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This paper presents an analysis of the influence of the kind of a friction model on the di-
mensioning of a branch pressure fluctuation damper. The mathematical model of the branch
damper is defined by determining the damper input impedance and finding its minimum
corresponding to the maximum effectiveness in reducing pressure fluctuations. Three kinds
of friction for the oscillatory flow in the damper, i.e. a lossless line, steady friction and a
nonstationary friction model, are considered. Experimental studies confirmed that the use
of the nonstationary friction model in the calculation of branch damper length ensures the
highest effectiveness in reducing the amplitude of pressure fluctuations characterized by a
given frequency.
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1. Introduction

Hydrostatic drive systems have their well-known advantages, but their main disadvantage is
that they generate much noise which may disqualify such kind of drive when the increasingly
more stringent noise emission standards dictated by ergonomic considerations are exceeded. For
this reason, a properly designed hydrostatic drive system should not only have the expected
static and dynamic properties, but also emit as little noise as possible. Directive 98/37/WE
includes a general recommendation that a machine should be designed in such a way that the
hazard arising from the emission of the noise generated by it is reduced (preferably at the
noise generation source) to the lowest level possible owing to the technological progress and the
available means of noise reduction. The directive also requires that information about the noise
at the operator workstation be included in the machine documentation. The following should
be specified: the equivalent sound pressure level, the instantaneous peak acoustic pressure and
the acoustic power level. Noise in a hydraulic system can be generated in two ways:

• directly – the noise source (e.g. the impeller of a fan in the electric motor driving the
pump) produces changes in pressure in the surrounding air,

• indirectly – time-variable forces make the components of a hydraulic system vibrate. The
vibration of the surfaces of the components results in noise emission.

Indirectly generated noise is the principal noise in hydraulic systems. Changeable forces acting
on the hydraulic system components arise as a result of:

• pressure fluctuations (Tijsseling, 1996),
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• mechanical connection of the system components through conduits and the common mo-
unting. A single component (e.g. a valve) may vibrate as a result of the action of the fluid,
causing the vibration of the components connected with it.

One of the major noise sources in a hydraulic system is the unstable operation of the pressu-
re relief valves due to, among other things, external excitations produced by vibration of the
machine frame or the feeder cover to which the pressure relief valves are often mounted. One
should note that vibrations may arise in the resonant region of the element which controls the
valve. Therefore, the coincidence of the frequency range of, e.g., the foundation and that of the
hydraulic valve controlling element should be avoided (Stosiak, 2012).
Experimental studies aimed at locating and identifying vibration and noise sources must be

carried out in order to effectively eliminate annoying noise. Energy measuring methods are par-
ticularly suitable for locating noise sourceswhen diagnosing the acoustic condition of hydraulic
machines and equipment (Kollek et al., 2001). For locating noise sources, Osiński and Kollek
(2013) recommend using the acoustic intensity method (AIM) with a two-microphone acoustic
probe whereby a map of noise intensity around the investigated equipment can be obtained and
the loudest places can be indicated.
The causes of noisiness in the hydraulic system can be divided into mechanical causes and

hydraulic causes. The group of mechanical causes includes workmanship and assembly faults,
excessive clearances in all moving joints, unbalanced rotating parts and so on. The main hydraulic
causes are: cavitation phenomena (Kollek et al., 2007), forcing pressure fluctuations and working
liquid pressure surges in the pump or displacement motor chambers. In a properly designed
hydraulic system, cavitation should not occur while the occurrence of working liquid pressure
surges largely depends on the type of the pump. Axial multiplunger pumps are the noisiest
while vane pumps and internal gear pumps are the most silent-running. The research so far
has identified pressure fluctuations and the resulting vibrations as the principal causes of noise
generation in hydraulic systems, see Mikota and Manhartsgruber (2003), Kudźma (2001, 2006,
2012), Wacker (1985). Thus by reducing pressure fluctuations, one can reduce the noisiness of
the individual system components and thereby prolong their service life. One of the effective
ways of reducing pressure fluctuations, and so the hydrostatic noise of the drive system, is the
use of pressure fluctuation dampers. This paper presents a refined passive branch damper model
taking into account nonstationary flow resistance.

2. The supply conduit as a long hydraulic line

Simplifying assumptions, in detail described by Kudźma (2012), are commonly made when
deriving equations for the nonstationary flow of a liquid in closed conduits. On such assumptions,
the (laminar and turbulent) motion of the liquid is described by the following equation, Kudźma
(2012), Zarzycki (1994):
— the equation of motion towards the axis z
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— the equation of continuity
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where: vz is the instantaneous velocity of the liquid in the conduit in the axial direction, vr –
instantaneous velocity of the liquid in the radial direction, p – instantaneous pressure of the
liquid, ν – kinematic coefficient of molecular viscosity, νt – kinematic coefficient of turbulent
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viscosity, ρo – steady density of the liquid, z – axial coordinate of the conduit, r – radial
coordinate of the conduit, co – velocity of pressure wave propagation, t – time.
In the case of turbulent motion, vz and p are quantities averaged in accordance with the

