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We demonstrate that a physical object in nature should not be described as a fractal, despite
an ideal mathematical object, rather a ubiquitiform (a terminology coined here for a finite
order self-similar or self-affine structure). It is shown mathematically that a ubiquitiform
must be of integral dimension, and that the Hausdorff dimension of the initial element of a
fractal changes abruptly at the point at infinity, which results in divergence of the integral
dimensional measure of the fractal and makes the fractal approximation to a ubiquitiform
unreasonable. Therefore, instead of the existing fractal theory in applied mechanics, a new
type of ubiquitiformal one is needed.
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1. Introduction

A fractal (Mandelbrot, 1967, 1977, 1982) or, generally, a self-similar (or self-affine) structure of
infinite order, has been extensively used as a nonlinear mathematical tool to describe various
irregular and complex phenomena in many fields of science and technology such as fracture
mechanics (Mandelbrot et al., 1984; Saouma and Barton, 1994; Carpinteri, 1994; Borodich, 1997,
1999; Carpinteri and Paggi, 2010), quantum mechanics (Argyris et al., 2000), material science
(Fleury, 1997; Ma et al., 2009), nonlinear dynamics and chaos (Aguirre et al., 2009), biology
(Gözen et al., 2010) and even city planning (Batty, 2008). In fracture mechanics, for example,
since Mandelbrot’s pioneering work (1984) in which the fractality of an impacting fracture surface
in metal was found, fractal fracture mechanics has been developed quickly in several aspects.
For example, on the one hand, the fractality of fracture surfaces in various kinds of materials
such as steel (Mandelbrot et al., 1984), concrete (Saouma et al., 1990; Saouma and Barton,
1994), ceramic (Mecholsky et al., 1989) and rock (Krohn and Thompson, 1986) was confirmed
by experimental methods. On the other hand, it was found that the distribution of micro-cracks
and micro-damage could be described by fractals (Barenblatt and Botvina, 1986; Chudnovsky
and Wu, 1992; Barenblatt, 1993). Moreover, the fractal geometry was also used to describe
the mechanical behavior of materials such as the size effect on material strength (Carpinteri,
1994; Carpinteri and Puzzi, 2008; Carpinteri and Paggi, 2010) and crack propagation (Xie and
Sanderson, 1995), and, at the same time, the fracture problem in regions with fractal boundaries
also became a research focus (Panagiotopoilos et al., 1995; Wnuk and Yavari, 2005).
With the development of fractal application, some inherent difficulties appear gradually

because that a fractal is just an ideal mathematical object with a self-similar (or self-affine)
structure of infinite hierarchy. For example, in fractal fracture mechanics, some authors have
endeavored to link the fractal dimension of the fracture surface to fracture toughness, but a
general conclusion cannot be drawn easily. Actually, all three kinds of the correlation, namely,
the negative correlations (Mandelbrot et al., 1984; Saouma and Barton, 1994), the positive
correlations (Mecholsky et al., 1989; Ray and Mandal, 1992) as well as no correlation (Pande
et al., 1987) can be found. It is not hard to imagine that such difficulties should be resulted
from the uncertainty in describing a fractal. That is, a fractal could not be uniquely determined
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just by its fractal dimension. In fact, as is well known, besides the dimension, in general, a
finite measure is another significant parameter in describing a geometric object, such as that
all the line segments are of one-dimension, but they can have different length or measure and
hence two line segments with different lengths are always not equivalent in practice. However,
it is difficult to calculate the measure of a fractal, let alone that some fractals even have no
finite measure at all. Moreover, the integral dimensional measure of a fractal is usually divergent
or singular, namely, the integral dimensional measure of a fractal is either infinite or zero. In
addition, traditional physical parameters are always defined in integral dimensional measure,
but the direct extension of these parameters in fractal application seems not available and may
cause unreasonable results. For example, the fracture energy is defined as the work done by the
external force to generate a unit fracture surface (smooth or in integral dimension of D = 2), but
for a fractal fracture surface with the fractal dimension D > 2, the corresponding area is infinite
because of the divergence of the integral dimensional measure of the fractal surface. This implies
that the infinite amount of fracture energy will be needed for the fracture of a material, which
is certainly not the case. To accommodate the integral dimensional divergence of a fractal, new
density kinds of fractal parameters defined on the unit fractal measure had to be introduced,
such as the specific energy-absorbing capacity of unit fractal measure (Borodich, 1997, 1999),
the fractal tensile strength and the critical fractal strain (Carpinteri, 1994; Carpinteri et al.,
2002), but these fractal parameters are both difficult to be determined in practice and seem
lacking of unambiguous physical meanings (Baz̆ant and Yavari, 2005). Moreover, it should also
be mentioned that, in general, the boundary-value problem in a region with fractal boundaries
is difficult to be constructed because the normal direction of the fractal boundary cannot be
defined due to that a mathematical fractal curve can be continuous everywhere but differentiable
nowhere. Although some homogenization methods were used by previous researchers (Davey and
Alonso Rasgado, 2011; Davey and Prosser, 2013), but these methods are usually approximate
and lacking of theoretical foundation.

