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The main objective of this paper is to propose a new closed form solution, useful in the
pre-design stage, that allows one to calculate the mean load in the case of post-collapse
of polygonal thin-walled columns in the axial crushing case. This model gives a rapid and
accurate evolution of the normalized mean load as function of the corner element angle as well
as the ratio between the corner length and the column thickness. To identify the parameters
of this model, numerical simulations with an explicit finite element software have been
carried out and then compared to experimental results reported in the literature. Finally,
all these results combined with the findings based on the known generalized mixed model
developed by other researchers working on this topic enabled one to establish the closed
form solution. This is a unified and continuous closed form solution, which is suitable for
different columns shapes, even non-conventional shapes obtained thanks to the development
of extrusion techniques.
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1. Introduction

The transportation safety as well as the reduction of energy consumption are the main concerns of
automobile manufacturers. They aim to lightweight vehicle structures while maintaining at least
or improving energy absorption capability during an accident. Numerical simulation is one way to
achieve these purposes. Nowadays, we can run models of vehicle crash with millions of degrees of
freedom. Except that such techniques are used once the entire structure is defined and designed.
In addition, these models require a lot of computational time, which makes them unsuitable in the
pre-design stage of structural parts of the vehicle. An alternative way is to develop analytical or
semi-analytical models able to provide rapid estimation and more adapted to parametric studies.
This has engendered models of axial post collapse of thin-walled multicorner sheet metal columns
that were initially developed by Abramowicz and Wierzbicki (1989). Based on these pioneering
works, other contributions have also been proposed. We can cite those of one of the present
authors (Markiewicz et al., 1996a; Drazetic et al., 1995; Markiewicz, 1994) for multi-thickness
and multi-cells columns.

In the last decades, several authors were interested in the energy absorption characteristics
of thin-walled columns, depending on the sheet thickness and the angle of the corner element
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formed by two adjacent sheets of the column. Numerous literatures published concern the col-
lapse of these columns under axial, transverse or oblique loading by using theoretical modeling
analysis, experimental and numerical investigation (Zhang and Zhang, 2012; Han and Park,
1999; Yamashita et al., 2003; Nia and Hamedani, 2010). However, a significant part of those
research works is concerned with square or rectangular columns (Meguid et al., 1996; Zhao and
Abdennadher, 2004; Zhang et al., 2007) and does not cover the behavior of polygonal cross-
section columns. Indeed, corner elements with acute or obtuse angle are representative elements
of prismatic columns and are always constitutive elements of a multi-cell column or honeycomb
material, widely used in industry. Moreover, the development of extrusion techniques provided
a wider range of columns shapes and thicknesses. Due to the complexity of the problem, few
studies are interested in the influence of the angle of the corner element. The reference model wi-
dely used in the literature is that of Abramowicz and Wierzbicki (1989) who proposed a suitable
deformation mechanism called the generalized mixed model. This model was subsequently taken
by several authors to validate numerical models (Abramowicz, 2003; Meguid et al., 1996; Zhang
and Zhang, 2012; Zhang and Huh, 2010) or to develop a simplified crash modeling approach
dedicated to the pre-design stage (Halgrin et al., 1993; Markiewica et al., 1996b; Cornette et al.,
1999; Markiewicz, 1994; Drazetic et al., 1993).

The aim of this paper is to predict the mean load in the case of post-collapse of polygonal
thin-walled columns in the axial crushing case, as function of various parameters of the cross-
section geometry, and to propose a new closed form solution, useful in the pre-design stage.

This paper has the following outline. In Section 2, numerical simulations using the finite
element method with an explicit resolution scheme are performed on a set of regular polygonal
columns in order to identify the cross-section effect on the instantaneous post-collapse and
mean crushing force. In Section 3, the analytical model based on the generalized mixed model
developed by Abramowicz and Wierzbicki (1989) is presented. In Section 4, the results of the
analytical model, combined with the simulation results enabled one to establish the closed form
solution. Wierzbicki and Jones (1989) proposed in the past a closed form solution for the collapse
of thin-walled columns but they were limited to square and hexagonal shapes with a separate
equation for each section. This paper overcomes this limitation, since the proposed closed form is
here unified and continuous. It can estimate the mean crushing force for different cross-sections
taking into account the real shape and aspect ratio.

