of λlim which depend on values of ψi. The
return points are marked with circles in Fig. 4a. The relation λlim = λlim(ψi) was obtained
numerically from (3.5) and is presented in Fig. 4b (full line). That curve is approximated with
a very good accuracy by

λlim =
0.89 + 0.53ν − 0.11ν2

0.2 + ψi
+ 2π

√

1 + 2ν
2 + ν

i = 1, 2 (3.8)

and is shown in Fig. 4b by dashed line (both lines overlap).
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Fig. 4. Critical force vs. slenderness ratio (a), limiting slenderness ratio vs. rotational compliance ψi for
ν = 0.3 and ψ3 = 0 (b)

3.2. Lateral compliance

In this case, we analyze the influence of the lateral compliance ψ3 (0 ¬ ψ3 ¬ ∞) on the
stability and the limiting slenderness ratio of the spring on the assumption that ψ1 = 0 and
ψ2 =∞ or ψ1 =∞ and ψ2 = 0. It refers to analysis of two systems of supports for which two
pairs of the limiting cases of the supports are presented in Fig. 5.

Fig. 5. Particular cases of the supports for analysis of the influence of ψ3

Because general equation (2.12) is symmetrical with respect to ψ1 and ψ2, both cases can
be considered together. Substituting into (2.12) ψ1 = 0, ψ2 = ∞ or ψ1 = ∞, ψ2 = 0 for the
first mode of buckling, one obtains

λ

√

pcr
2 + ν
2 + 2ν

(

1−
1 + 2ν
2 + 2ν

pcr
)

= π+arctan

(

λ
1− (1 + ψ3)pcr
1− 1+2ν

2+2ν
pcr

√

pcr
1 + 2ν
2 + 2ν

(

1−
1 + 2ν
2 + 2ν

pcr
)

)

(3.9)

The numerical solutions to (3.9) are presented in Fig. 6 for different values of ψ3
(0 ¬ ψ3 ¬ ∞) and ν = 0.3. These curves, in general, are different from those presented for
the previous cases. Decreasing the compliance ψ3 from infinity to a finite value, the systems
of supports presented in Fig. 5a become more stiff. It causes that the critical force increases,
especially for smaller values of ψ3 and any value of λ. Simultaneously, the return points can
move towards larger values of pcr and λ. On the other hand, the shear force, which becomes
larger for smaller values of ψ3, has destabilizing influence on the stability of the spring and it
causes that the critical force can decrease for any value of the slenderness ratio. It can result
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in changing of locations of the return points, namely they can move towards smaller values of
pcr and λ. These two different effects cause the curves have the inflexion points for the lateral
compliance ψ3 whose values are closer to ψ3 = 0. Moreover, the return points, marked by circles
in Fig. 6, move towards larger values of pcr and λ for smaller values of ψ3. So, in this case not
only the limiting slenderness ratio but also the critical force of the return points depends on the
lateral compliance ψ3.

Fig. 6. Critical force vs. slenderness ratio for ν = 0.3, ψ1 = 0, ψ2 =∞ or ψ1 =∞, ψ2 = 0

The largest dimensionless critical force, defined by (2.13)2, and whose physical interpretation
is the critical compressive strain, theoretically (diameter of the wire is equal to zero) can reach
a value of 1, pmaxcr = 1. For larger values of pcr than 1, the coils of the spring are in contact one
with another (spring is closed). However, taking into account that diameter the wire is of a finite
dimension, then the maximum pcr is lower, namely pmaxcr = 1 − nd/H0, where n denotes the
number of coils and d is the diameter of the wire. This horizontal line, shown in Fig. 6, separates
the admissible solutions (lines below) from those which are not possible to obtain (lines above).
This line shows also that the return points can be reached only for large enough values of ψ3,
ψ3 ­ ψ3.
The critical force for the return points vs. the lateral compliance ψ3 can be approximated

with a very good accuraccy by

pcr =
0.4

0.9 + ψ3
+
1 + ν
1 + 2ν

for ψ3 ­ ψ3 (3.10)

whereas the limiting slenderness ratio for the return points can be described by

λlim =
0.47 + 0.49ν + 0.13ν2

0.61 − 0.66ν + 0.63ν2 + ψ3
+ π

√

1 + 2ν
2 + ν

for ψ3 ­ ψ3 (3.11)

where

ψ3 =
0.4(1 + 2ν)

ν − (1 + 2v) nd
H0

− 0.9 (3.12)

and the above approximations are valid for ν ­ 0.3. For the lateral compliance ψ3 < ψ3, neither
the critical force nor the limiting slenderness ratio can be specified because the neighbouring
coils settle one on another and the stability of the fully compressed spring cannot be described
in this way. In Fig. 7a, the critical force for the return points vs. the lateral compliance ψ3
is presented, whereas in Fig. 7b, the limiting slenderness ratio is shown for ν = 0.3 on the
assumption that d = 0.
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Fig. 7. Critical force (a), limiting slenderness ratio (b) vs. compliance ψ3 for the return points,
ν = 0.3, d = 0

4. Final remarks

Analysis of the influence of support compliances on the stability and the limiting slenderness
ratio showed that rotational compliances of the upper and lower ends of a compression helical
spring have identical effects on the investigated quantities – algebraic equation (2.12) describing
the critical load is symmetrical with respect to the rotational compliances ψ1 and ψ2. Each
curve describing the critical force by both rotational compliances is located between the curves
obtained for particular modes of the supports which were investigated in details. The values of
the critical forces for the return points are the same for any value of the rotational compliances
and it depends on the Poisson ratio. The values of the limiting slenderness ratio, below which
the spring never buckles, also depend on the rotational compliances. Those relationships have a
hyperbolic character and the appropriate approximation formulas are proposed in the paper.
Analysis of the influence of the lateral compliance showed that a decrease in the lateral

compliance ψ3 causes an increase in the shearing force. It has a significant impact on the
stability and the limiting slenderness ratio. The shearing force causes that curves describing
the relationship between the critical force and slenderness ratio has an inflexion point. The
theoretical return point moves towards larger values of the critical forces and larger limiting
slenderness ratios. It causes that for a small enough lateral compliance, the spring earlier becomes
a fully compressed spring (gaps between the coils disappear), then it loses its stability.
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