In fact, from a mathematical point of view, a fractal is an infinite set with a self-similar (or
self-affine) structure of infinite hierarchy, which can usually be constructed by an infinite iterative
procedure. On the contrary, however, a physical object in nature can never experience such an
infinite iterative process but only a finite one, and thus has a lower bound of the scale (such as
the scale of the elementary particle or the time limit of a physical process). Two questions arise
then: Is a physical object in nature really a fractal? If not, is it reasonable or available to describe
a natural object approximately by a fractal? It was believed that there is not any real fractal in
nature (Mandelbrot, 1977; Falconer, 2003), but a physical object in nature could be described
as or approximated by a fractal, just as presented by Mandelbrot (1977), “Intuitively as well as
pragmatically (from the point of view of the simplicity and naturalness of the corrective terms
required), it is reasonable to consider a very close approximation to the Koch curve as closer
to a curve of dimension log 4/ log 3 than to a curve of dimension 1”, However, as will be shown
later, it is not the case but antipodal. That is to say, such a close approximation to the Koch
curve with a finite iterative procedure must be a curve of integral dimension 1 rather than a
curve of fractional dimension log 4/ log 3. Actually, it has been noticed that a physical object
in nature could be described as or approximated by a fractal only in a finite range of scaling
invariance in all fractal applications (Mandelbrot, 1982; Cherepanov et al., 1995; Balankin, 1997;
Borodich, 1999; Addison, 2000; Martinez-Lopez et al., 2001). Moreover, we will show that the
fractal approximation of a physical object is unreasonable especially in the sense of measure
for the divergence of the integral dimensional measure or the discontinuity of the Hausdorff
dimension of a fractal.

In order to avoid the weakness of fractals used in applied mechanics as mentioned above, a
new concept of ubiquitiform, a new word (with its adjective form “ubiquitiformal”) coined here
from the abbreviated word combination of “ubiquitous” and “form” to imply the ubiquitous
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physical forms, is introduced in this paper. A ubiquitiform is defined as a finite order self-similar
(or self-affine) physical configuration constructed usually by a finite iterative procedure, and thus
it has the same Hausdorff dimension of the initial element which is always integral in practice.
Moreover, a ubiquitiform is also different with a “prefractal” which was used by some previous
authors for “a fractal in a finite range of scaling invariance” (Borodich, 1997; Addison, 2000).
Although a prefractal is also produced by a finite iterative procedure, but by definition, it is
also regarded as a fractal such as it has the same fractal dimension as that of the corresponding
fractal, etc. However, a ubiquitiformal curve is just one-dimensional. Additionally, for the sake
of simplicity, just the self-similar case is considered in the following.

2. Ubiquitiform or fractal?

Consider in the two-dimensional Euclidean space a fractal curve with the length of the initial
element l and fractal dimension D (1 < D < 2). Noticing that the length of the corresponding
polygonal line is

L(δ) = lDδ1−D (2.1)

where δ is the length of the “yardstick” used for the measurement, the length or the one-
dimensional measure of the fractal curve can be obtained by an infinite limiting process of
δ → 0 from Eq. (2.1) as

L = lim
δ→0
L(δ) =∞ (2.2)