2. Finite element simulations

A set of regular polygonal columns with triangular, square, hexagonal and octagonal sections is
considered in this FE study by using Abaqus/Explicit software. The purpose is to identify the
cross-section effect on the instantaneous post-collapse and mean crushing force using a finite
element method with an explicit resolution scheme. These results will be compared later with
an analytical model, and will be useful to propose a closed form solution for the prediction of
energy dissipation properties.

As shown in Fig. 1, numerical models are formed by the column and two rigid square plates
representing the crushing plates. The upper rigid plate is moving downwards from top with a
prescribed velocity V = 2m/s to compress the column in the axial direction. The lower plate
is assumed to be clamped. A rough contact is defined between the ends of the column and the
rigid plate. Self-contact with 0.2 Coulomb friction coefficient is also defined between all sides
of the column in order to prevent interpenetration of faces during crushing and the formation
of folding lines. Furthermore, depending on the column cross-section geometry to be crushed,
imperfections are introduced in the initial meshed geometry in order to “privilege” the formation
of anti-symmetric folding mode in the crushing process. These imperfections are introduced as
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a perturbation of some selected nodes with an aptitude of 0.05mm. The location of these nodes
is selected to be situated approximately in the half-wave length. The columns are meshed with a
quadrangular shell (S4R) with a reduced integration in the plane and five integration points in
the thickness and an element size of 2mm. All the columns have the same length L = 125mm.
Different aspect ratios C/t of column are considered, where C denotes the width of the corner
element and t is the thickness. The constitutive material of the columns is assigned as steel, with
the following mechanical properties: Young’s modulus E = 200GPa, Poisson’s ratio ν = 0.3
and yield stress σ0 = 350MPa. The steel is considered elasto-plastic with isotropic hardening
and a tangent modulus of Et = 430MPa.

Fig. 1. FE Model description

To ensure the relevance of quasi-static simulation using an explicit finite element code, we
firstly verified that the crushing force-displacement response must be independent of the applied
velocity (considering that the constitutive material is not strain rate sensitive). Secondly, the
total kinetic energy has been checked to remain negligible compared to the total internal energy
during the whole crushing simulation. In addition, numerical instantaneous crushing forces for a
square column cross-section column with the characteristics (C = 47mm, t = 0.9mm) have been
compared to experimental results of Drazetic et al. (1995). As shown in Fig. 4, the numerical
instantaneous crushing force is in agreement with the experimental results.

The deformed shapes of the columns, at different crushing distances are presented in Fig. 2. It
can be found that all the columns deform in an asymmetric mode. Compared to the experimental
tests performed by Zhang and Zhang (2012), it can be found that the deformed shapes of the
numerical simulations are quite similar, which confirms the relevance of the numerical model.

Table 1 summarizes the results of the mean crushing force normalized by the number of
corner elements N of each cross-section geometry for different aspect ratios C/t. The results
summarized in Table 1 are consistent with tendencies reported by Wierzbicki and Jones (1989)
since the increasing of the number of corners leads to an increase in the crushing force per corner
element. This tendency is valid for all the considered aspect ratios C/t.

Table 1. Mean crushing force per corner element for different aspect ratios and various cross-
-section geometry

Cross-section N C/t = 30 C/t = 52 C/t = 80

Triangular 3 6.55 2.95 1.70

Square 4 8.19 3.61 1.95

Hexagonal 6 9.53 4.19 2.04

Octagonal 8 10.10 4.27 2.09
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Fig. 2. Collapse modes versus crush distance for columns of triangular, square, hexagonal and octagonal
cross-section geometry

The influence of the aspect ratio C/t is also studied in this paper, and Table 1 shows, as
expected and reported in previous studies, that for the same cross-section, increasing the aspect
ratio causes a decrease in the crushing force.

3. Analytical model

3.1. Post-collapse mechanisms : generalized mixed model

The post-collapse phase of a thin-walled column is defined as the study of static deformation of a
sheet surface and constitutes the basis of the generalized mixed model developed by Abramowicz
and Wierzbicki (1989). The tube structure is broken down into basic corner elements with
symmetry conditions. Each corner element is identified separately, C denotes the width of the
corner element, t is the thickness of the sheet and ϕ = π − 2ψ0 the angle between the two
adjacent faces of the corner element (Fig. 3). 2ψ0 denotes the angle of intersection between lines
AD and BC. The constituent material is assumed to be rigid perfectly plastic, characterized
by an energy equivalent flow yield stress σ0. M0 = σ0t

2/4 and N0 = σ0t designate respectively
the bending moment and membrane stress per length unit at the limit of plastic flow σ0.



