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The paper presents a model of the missile dynamics and the impact of the wind field thereon.
Sample results of numerical simulation of the missile flight across the wind field are given
and conclusions drawn.
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1. Introduction

A missile should be launched in such a way that the target is hit with the maximum accuracy.
Launch conditions can vary. Differences result from different initial trajectory angles (horizontal
jump angles). Depending on these parameters, a different point on the Earth’s surface is reached.
Wind is another factor which can affect the missile trajectory. Direction of the wind and its
velocity may be different, so the impact of these factors on the missile trajectory and the fall
point is also different. Therefore, even if initial conditions (i.e. initial trajectory angles) are the
same, flight trajectories are different.
The aim of this study is to estimate the effect of the wind field on the missile flight. A series of

numerical simulations have been carried out with a model of motion with six degrees of freedom
(6 DOF) used to describe the missile flight in 3D space. The model has been adopted from
the study on the aircraft flight dynamics (Gacek, 1998) with necessary modifications included
(Awrejcewicz and Koruba, 2012; Baranowski, 2006).

2. Mathematical description of the missile motion

2.1. Assumptions for a physical model

To analyse the missile flight dynamics, the following assumptions have been made to formu-
late of the mathematical description of the missile motion:

1. A missile is a rigid body but the mass and moments of inertia change during the initial,
active-flight portion of the trajectory, and

2. The missile has two symmetry planes. These are the Oxz and Oxy planes (Fig. 1), which
are planes of geometric, mass and aerodynamic symmetries.

2.2. Systems of coordinates

To determine a mathematical model of a missile, the following orthogonal systems of coor-
dinates are used:

Oxyz – the missile-fixed system with the origin at the centre of mass of the missile,

Oxayaza – the air-trajectory reference system,

Oxgygzg – the Earth-fixed system with the origin at the centre of mass of the missile.
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These systems are related by the following angles:
– the systems Oxyz and Oxgygzg are interrelated by the yaw angle Ψ , the pitch angle Θ,
and the bank angle Φ,

– the systems Oxyz and Oxayaza are linked by the sideslip angle β and the angle of at-
tack α.

Performing a sequence of rotations of the angles Ψ , Θ and Φ about the coordinate axes, the
matrix of transformations from Oxgygzg to Oxyz can be determined






x
y
z






= Ls/g







xg
yg
zg






(2.1)

where the matrix Ls/g is

Ls/g =







cosΨ cosΘ sinΨ cosΘ − sinΘ
cosΨ sinΘ sinΦ− sinΨ cosΦ sinΨ sinΘ sinΦ+ cosΨ cosΦ cosΘ sinΦ
cosΨ sinΘ cosΦ+ sinΨ sinΦ sinΨ sinΘ cosΦ− cosΨ sinΦ cosΘ cosΦ






(2.2)

Performing rotations one by one with angles β and α, the matrix of transformations from
Oxayaza to Oxyz can be determined
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y
z






= Ls/a







xa
ya
za






(2.3)

where the matrix Ls/a is

Ls/a =







cosα cos β − cosα sin β − sinα
sinβ cos β 0

sinα cos β − sinα sin β cosα






(2.4)

Fig. 1. Oxgygzg and Oxyz systems of coordinates and coordinate transformation angles

2.3. Equation of the missile motion

2.3.1. A general form of the equation of motion

Taking into account that tunnel measurements of aerodynamic forces are usually taken in the
air-trajectory reference frame Oxayaza, equations of equilibrium of forces will be determined in
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this system. However, equations of equilibrium of moments will be determined in the missile-fixed
coordinate system Oxyz, because in this system the tensor of moments of inertia is independent
of time.
The vector equation of motion of the centre of mass of the missile is

d(mV)
dt

=
∂(mV)
∂t

+Ω× (mV) = F (2.5)

and can be described as three scalar equations in any rectangular moving coordinate system

m(U̇ +QW −RV ) = X m(V̇ +RU − PW ) = Y m(Ẇ + PV −QU) = Z (2.6)

where m is mass of the missile, V – velocity vector with components V = [U, V,W ]T in any
moving coordinate system, Ω – angular velocity vector of a moving system as related to the
inertial reference frame with components Ω = [P,Q,R]T in the moving coordinate system,
F – resultant vector of forces acting on the missile with components [X,Y,Z]T in the moving
coordinate system.
In the air-trajectory reference frame Oxayaza, the velocity vector has only one component