This just implies the divergence of one-dimensional measure for a fractal curve, which is one
of the basic characteristics of a mathematical fractal. However, differently from a mathematical
fractal, any real physical object cannot have detail on arbitrarily small scales, for some physical
conditions such as the scale of the elementary particle or the time limit of a physical process
must be taken into account and thus the corresponding physical process cannot be infinite either.
In other words, the infinite limiting process of δ → 0 is impossible, instead of which there must
be a finite process of δ → δmin, where δmin is the lower bound to scale invariance. We called
such a configuration constructed by a finite self-similar iterative procedure as a ubiquitiform.
The length or one-dimensional measure of the ubiquitiformal curve Lubif is thus determined
directly from Eq. (2.1), as

Lubif = l
Dδ1−D
min
<∞ (2.3)

which shows that a ubiquitiformal curve has a finite one-dimensional measure, and is essentially
different from that of the corresponding fractal. This indicates that a ubiquitiformal curve is
one-dimensional while the Hausdorff dimension of a fractal curve is always not equal to one.
On the other hand, it can be seen that for a certain ubiquitiform, there is always a fractal
generated by the corresponding infinite limiting process. Hereinafter, this fractal is termed as
“the associated fractal” of the ubiquitiform, and its fractal dimension will be called “complexity”
of the ubiquitiform to indicate its non-fractal characteristic.
Moreover, from the viewpoint of the Hausdorff measure and the Hausdorff dimension, it can

also be shown by induction that a ubiquitiform which is constructed from an initial element
whose Hausdorff dimension is integer by a finite self-similar iterative procedure must be of
integral dimension. In fact, the Hausdorff measure H(d) of a certain set F is defined as (Falconer,
2003)

H(d)(F ) = lim
δ→0
H
(d)
δ
(F ) = lim

δ→0
inf

∞
∑

i=1

|Ui|
d =

{

∞ 0 ¬ d < D

0 d > D
(2.4)
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where {Ui} and D are the δ-cover and the Hausdorff dimension of F , respectively, and |•| deno-
tes a certain Euclidean metric. As is well known, a self-similar structure can usually be expressed
as a union of finite or infinite (corresponding to a ubiquitiform and fractal, respectively) number
of subsets resulted from a series of repetitious contractions starting from an initial element, say
F0 of integral dimension d, with the finite d-dimensional Hausdorff measure, namely

H(d)(F0) = lim
δ→0
inf

∞
∑

i=1

|Ui|
d <∞ (2.5)

where {Ui} is the δ-cover of F0. Without loss of generality, assume that the ubiquitiform Fn is
generated by n steps of contractions and can be mapped into the corresponding subsets F kn+1
(k = 1, . . . ,m) of the ubiquitiform Fn+1 generated by n + 1 steps of contractions with the
scaling λk < 1 (k = 1, . . . ,m), where m is the number of contractions in the iterated function
system (IFS). According to induction, supposing that Fn is of dimension d, i.e.

H(d)(Fn) = lim
δ→0
inf
∞
∑

i=1

|Vi|
d <∞ (2.6)

where {Vi} is the δ-cover of Fn, and if δk = λkδ, then {λkVi} will be the δ-cover of F
k
n+1

(k = 1, . . . ,m). According to the scaling properties of the Hausdorff measure (Falconer, 2003),
one can obtain

H(d)(F kn+1) = λ
d
kH
(d)(Fn) ¬ λ

d
kmaxH

(d)(Fn) (2.7)

where λkmax is the maximum of λk (k = 1, . . . ,m). For

Fn+1 =
m
⋃

k=1

F kn+1 (2.8)

there is

H(d)(Fn+1) = H
(d)
(

m
⋃

k=1

F kn+1

)

¬
m
∑

k=1

H(d)(F kn+1) ¬ mλ
d
kmaxH

(d)(Fn) (2.9)

Considering that mλd
kmax

is a finite value, form Eqs. (2.6) and (2.9), one obtains

H(d)(Fn+1) <∞ (2.10)

which means that Fn+1 has the finite d-dimensional Hausdorff measure. This implies that the
Hausdorff dimension of Fn+1 is d by considering the uniqueness of the Hausdorff dimension.
Therefore, a given ubiquitiform must be of integral dimension.
The above proof has also revealed an important fact that the Hausdorff dimension is discon-