Closed form solution for the collapse of polygonal thin-walled columns... 711

Fig. 3. Generalized mixed model; (a) phase I quasi inextensional, (b) phase II extensional

The idealized folding process, described by the rotation angle of the plates α, is divided
into two phases which are activated in series (Fig. 3). H denotes the half-wavelength of plastic
folding and r the radius of the toroidal surface (point B in Fig. 3).

• Phase I, quasi inextensional (Fig. 3a): characterized by three areas of energy dissipation
and which persists until an intermediate configuration (α = α):

– a toroidal surface of radius r (at point B in Fig. 3) characterized by the energy
dissipated rate Ė1

Ė1 = 4N0rH cosα

β(α)
∫

0

α̇
√

tan2 ψ0 + cos2 φ
dφ (3.1)

– two horizontal stationary folding lines AB and BC, each of them dissipating the
energy rate Ė2

Ė2 = 2M0Cα̇ (3.2)

– two inclined moving hinge lines OB and O′B each of them dissipating the energy
rate Ė3

Ė3 = 4M0
H2

r
tan−1 ψ0 cosα

√

tan2 ψ0 + sin
2 αα̇ (3.3)

• Phase II, extensional (Fig. 3b): from this intermediate configuration, the plastic inclined
hinge lines OBO′ become stationary and split by rotating about the vertical axis OO′.
So there is formation of two conical surfaces characteristics of the material extension and
deflection of the line ADB initially straight. The results in the extensional phase are
also characterized by three areas of energy dissipation. These areas remain until the final
configuration (α = αf ). The three dissipation areas are:

– two conical surfaces OBD and O′BD each of them dissipating an energy rate Ė4

Ė4 = 4M0Vt
H

t
(3.4)

where Vt is the tangential extension velocity at the cones

Vt = 2H
[ sinα tanψ0 sin 2α

2(sin2 α+ tan2 ψ0 sin
2 α)
+ (ψ − ψ0) cosα

]

α̇ (3.5)
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– two horizontal stationary folding lines AD and BC each of them dissipating the same
energy rate consumed in Phase I Ė5 = Ė2

– two inclined moving hinge lines OB and O′B each dissipating the energy rate Ė6

Ė6 = 2M0H tan
−1 ψ0

sinα(sin2 α+ tan2 ψ0)

sin2 α+ tan2 ψ0 sin
2 α

α̇ (3.6)

3.2. Theoretical model for the collapse crushing force

In this section, we present the methodology adopted to calculate the mean crushing force Pm
and the instantaneous post-collapse crushing force P (δ) according to the mechanisms described
by the generalized mixed model. δ is the crushed distance that can be deducted from the angle
rotation of the plates α

δ = 2H(1 − cosα) (3.7)

The methodology consists in choosing a kinematic model of deformation defined by the vector of
unknown parameters χ = (r,H, α). r is the radius of toroidal surface, H is the half-wavelength
of plastic folding and α is the switching angle between the quasi inextensional and extensional
phase. The initial geometry is defined by the known parameters vector ξ = [C, t, 2ψ0].
Assuming a rigid perfectly plastic material characterized by the energy equivalent flow

stress σ0, the principle of virtual power is then conducted. The instantaneous post-collapse
crushing force P (δ) is calculated by summing the elementary efforts achieved for each corner
element constituting the column. Applying the principle of virtual power, the equality between
the internal and external rate of energies yields

Ėint = Ėext = P (δ)δ̇ (3.8)

where δ̇ is the crushing velocity.

Using the notation of Fig, 3, the total energy rate dissipated within the j-th corner ele-
ment Ėjint, subjected to a generalized mixed type deformation mechanism, reads

Ėjint = Ė
j
1 + 2Ė

j
2 + 2Ė

j
3 + 2Ė

j
4 + 2Ė

j
5 + 2Ė

j
6 (3.9)

Ėji denotes the energy rate dissipated in the i-th dissipation area of the j
th corner element.