Ua = V (which should not be mistaken for the second component of the vector V, according to
the designation above).
Equations (2.6) have the following forms

mV̇ = Xa mRaV = Ya −mQaV = Za (2.7)

Assuming that we know the angular velocity of the system Oxyz as related to the inertial
reference frame Ωs and velocity of the system Oxyz as related to the Oxayaza frame, the
angular-velocity vector of the system Oxayaza as related to the inertial reference frame can be
determined as

Ωa = Ωs +Ωs/a = Ωs + β̇ − α̇ (2.8)

In the frame Oxyz, the vector Ωs has the following components: Ωs = [P,Q,R]T, in the
coordinate system Oxayaza, the vector β̇ has the following components: β̇ = [0, 0, β̇]T, and in
the frame Oxyz, the vector α̇ vector has the components: α̇ = [0, α̇, 0]T. Taking the above into
account and using transformation matrix (2.4), on the basis of (2.8), we receive

Pa = P cosα cos β + (Q− α̇) sin β +R sinα cos β

Qa = −P cosα sinβ + (Q− α̇) cos β −R sinα sin β

Ra = −P sinα+R cosα+ β̇

(2.9)

Applying equations (2.9) to equations (2.7), after transformations, we get the following set of
equations

V̇ =
1
m
Xa β̇ =

1
mV
Ya + P sinα−R cosα

α̇ =
1
cos β

[ Za
mV
+Q cosβ − (P cosα+R sinα) sin β

]

(2.10)

The vector equation for equilibrium of moments of forces has the following form

d(K)
dt
=
∂(K)
∂t
+Ω×K =M (2.11)

where M is the resultant moment of forces acting on the missile with the components
M = [L,M,N ]T in a moving system of coordinates.
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The missile angular-momentum vector is

K = IΩ (2.12)

where the tensor of moments and products of inertia I is determined as

I =







Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Izx −Izx Iz






(2.13)

As said above, equation (2.11) will be written in the system Oxyz fixed to the missile. The
missile mass characteristics being time independent in this system imply that all derivatives of
components of the moment of inertia tensor as related to time are zero. It means that

∂K

∂t
=
∂(IΩs)
∂t

=
∂I

∂t
Ωs + I

∂Ωs
∂t
= I
∂Ωs
∂t

(2.14)

After transformations, on the basis of Eq. (2.11) and using Eq. (2.14), one receives a set of three
scalar equations describing rotational motion of the missile in the moving system of coordinates
Oxyz fixed to the missile. The set has the following form

IxṖ − Iyz(Q2 −R2)− Izx(Ṙ + PQ)− Ixy(Q̇−RP )− (Iy − Iz)QR = L

IyQ̇− Izx(R2 − P 2)− Ixy(Ṗ +QR)− Iyz(Ṙ − PQ)− (Iz − Ix)RP =M

IzṘ− Ixy(P 2 −Q2)− Iyz(Q̇+RP )− Izx(Ṗ −QR)− (Ix − Iy)PQ = N

(2.15)

However, with the fact that taken into account the planes Oxz and Oxy are the missile
planes of symmetry, the following equalities may be written

Ixy, Iyx, Izy, Iyz = 0 (2.16)

Hence, the last set of equations reduces to

IxṖ−(Iy−Iz)QR = L IyQ̇−(Iz−Ix)RP =M IzṘ−(Ix−Iy)PQ = N (2.17)

Finally, after some elementary transformations, system (2.17) takes the form

Ṗ =
1
Ix
[L+(Iy−Iz)QR] Q̇ =

1
Iy
[M+(Iz−Ix)RP ] Ṙ =

1
IxIz
[L+(Iy−Iz)QR]

(2.18)

Complementary to systems (2.10) and (2.18) are kinematic relations allowing us to determine
the rates of changes in angles Ψ , Θ and Φ using angular velocities

Φ̇ = P + (R cosΦ+Q sinΦ) tanΘ Θ̇ = Q cosΦ−R sinΦ

Ψ̇ =
1
cosΘ

(R cosΦ+Q sinΦ)
(2.19)

Furthermore, with relationships (2.1) and (2.3) applied, the velocity vector of the centre of
mass of the missile in the Oxgygzg reference frame can be determined