tinuous at the point at infinity of δ → 0 in the iterative procedure of a fractal, or, in other
words, the Hausdorff dimension of a fractal changes abruptly in the point of δ = 0, and the
corresponding configuration changes from a ubiquitiform with an integral dimension to a fractal
with a fractal dimension. The Hausdorff dimension remains all through an integer for δ > 0 and
hence the configuration is a ubiquitiform, but it jumps to a fractional value just when δ → 0,
and the configuration becomes a fractal. Thus, it can be easily understood that a fractal with
an infinite iteration process may have a fractional Hausdorff dimension, but “a fractal in a finite
range of scaling invariance” must be of an integral Hausdorff dimension, which can then be de-
scribed only by a ubiquitiform. Taking the Koch curve as an example (see Fig. 1), its Hausdorff
dimension remains to be 1 for arbitrary finite times of iteration k, which can be called as a
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Fig. 1. Hausdorff dimension of the ubiquitiformal and the fractal Koch curve

ubiquitiformal Koch curve, and jumps from 1 to 1.26 at the infinite point of k → ∞, which is
rigorously the fractal Koch curve.

As mentioned above, a physical object in nature is a ubiquitiform. In such a case, is it
reasonable to describe a ubiquitiform as a fractal? We will show that such an approximation
is unavailable in the sense of the Hausdorff measure (in most cases of fractal application).
Comparison Eq. (2.2) with Eq. (2.3) shows that the difference in the one-dimensional measure
between a ubiquitiformal and its associated fractal curve is infinitely large, which makes the
fractal approximation to a ubiquitiform unreasonable. The basic reason is that the Hausdorff
dimension of a ubiquitiform is different from that of its associated fractal. Moreover, it is worthy
of special mention that Panagiotopoulos et al. (1993) and Falconer (2003) have argued that one
can obtain very good approximations of a fractal by an iterated function system constructed
from a given set in the sense of the Hausdorff distance. However, on the one hand, such an
iterative process is after all finite and then could not realize the approximation of the Hausdorff
dimension because of the discontinuity of the Hausdorff dimension at the infinite point with
respect to the Hausdorff distance, or, in other words, the approximation in the sense of the
Hausdorff distance does not imply that in the Hausdorff dimension. On the other hand, it must
be noticed that a physical object in nature is the objective reality, and, from the viewpoint of
scientific research, what we need is to use the fractal as an available mathematical tool to describe
such objectivity, but not vice versa. Unfortunately, although there may exist some set sequences
approximating to a certain fractal within a satisfactory precision, the inverse is not true. That is,
a given physical object in nature can never be well approximated by any fractal especially in the
sense of measure. It is also worthy of mention that some similar approximations seem existing
in practice, such as the mass density in continuum mechanics, which is defined mathematically
in the limit case of the mass-to-volume ratio ∆M/∆V when the small volume ∆V shrinks to
zero, but physically, ∆V is still kept above some finite value ε > 0 larger compared with the
mean free path of the molecules. Such an ideal of “macro-infinitesimal and micro-infinite” is the
foundation of continuum mechanics. It must be noticed that the mass density can always tend to
a stable value when the small volume shrinks, say, to a finite value ε, and hence the density can
be defined well. However, for a fractal, its integral dimensional measure is always divergent with
the decreasing measure scale and cannot reach a stable value. In addition, it has also been noticed
that the stress lim∆S→0∆F/∆S (∆S and ∆F is a small area and the resultant surface force
acting on ∆S respectively) has played an important role in macro continuum mechanics, but in
micromechanics such as nanomechanics, researchers have paid attention to some new integrated
parameter such as energy-momentum tensor and configurational force, because the divergence
of such a limit has caused more and more difficulties. In summary, it is unreasonable to describe
a physical object in nature as a fractal because of the divergence of the integral dimensional
measure of the fractal. From this perspective, the real physical object in nature which had
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ever been approximated by a fractal should be described as a ubiquitiform, or further, the real
physical object in nature is a ubiquitiform. In fact, the splendid “fractal pictures” drawn on a
piece of paper can only be two-dimensional, and the Piano curve of a finite order is also not able
to cover any finite area (this is imaginable considering that a curve is of zero-width), which is
just a one-dimensional ubiquitiformal curve.