Each component of the energy rate dissipation depends on the unknown variables r, H and
which will be determined later by means of minimizing the mean crushing force Pm. Given a
column configuration constituted by an assembly of N coin elements, the total internal energy
rate can be computed by adding up the contributions of each corner element dissipation. Using
the principle of virtual power, Eq. (3.8), the instantaneous post-collapse crushing force P (δ)
yields

P (δ) =
1

δ̇

N
∑

j=1

Ėjint (3.10)

The mean crushing force Pm is then deduced depending on the unknown vector χ = (r,H, α)
by integration of equation (3.10) between starting (α = 0) and final position (α = αf ). For a
single corner element, the mean crushing force Pm, normalized by the bending moment per unit
length M0, can be given as the sum of the following split terms

Pm(H, r, α)

M0
=
[

A1
r

t
+ (A2 +A5)

C

H
+A3

H

r
+A4

H

t
+A6

]2H

δf
(3.11)
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where Ai assigned to their respective coefficients denote the energy consumed during the collapse
phase.

A1, A2 and A3 are respectively the integration results of Ė1 (3.1), Ė2 (3.2) and Ė3 (3.3)
between the starting (α = 0) and intermediate position (α = α).

A4, A5 and A6 are respectively the integration results of Ė4 (3.4), Ė5 (3.2) and Ė6 (3.6)
between the intermediate (α = α) and final position (α = αf ).

δf is the effective final crushed distance associated with the final position (α = αf ).

The unknown vector χ = (r,H, α) of the problem is then determined so as to minimize the
mean crushing force Pm(H, r, α)

∂

∂χ
Pm(H, r, α) = 0 (3.12)

The resolution of this problem is performed analytically using a computer algebra system
(MAPLE). The unknown vector χ = (r,H, α) is then fed back into equation (2.10) so as to
deduce the instantaneous post-collapse crushing force and substituted in equation (3.11) in or-
der to estimate the normalized mean crushing force for a single corner element. The total mean
crushing force for a column constituted by N corner elements is then obtained by summing up
the contributions of each corner element.

The analytical model allows us to compute the evolution of the instantaneous post-collapse
crushing force P (δ) of the column by using equation (3.10). In this equation, we substitute the
vector of unknowns χ = (r,H, α) by its value obtained by the minimizing of mean crushing force
(3.12). Figure 4 shows the evolution of this instantaneous force obtained by the analytical model
and by finite element computations on a square column with the characteristics: C = 47mm,
t = 0.9mm, E = 200GPa, ν = 0.3, σ0 = 350MPa and Et = 430MPa.

Fig. 4. Evolution of the instantaneous crushing force P (δ) for a square column using the analytical and
numerical model and compared to the experimental results from Drazetic et al. (1995)

The analytical model provided the mean crushing force close to that obtained by the finite
element calculations, however, the fall of the instantaneous crushing force effort at the beginning
of the post-collapse phase is slower in the analytical model as compared to the simulation.

It is worth noting that the analytical model of the pre-collapse phase is not presented in this
paper. Consequently, the analytical maximum crushing force is not defined. For the quasi-static
and dynamic crushing behavior in the pre-collapse phase, we can refer to previous works done
by one of the present author (Drazetic et al., 1995; Markiewicz et al., 1996a).
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4. Closed form solution for the mean crushing force

By taking advantage of the developed analytical model and its programming on MAPLE so-
ftware, we look to elaborate an empirical model traducing the variation of the mean crushing
force versus the aspect ratio C/t and the corner element angle ϕ. The purpose is to provide a
closed form solution for the mean crushing force useful in the pre-design stage. To achieve this
aim, the normalized mean crushing force Pm/M0 is computed for different configurations of the
aspect ratio C/t in the case of a triangular (ϕ = 60◦), square (ϕ = 90◦), hexagonal (ϕ = 120◦)
and octagonal (ϕ = 135◦) cross-section. Figure 5 shows the evolution of the normalized mean
crushing force versus the aspect ratio for different cross-section geometries. In the same Fig. 5,
results from numerical simulations of Section 2 (Table 1) are also presented. We propose to fit
these curves by the following function

Pm
M0

(C

t
, ϕ
)

= A(ϕ)
(C

t

)B(ϕ)
(4.1)

A(ϕ) and B(ϕ) are two parameters depending only on the corner element angle ϕ. The depen-
dence function is achieved by interpolating the results of analytical calculation.