Reynolds rules. By integrating equations (2.1) and (2.2) over the conduit cross section, one gets
a system of equations which can be presented as follows, see Kudźma (2012), Zarzycki (1994),
Zarzycki et al. (2007)
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where: v = v(z, t) is the average in the conduit cross section velocity of the liquid, p = p(z, t) –
average pressure in the conduit cross section, R – inside radius of the conduit, τw – shear stress
on the conduit wall. The expression (2/R)τw in equation (2.3)1 represents pressure drop due to
friction, per unit length.
In the case of a laminar flow, the most accurate model of hydraulic resistance is the model

with variable resistance, which takes into account pressure losses as a function of frequency.
Using this model one gets the following expression for impedance Z0 of a long hydraulic line,
see Zielke (1968)
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where: s is the Laplace transformation operator, J0, J1 are respectively zero-order and first-order
first-type Bessel functions, j – imaginary unit.
By applying the inverse Laplace transformation, Zielke (1968) obtained the following relation

for the instantaneous shear stress on the conduit wall
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4µ

R
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2µ

R

t∫
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where: w(t) is the weighting function and u is the time in the convolution integral.
The second term in equation (2.5) describes the influence of flow nonstationarity on the shear

stress. It is a convolution integral of the instantaneous acceleration of the liquid and weighting
function w(t). The instantaneous conduit wall shear stress τw can be presented as the sum of
quasi-steady quantity τwq and time-variable quantity τwn, see Vardy and Brown (2003)

τw = τwq + τwn (2.6)

If only the quasi-steady friction model is to be taken into account, the second term in equations
(2.5) and (2.6) should be omitted, whereby only τw = τwq remains. It should be noted that the
quasi-steady frictional resistance models used in calculations of nonstationary states are valid
only in the case of slow velocity changes, which applies to low excitation frequencies or small
accelerations of the liquid.

2.1. Weighting function

The so-called weighting function, which depends on, among other things, the character of the
flow, features significantly in above relation (2.5). For the laminar flow, the relation presented by
Zielke (1968) is commonly used, whereas for the turbulent flow there are two main models (also
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dependent on the Reynolds number) proposed by Vardy and Brown (2003, 2004) and Zarzycki
(1994), Zarzycki et al. (2007). Since the weighting functions presented by the above authors,
especially the ones for the turbulent flow, are complicated and difficult to handle in numerical
computations, their approximations are used in practice. From among the weighting function
approximating relations proposed in the literature, the relation presented by Urbanowicz and
Zarzycki (2012), which through the appropriate scaling of the coefficients can be used for both
laminar and turbulent flows, deserves special attention

w(t̂) =
26∑

i=1

mie
−nit̂ (2.7)

where: t̂ = νt/R2 is dimensionless time, and the coefficients mi, ni assume the following values
(Urbanowicz and Zarzycki, 2012):
m1 = 1; m2 = 1; m3 = 1; m4 = 1; m5 = 1; m6 = 2.141; m7 = 4.544; m8 = 7.566; m9 = 11.299;
m10 = 16.531; m11 = 24.794; m12 = 36.229; m13 = 52.576; m14 = 78.150; m15 = 113.873;
m16 = 165.353; m17 = 247.915; m18 = 369.561; m19 = 546.456; m20 = 818.871; m21 = 1209.771;
m22 = 1770.756; m23 = 2651.257; m24 = 3968.686; m25 = 5789.566; m26 = 8949.468;
n1 = 26.3744; n2 = 70.8493; n3 = 135.0198; n4 = 218.9216; n5 = 322.5544; n6 = 499.148;
n7 = 1072.543; n8 = 2663.013; n9 = 6566.001; n10 = 15410.459; n11 = 35414.779;
n12 = 80188.189; n13 = 177078.960; n14 = 388697.936; n15 = 850530.325; n16 = 1835847.582;
n17 = 3977177.832; n18 = 8721494.927; n19 = 19120835.527; n20 = 42098544.558;
n21 = 92940512.285; n22 = 203458923.000; n23 = 445270063.893; n24 = 985067938.878;
n25 = 2166385706.058; n26 = 4766167206.672.
The function can be easily transformed to the Laplace variable domain. Then it assumes the

form

L[w] =
26∑

i=1

mi
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(2.8)

where ŝ is dimensionless operator of the Laplace transformation ŝ = (R2/ν)s.
The values of the universal coefficients are determined in the following way, see Urbanowicz

and Zarzycki (2012)
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The values of the universal coefficients of the laminar-turbulent weighting function are necessary
to determine the current shape of the weighting function used in numerical computations. Thus
the function defined by the universal coefficients