3. Discussion

As described above, we emphasize again that the geometry of nature is ubiquitiformal rather
than fractal, and any physical object in nature should not be described as a fractal, rather a
ubiquitiform, which is of integral dimension in the Euclidean space. There is inherent difference
between a fractal and a ubiquitiform, especially in the case of the Hausdorff dimension, which
has been ignored for a long time. Comparing with a fractal, one of the most important cha-
racterizations of a ubiquitiform is that it has a finite integral dimensional measure. Equation
(2.3) shows that the one-dimensional measure of a ubiquitiformal curve depends not only on
the measure of the initial element but also on the complexity D and the lower bound to the
scale invariance δmin. As has been shown above, the complexity of a ubiquitiform is equal to the
fractal dimension of the corresponding fractal, and this indicates that achievements obtained in
fractal application will play an important role in the ubiquitiformal theory.

It can be seen from Eq. (2.3) that the lower bound to the scale invariance δmin is a crucial
parameter for a ubiquitiform, which is usually assumed to be a material constant. However, until
now, the understanding of this parameter is far from complete. The key points are which factor
will affect the lower bound to the scale invariance δmin and how to determine its value accurately
for a certain material. For a certain ubiquitiform with unknown δmin, it seems that δmin can
be obtained from Eq. (2.3) under a given iterative procedure, which can be termed as the
computational lower bound δminc. However, it should be pointed out that δminc depends on the
measure of the initial element l as well as the complexity D and then may not be equal to δmin.
For clarity, as an example, numerical results are presented by taking the ubiquitiformal Koch
curve. Assume that l = 1mm and δmin = 1µm, the yardstick length of the nth iteration can
be obtained as δn = 1/3

nmm, and then the maximum number of the iteration nmax can be
determined by taking δn the minimum value greater than δmin, i.e., nmax = [3/ log 3] = 6, where
the square brackets represent the maximum integer less than the argument. The computational
lower bound is then δminc = 1/3

6mm ∼= 1.37µm. Moreover, taking l = 10mm, it can be verified
that nmax = 8 and δminc ∼= 1.52µm, which is about 10.9% greater than that for l = 1mm and
implies the dependence of the computational lower bound δminc on the length of the initial
element l. On the other hand, the influence of the relative error of δmin on the measure of
the ubiquitiform should also be noticed. For example, in the case of l = 1mm, although the
relative error of δmin is 37%, it can be obtained from Eq. (2.3) that Lubif (δmin) ∼= 6.10mm and
Lubif (δminc) ∼= 5.62mm with the relative error of 7.9%, much less than that of δmin, and such
a relative error is acceptable in engineering application.

Moreover, in general, it was believed that the dimension d of both the integral dimensional
objects and fractals can be defined simply by (Turcotte, 1997)

N(δ)δd = C (3.1)

where N(δ) is the number of objects (i.e. fragments) with a characteristic linear dimension δ,
C is a constant. However, as described above, all ubiquitiforms are of integral dimension such
as d, but satisfy

N(δ)δD = C δ  δmin (3.2)
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where D is generally a fractional value which is obviously not the same as d, which is also the
real justification that we call D as the “complexity” of the ubiquitiform. Therefore, it appears
that Eq. (3.2) should be a sufficient rather than a necessary condition for the definition of
the dimension of a object. Moreover, it is seen that the complexity D may be an important
parameter to classify objects in integral dimensions. That is to say, the objects in the integral
dimension d could be classified into two categories: one is that they satisfy Eq. (3.1), or D = d,
including for example a rectilinear segment or a smooth circular arc; the other one is that they
satisfy Eq. (3.2) with D 6= d, as ubiquitiforms. Such a difference between the objects in a
common dimension but different complexities seems to have been ignored for a long time.

On the other hand, it is worth to mention that a fractal can be constructed from initial ele-
ments with different dimensions because the Hausdorff dimension of the fractal can change in an
infinite iterative procedure. This is very much different from that for a ubiquitiform. The Haus-
dorff dimension of the ubiquitiform is equal to the Hausdorff dimension of its initial element,
but it is usually not the case for the fractal. For example, a Cantor set can be constructed from
either an initial unit line segment or an initial point (Edger, 2008). The Hausdorff dimension of
the initial line element is 1 and that of the initial point element is 0, but the fractal Cantor
sets constructed from both initial elements have a common Hausdorff dimension of ln 2/ ln 3.
However, the ubiquitiformal Cantor sets come from such different initial elements, i.e. the initial
point element and the initial line element, have different Hausdorff dimensions of 0 and 1, re-
spectively, and can never be equivalent to each other. Obviously, the inherent difference between
a ubiquitiform and its associated fractal comes from the jump characteristic of the Hausdorff
dimension in the infinite iteration process. Moreover, in this way, it can be easily understood
that the concepts of the invasive and the lacunar fractals (Baz̆ant and Yavari, 1997) will be
meaningless in the sense of ubiquitiform, because the Hausdorff dimension of the ubiquitiform
is always equivalent to that of its initial element.