Fig. 5. Evolution of the normalized mean crushing force Pm/M0, in terms of the aspect ratio C/t and
for various cross-sections of coin elements

The form of this function is in concordance with the empirical formula given by Abramowicz
and Wierzbicki (1989) for the square and hexagonal cross-section geometry. The proposed model
is wider since it provides an extrapolation for the corner angle ranging from 60◦ to 135◦.
Figure 6a represents the analytical coefficient A(ϕ) for ϕ angle ranging from 60◦ to 135◦. A
second order polynomial interpolation is well suitable

A(ϕ) = 2.13 + 9.44ϕ − 2ϕ2 (4.2)

Figure 6b represents the analytical exponent coefficient B(ϕ) for ϕ angle ranging from 60◦

to 135◦. A first order polynomial interpolation is well appropriated for this exponent

B(ϕ) =
1

3
+ 0.06

(

ϕ−
π

3

)

(4.3)

Finally, a closed form formula for the normalized mean crushing force for a corner element
can be proposed

Pm
M0

(C

t
, ϕ
)

= (2.13 + 9.44ϕ − 2ϕ2)
(C

t

)

1

3
+0.06

(

ϕ−π
3

)

(4.4)
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Fig. 6. Evolution of (a) coefficient A(ϕ) and (b) exponent B(ϕ) versus corner element angle ϕ

Wierzbicki and Jones (1989) proposed the following similar form with a separate equation for
the mean crushing force of square and hexagonal cross-section geometry

Pm
M0

(C

t

)

=















12.16
(

C
t

)0.37
for a square cross-section and

13.49
(

C
t

)0.4
for an hexagonal cross-section

(4.5)

A comparison with these empirical results gives a small discrepancy summarized in Table 2.

Table 2. Discrepancy between closed form solution (4.4) and equation (4.6)

Coss-section C/t = 30 C/t = 52 C/t = 80

Square 1.89% 2.18% 2.40%

Hexagonal 3.94% 4.14% 4.30%

The proposed closed form is more general since it can estimate the mean crushing force for
any cross-section geometry.

The proposed closed form can be more simplified by neglecting the influence of the corner
element angle ϕ in the exponent coefficient B(ϕ) (4.3): B(ϕ) ≃ 1/3, in which case, the mean
crushing force can be normalized by 3

√

C/t so as to obtain a simple and aspect ratio independent
equation

Pm

M0
3
√

C/t
= 2.13 + 9.44ϕ − 2ϕ2 (4.6)

To validate the results given by the analytical model and simplified empirical formula (4.6), the
evolution of the normalized mean crushing force as function of the corner element angle ϕ has
been performed. These results are compared with those obtained experimentally (Abramowicz
and Jones, 1984; Abramowicz and Wierzbicki, 1989) and numerically by the finite element
simulation (Section 2, Table 1). Figure 7 illustrates the evolution of the normalized mean crushing
force as function of the corner element angle ϕ. We can notice, as a general trend, that our purely
analytical results recapitulated by useful formula (4.4) and the numerical simulations are in a
good agreement with the experimental results (Abramowicz and Jones, 1984; Abramowicz and
Wierzbicki, 1989) for ϕ ranging from 60◦ to 120◦.

In crash application, the influence of the strain rate is necessary to be take into account.
Indeed, in terms of the crash application, the good determination of historical crushing response
requires consideration of inertia and the strain rate effect. For the post-collapse phase, subject
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Fig. 7. Evolution of the normalized mean crushing force Pm/(M0
3

√

C/t) as function of the corner
element angle ϕ using simplified closed formula (4.6) and compared to numerical simulation (Table 1)
and experimental results from Abramowicz and Jones (1984) and Abramowicz and Wierzbicki (1989)

of our study, many studies were conducted by Jones (1997), Abramowicz and Jones (1984), and
Reid (1993). All considered that due to the large plastic deformation the inertia is negligible,
and only the sensitivity of the material strain rate influenced the mean crushing dynamic force.
The consideration of the strain rate effect can be done by using a dynamic correction laws type
stress-strain rate. Several dynamic correction laws have been developed but the most widely
used are the Johnson and Cook (1983) and Cowper and Symonds (1967) laws. The Cowper
and Symonds (1967) dynamic correction model relates material static σ0, and dynamic σ0D
equivalent flow yield stresses to the mean strain rate ǫ̇ according to

σ0D = σ0



1 +
p

√

ǫ̇

D



 (4.7)

where p and D are respectively the rate of viscoplasticity and the sensitivity to the strain rate
experimental parameters. They are fitted so as to well describe the material sensitivity to the
strain rate in an axial crushing test.