Ug
Vg
Wg






=







ẋg
ẏg
żg






= L−1s/gLs/a







V
0
0






(2.20)
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where

ẋg = V [cosα cos β cosΘ cosΨ + sinβ(sinΦ sinΘ cosΨ − cosΦ sinΨ)

+ sinα cosβ(cosΦ sinΘ cosΨ + sinΦ sinΨ)]

ẏg = V [cosα cos β cosΘ sinΨ + sin β(sinΦ sinΘ sinΨ + cosΦ cosΨ)

+ sinα cosβ(cosΦ sinΘ sinΨ + sinΦ cosΨ)]

żg = V [− cosα cos β sinΘ + sin β sinΦ cosΘ + sinα cos β cosΦ sinΘ]

(2.21)

Equations (2.10), (2.18), (2.19) and (2.21) make a set of 12 differential equations that describe
the missile motion in 3D space, the missile being treated as a rigid body. It can be written down
in the following form

dX

dt
= F(t,X,S) (2.22)

X is a twelve-component vector of the missile flight parameters

X = [V, α, β, P,Q,R,Φ,Θ, Ψ, xg , yg, zg]T

where V is the missile flight velocity (the absolute value of the flight velocity vector), α – angle
of attack, β – sideslip angle, P,Q,R – roll, pitch, and yaw angular velocities in the system of
coordinates Oxyz, Θ,Φ, Ψ – angles of pitch, roll and yaw, respectively.

2.3.2. General expressions that describe forces and moments acting on the missile

Forces acting on the missile

The right side of equation (2.5) represents forces acting on the missile

F = Q+T+R (2.23)

According to designations in equations (2.7), there are the following components

Xa = Qxa + Txa +Rxa Ya = Qya + Tya +Rya Za = Qza + Tza +Rza (2.24)

Particular components in expression (2.24) are determined below:
— The missile weight Q, which has only one component Q = [0, 0,mg]T in the system Oxgygzg.
Using relations between (2.1) and (2.3), we can calculate components of the vector Q in the
system Oxayaza






Qxa
Qya
Qza






= L−1s/aLs/g







0
0
mg






(2.25)

we get

Qxa = mg(− cosα cos β sinΘ + sin β cosΘ sinΦ+ sinα cos β cosΘ cosΦ)

Qya = mg(cosα sinβ sinΘ + cosβ cosΘ sinΦ− sinα sinβ cosΘ cosΦ)

Qza = mg(sinα sinΘ + cosα cosΘ cosΦ)

(2.26)

— The aerodynamic force R, which has the following components in the system Oxayaza

Rxa = −Pxa = −Cxa
ρV 2
∗

2
S Rya = Pya = −Cya

ρV 2
∗

2
S

Rza = −Pza = −Cza
ρV 2
∗

2
S

(2.27)
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where Cxa, Cya, Cza are coefficients of aerodynamic drag, side and lift forces, respectively,
S – cross section of the missile, ρ – air density, V∗ – missile air speed calculated in the following
way

V∗ = V −Vw (2.28)

where Vw is the wind vector. Its influence on the sideslip angle and the angle of attack is shown
in Fig. 2.

Fig. 2. The sideslip angle and the angle of attack

Moments of forces acting on the missile

The right side of the set of equations (2.17) has a vector M = [L,M,N ]T which is a resultant
vector of moments of forces acting on the missile. Taking into account that equations (2.18) are
determined in the system of the missile principal axes of inertia with their origins in the centre of
mass of the missile, the only moments acting on the missile are aerodynamic moments. Therefore,
the components are

L = Cl
ρV 2
∗

2
Sd M = Cm

ρV 2
∗

2
Sd N = Cn

ρV 2
∗

2
Sd (2.29)

where Cl, Cm, Cn are coefficients of rolling, pitching and yawing moments, respectively,
d – diameter of the missile.