Moreover, it should be pointed out that, based on the concept of ubiquitiform, theoretically,
some intrinsic difficulties in applied fractal science may be avoided. For example, on the one
hand, a ubiquitiform is measurable in integral dimension and hence no any ambiguous physi-
cal variable (such as the specific energy-absorbing capacity (Borodich, 1997, 1999), the fractal
tensile strength and the critical fractal strain (Carpinteri, 1994; Carpinteri et al., 2002) propo-
sed in fractal fracture mechanics) defined on the unit fractal measure seems necessary. All the
corresponding physical variables can now be defined normally on the unit measure of integral
dimension and thus will have unambiguous physical meanings. On the other hand, the finite in-
tegral measures of any two ubiquitiforms in a common dimension but different complexities are
now comparable, while on the contrary, it is meaningless to compare the measures of two fractal
curves with different fractal dimensions. It should be emphasized that waking up to this point
is of significance in practical applications because most of scientific criteria can be established
based on such a comparison. For example, the fractal fracture energy can not be considered as
one of important parameters to characterize the material toughness. The two fracture energies
of two specimens with fracture surfaces in different fractal dimensions will be expressed in diffe-
rent mechanical units. Under the concept of ubiquitiform, such an embarrassment will disappear
naturally. Moreover, it can be expected that the incoming universal ubiquitiformal theory will
be more easy-to-use in practice than the existing fractal one, since it can be constructed on
the base of “classical” mathematics in the Euclidean space. For example the arduous fractal
boundary value problems are difficult to be dealt with because the normal direction of a fractal
boundary can not be defined, but using the ubiquitiformal theory, the problems turn into com-
mon boundary value problems defined on piecewise smooth boundaries and can be treated by
traditional mathematical methods.

Additionally, it can be expected that the concept of ubiquitiform will play an important role
in the development of the critical distance theory (Taylor, 2004, 2007, 2008) and the quanti-
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zed (finite or discrete) fracture mechanics (Pugno and Ruoff, 2004) proposed recently by some
authors, because of the characteristic finite number iterative procedure. Moreover, combining
the ubiquitiformal theory with the concept of incubation time in dynamic failure mechanics will
also be propitious for the investigation of strain rate effects on material strength, in which the
discrete structural response characteristic has been noticed by some authors recently (Cotsovos
and Pavlović, 2008a,b,c; Ou et al., 2010).

4. Conclusion

To overcome the intrinsic weakness of fractals used in applied mechanics, a new concept of
ubiquitiform is introduced and discussed in this paper, and some conclusions can be drawn out
as follows.

• A physical object or a geometric configuration in nature can never be constructed by an
infinite iterative procedure. In applied mechanics, therefore, instead of a fractal, despite
an ideal mathematical object, a new concept of ubiquitiform should be introduced for a
finite order self-similar (or self-affine) structure in nature in an attempt to overcome the
weakness of the fractal such as, especially, its divergence or singularity of the integral
dimensional measure.

• It is shown mathematically that a ubiquitiform constructed from an initial element whose
Hausdorff dimension is integer by a finite self-similar iterative procedure must be of integral
dimension, which implies theoretically that all real physical objects in nature could not
be of fractional dimension and then are not fractals. It is also found that the Hausdorff
dimension is discontinuous at the point at infinity in the infinite iterative procedure of a
fractal, which results in the radical difference between the ubiquitiform and the fractal.

• It is also demonstrated that a given physical object in nature can never be well appro-
ximated by any fractal, especially in the sense of the Hausdorff measure, because the
ubiquitiform always has an finite Hausdorff measure, whereas the corresponding fractal
has not.

• Based on the concept of ubiquitiform, some intrinsic difficulties of fractals in applied
mechanics can be avoided, e.g. it will not be necessary to introduce any kinds of density
of fractal parameters defined on the unit fractal measure, and that the so-called fractal
boundary-value problem could be constructed expediently in the sense of ubiquitiform.