5. Discussion and conclusion

The Analytical model and empirical formula for the determination of the mean crushing force
have been presented in this paper. The studied polygonal columns were subjected to an axial
crushing loading and were made of an elastic perfectly plastic material. Numerical simulations
were conducted by using nonlinear explicit finite element software ABAQUS. The mean crushing
forces of these polygonal columns derived by analytical model and numerical results were in good
agreement with the experimental results and theoretical predictions identified in the literature.
The case of triangular cross-section presented in this paper is known to be unstable expe-

rimentally and is not usually used for energy absorption application. Nevertheless, a choice is
made to consider it in the numerical and analytical parts since it is the lower “limit” border of
the validity of the proposed closed form solution.
In the present study, the resolution of the governing equations of the column crushing perfor-

med analytically using a computer algebra system (MAPLE), unlike in previous contributions
(Abramowicz and Wierzbicki, 1989; Wierzbicki and Jones, 1989; Drazetic et al., 1995) incor-
porated numerical estimation. The developed model was used to define a closed form solution
useful in the pre-design stage, which allows calculating the mean crushing axial force for po-
lygonal thin-walled multicorner columns. Such a solution is much appreciated especially in the
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pre-design phase due to its rapidity compared to finite element models. The proposed here clo-
sed form is unified and continuous. It can estimate the mean crushing force for a large range
of cross-sections geometries, taking into account the aspect ratio and even for non-conventional
shapes obtained thanks to the development of extrusion techniques, but of course as long as we
remain in the domain of validity of the analytical model.

Motivated by practical purposes, in particular for real crash events where the axial crushing
mode of columns is always happening together with the bending collapse mode, an extension to
oblique impact loading of mutlicorner thin-walled columns is the matter of on-going research.
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12. Markiewicz E., 1994, Pf.D. Thesis, Université de Valenciennes et du Hainaut Cambrésis, France



718 Y. Maalej et al.

13. Markiewicz E., Ducrocq P., Drazetic P., Ravalard Y., 1996a, Calculation of the dynamic
axial crushing response of complex prismatic sections, International Journal of Crashworthiness,
1, 2, 203-224

14. Markiewicz E., Marchand M., Ducrocq P., Drazetic P., 1996b, Evaluation of different
simplified crash models, application to the under-frame of a railway driver’s cab, International
Journal of Vehicle Design, 26, 187-203

15. Meguid S.A., Attia M.S., Stranart J.C., Wang W., 1996, Solution stability in the dynamic
collapse of square aluminium columns, International Journal of Impact Engineering, 34, 348-359

16. Nia A.A., Hamedani J., 2010, Comparative analysis of energy absorption and deformations of
thin walled tubes with various section geometries, Thin-Walled Structures, 48, 946-954

17. Reid S.R., 1993, Plastic deformation mechanisms in axially compressed metal tubes used as impact
energy absorbers, International Journal of Mechanical Sciences, 35, 12, 1035-1052

18. Wierzbicki T., Jones N., 1989, Structural Failure, John Wiley & Sons

19. Yamashita M., Gotoh M., Sawairi Y., 2003, Axial crush of hollow cylindrical structures with
various polygonal cross-sections Numerical simulation and experiment, Journal of Materials Pro-
cessing Technology, 140, 59-64

20. Zhang X., Cheng G., You Z., Zhang H., 2007, Energy absorption of axially compressed thin-
walled square tubes with patterns, Thin-Walled Structures, 45, 737-746

21. Zhang X., Huh H., 2010, Crushing analysis of polygonal columns and angle elements, Interna-
tional Journal of Impact Engineering, 37, 441-451

22. Zhang X., Zhang H., 2012, Experimental and numerical investigation on crush resistance of
polygonal columns and angle elements, Thin-Walled Structures, 57, 25-36

23. Zhao H., Abdennadher S., 2004, On the strength enhancement under impact loading of squ-
are tubes made from rate insensitive metals, International Journal of Solids and Structures, 41,
6677-6697

Manuscript received October 4, 2013; accepted for print February 18, 2014