2.4. Aerodynamic coefficients

Aerodynamic forces and moments acting on the missile described with expressions (2.27),
(2.29) are determined according to their aerodynamic coefficients. These coefficients depend on
many factors, such as the missile shape, angle of attack, sideslip angle, Mach number, Reynolds
number and angular velocities. There are no general methods of determining these characteristics
for any attitude of the missile. Therefore, various methods are used depending on the problem
discussed and availability of the missile source data. Because of high velocity of the missile, the
most important is the effect of Mach number on aerodynamic characteristics.
Sample formulae describing coefficients of aerodynamic forces and moments that have been

taken into account are as follows (Dmitrevskíı, 1979; Kowaleczko, 2003; McCoy, 1999)

Cxa = Cxa0 + Cxa2 sin2 α Cza = Cza1 sinα+ Cza3 sin3 α

Cm = Cm1 sinα+CmQ
Qd

2V∗
Cl = Clδδ + ClP

Pd

2V∗

(2.30)

where CmQ and ClP are coefficients of damping moments, Clδδ is the spin driving moment
coefficient that depends on the fin cant angle δ.
The coefficients Cya and Cn can be determined in a similar way as the Cza and Cm

ones, with the sideslip angle β taken into account. Basic aerodynamic coefficients are shown in
Figs. 3-5.
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Fig. 3. Drag (a) and lift (b) force coefficient

Fig. 4. Pitch moment coefficient

Fig. 5. Pitch (a) and roll (b) damping moment coefficient

3. Analysis of missile flight in calm atmosphere

To start the intended analyses, numerical simulations based on set (2.22) have been performed
for the case with no wind. The initial trajectory angle has been changed. The value of this angle,
which gives the maximum range, is 42◦. It is illustrated in Fig. 6.
From Figure 4 one can find that the missile is statistically stable – the derivative

∂Cm/∂α = Cm1 is negative in the whole range of Mach number. All simulation results show
that the missile is also dynamically stable. This has been confirmed by plots of all parameters
shown in Figs. 7 and 8. The first figure (Fig. 7) presents velocity of the missile. During the initial
(active) phase of flight, when the engine works, acceleration of the missile is observed. Then the
missile velocity decreases because of the aerodynamic drag force. During the active phase, the
mass and inertia moments of the missile change linearly from initial to final values. Now, the
missile follows the ballistic trajectory.
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Fig. 6. Missile trajectories for various initial trajectory angles

Fig. 7. Missile velocity

Fig. 8. Pitch angular velocity Q (a) and pitch angle Θ (b)

During the whole flight, the missile rotates about the Ox axis. At the beginning, the rolling
moment is produced by the engine, and then the fins force the missile to rotate in the opposite
direction. Because of this rotation, the pitching and yawing motion is observed but both angular
velocities are kept in the limited range, see Fig. 8a. The pitching moment keeps decreasing
from 42◦ at the initial stage of flight to −60◦ in the final portion of flight – Fig. 8b.

4. Missile flight with longitudinal wind influence

For the optimal elevation angle (42◦), the effect of longitudinal and lateral wind has been
investigated. The value of longitudinal wind was changing over the range of −10m/s to +10m/s,
with a step of 2.5m/s. Figure 9a shows that the longitudinal wind changes the range of the
missile. One can find that the relation is linear and the following formula can be written

range = range0 + 41.56wind
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Similar results have also been obtained for the derivation. Figure 9b shows this derivation
versus the longitudinal wind. The relation is approximately linear and has the following form

derivation = derivation0 + 1.78wind

Fig. 9. Missile range (a) and derivation (b) versus longitudinal wind

The same values of lateral wind were tested (from −10m/s to +10m/s). Its influence on the
missile trajectory is more complicated. The range (measured along the initial direction of the
missile to the target) decreases at any lateral wind. This is presented in Fig. 10a. The relationship
between the range and the lateral wind is nonlinear. In Fig. 10b, very crucial changes of the
derivation are observed. The wind equal to 10m/s produces more than 800 meters derivation.
This is effected by rapid changes in the angle of yaw at the active part of the trajectory, see
Fig. 11. Since the missile is stable, it changes the direction of the Ox axis against the wind to
minimize the angle of attack. Therefore, the wind from the right (left) causes the right (left)
derivation – Fig. 12.

Fig. 10. Missile range (a) and derivation (b) versus lateral wind

Fig. 11. Yaw angle produced by lateral wind
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Fig. 12. Horizontal projection of the missile trajectory

5. Conclusions

The conducted analyses have shown that the effect of wind on the accuracy of the missile
launch is essential and must be taken into account when planning the use of the missiles. The
longitudinal wind first of all affects the range, whereas the lateral wind produces derivation of
the trajectory. If the lateral wind forces the missile at the active-flight portion of the trajectory,
the missile changes the direction of its trajectory to the side against the wind direction.
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