Acknowledgements

This work were supported by The National Natural Science Foundation of China under Grant

11221202 and also Foundation of State Key Laboratory of Explosion Science and Technology under

contract YBKT 08-11.

References

1. Addison P.S., 2000, The geometry of prefractal renormalization: Application to crack surface
energies, Fractals, 8, 147-153

2. Aguirre J., Viana R.L., Sanjuán M.F., 2009, Fractal structures in nonlinear dynamics, Reviews
of Modern Physics, 81, 333-386

3. Argyris J., Ciubotariu C.I., Weingaertner W. E., 2000, Fractal space signatures in quantum
physics and cosmology? I. Space, time, matter, fields and gravitation, Chaos, Solitons and Fractals,
11, 1671-1719



Ubiquitiform in applied mechanics 45

4. Balankin A.S., 1997, Physics of fracture and mechanics of self-affine cracks, Engineering Fracture
Mechanics, 57, 135-203

5. Barenblatt G.I., 1993, Micromechanics of fracture, Theoretical and Applied Mechanics 1992,
25-52

6. Barenblatt G.I., Botvina L.R., 1986, Similarity methods in the mechanics and physics of
fracture, Materials Science, 22, 52-57

7. Batty M., 2008, The size, scale, and shape of cities, Science, 319, 769-771

8. Baz̆ant Z.P., Yavari A., 1997, Scaling of quasibrittle fracture: hypotheses of invasive and lacunar
fractality, International Journal of Fracture, 83, 41-65

9. Baz̆ant Z.P., Yavari A., 2005, Is the cause of size effect on structural strength fractal or energetic-
statistical? Engineering Fracture Mechanics, 72, 1-31

10. Borodich F.M., 1997, Some fractal models of fracture, Journal of the Mechanics and Physics of
Solids, 45, 239-259

11. Borodich F.M., 1999, Fractals and fractal scaling in fracture mechanics, International Journal
of Fracture, 95, 239-259

12. Carpinteri A., 1994, Fractal nature of material microstructure and size effects on apparent
mechanical properties, Mechanics of Materials, 18, 89-101

13. Carpinteri A., Chiaia B., Cornetti P., 2002, A scale-invariant cohesive crack model for quasi-
brittle materials, Engineering Fracture Mechanics, 69, 207-217

14. Carpinteri A., Paggi M., 2010, A unified fractal approach for the interpretation of the anomalo-
us scaling laws in fatigue and comparison with existing models, International Journal of Fracture,
161, 41-52

15. Carpinteri A., Puzzi S., 2008, Self-similarity in concrete fracture: size-scale effects and transition
between different collapse mechanisms, International Journal of Fracture, 154, 167-175

16. Cherepanov G.P., Balankin A.S., Ivanova, V.S., 1995, Fractal fracture mechanics? A review,
Engineering Fracture Mechanics, 51, 997-1033

17. Chudnovsky A., Wu S., 1992, Evaluation of energy release rate in the crack-microcrack interac-
tion problem, International Journal of Solids and Structures, 29, 1699-1709

18. Cotsovos D.M., Pavlović M.N., 2008a, Numerical investigation of concrete subjected to com-
pressive impact loading. Part 1: A fundamental explanation for the apparent strength gain at high
loading rates, Computers and Structures, 86, 145-163

19. Cotsovos D.M., Pavlović M.N., 2008b, Numerical investigation of concrete subjected to com-
pressive impact loading. Part 2: Parametric investigation of factors affecting behaviour at high
loading rates, Computers and Structures, 86, 164-180

20. Cotsovos D.M., Pavlović M.N., 2008c, Numerical investigation of concrete subjected to high
rates of uniaxial tensile loading, International Journal of Impact Engineering, 35, 319-335

21. Davey K., Alonso Rasgado M.T., 2011, Analytical solutions for vibrating fractal composite
rods and beams, Applied Mathematical Modelling, 35, 1194-1209

22. Davey K., Prosser R., 2013, Analytical solutions for heat transfer on fractal and pre-fractal
domains, Applied Mathematical Modelling, 37, 554-569

23. Edgar G., 2008, Measure, Topology, and Fractal Geometry, Springer, New York

24. Falconer K., 2003, Fractal Geometry, Wiley, Chichester

25. Fleury V., 1997, Branched fractal patterns in non-equilibrium electrochemical deposition from
oscillatory nucleation and growth, Nature, 390, 145-148
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