L[w] =
26∑

i=1

miu
ŝ+ niu

(2.9)

sufficiently well represents the nonstationary frictional loss model for both the laminar flow and
the turbulent flow, provided that the Reynolds number is determined earlier.
Performing the Laplace transformation on equations (2.1) and (2.2) for zero initial conditions

and then integrating the equations relative to the variable z with the limits of 0-L (L is the length
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of the hydraulic line) one gets a matrix transition function for a long hydraulic line. Assuming
a harmonic excitation, the function can be presented in the following form, see Kudźma et al.
(2002), Zarzycki (1994), Zarzycki et al. (2007)

[
p1
q1

]

= H(jω)

[
p2
q2

]

(2.10)

where: H(jω) is the matrix transition function, p1, p2, q1, q2 are harmonically variable deviations
from the mean value of the pressure and the rate of flow respectively. When at the harmonic
excitation a quasi-steady state is considered using the model with distributed parameters, the
transmittance matrix assumes the following form, see Kudźma (2012) and Zarzycki (1994)

H(jω) =

[
h11 h12
h21 h22

]

(2.11)

where the particular matrix terms are expressed by the relations

h11 = cosh(Tψzjω) h12 = Zcψz sinh(Tψzjω)

h21 =
1

Zcψz
sinh(Tψzjω) h22 = cosh(Tψzjω)

(2.12)

where: Zc = ρco/(πR
2) is the characteristic impedance of the conduit, T = L/co – time constant.

ψz – operator defining the influence of viscosity (a viscosity function) expressed by

ψz =
ψ

jΩ
ψ = ε+ jδ (2.13)

ε – coefficient of sinusoidal pressure wave amplitude damping, δ relates to wave phase velocity,
j is the imaginary unit
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where: L[w] is simple Laplace transformation of the weighting function, Ω = ωR2/ν – dimen-
sionless frequency, ω – angular frequency of excitations, Ro – constant resistance calculated from
the Darcy-Weisbach formula

Ro =
λReµ

8πR4
(2.16)

λ – dimensionless coefficient of linear frictional losses, Re – Reynolds number, µ – dynamic vi-
scosity of the liquid. When only the quasi-steadyfrictional losses are taken into account, relations
(2.14) are reduced to the form, see Zarzycki (1994)
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3. Branch damper dimensioning based on long hydraulic line equations

A branch damper is a conduit of proper length inserted at the right angle into the main conduit
and stoppered at its end. The principle of operation of the branch damper is based on the in-
terference of the pressure wave generated by an excitation with the pressure wave bounced off
the damper and propagating in the opposite direction. Thus the branch damper dimensioning
problem comes down to determining its length L0 depending on the frequency of the excitations
which are to be damped. There is a prevailing view that this damper is a narrow-band damper
and its effectiveness in reducing pressure fluctuations is limited to one frequency – the dam-
per resonance frequency, see Kudźma (2001, 2006), Wacker (1985), Kollek and Kudźma (1997),
Mikota and Manhartsgruber (2003). It is assumed that the damping effectiveness sharply dimini-
shes already at slight deviations from the resonance frequency. However, the above analyses were
based on the ideal liquid model (not representative of the real conditions) and their conclusions
have not always been corroborated in operational practice (Kudźma, 2001, 2006). A schematic
of the branch damper hydraulic system is shown in Fig. 1.

Fig. 1. Schematic of a branch damper hydraulic system

A branch damper mathematical model is defined by determining the damper input impe-
dance and finding its minimum corresponding to the maximum pressure fluctuation reduction
effectiveness. Three cases: lossless oscillatory flow, flow with quasi-steady losses and the case
with the nonstationary friction model are considered. In order to carry out an analysis of the
hydraulic system incorporating a branch damper one must first determine the operational impe-
dance ZT (s) = pT1(s)/QT1(s) in the supply station TT , where pT (s) and QT (s) are the Laplace
transforms of the deviations of the pressure pT and flow rate QT . Thus one should select an im-
pedance value which ensures the minimum variation of pressure pT . Treating the branch damper
with length L0 as a long hydraulic line, for a harmonic excitation one can write (consistently
with relations (2.12) and (2.13)) the following

[
pT1
QT1

]

=




cosh(TΨzjω) ZcΨz sinh(TΨzjω)
1

ZcΨz
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


[
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]

(3.1)

Since the flow is blocked at the damper end, QT2 = 0, the impedance Zd at the place where
the branch is connected, according to equation (3.1), has the form

Zd =
ρocoΨz

πR2 tanh L0Ψzjω
co

(3.2)

When the lossless model is adopted, the viscosity function Ψz = 1 should be used in equation
(3.2), whereas for the quasi-steady frictional losses one should use relations (2.17). The nonsta-
tionary friction model is taken into account through equations (2.13)-(2.17) and substituting jΩ
for ŝ (the dimensionless operator of the Laplace transformation) in relation (2.9).
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Figure 2 shows an example of how the geometric parameters of the branch pressure fluctu-
ation damper are determined for the basic harmonic of pump 2110 (this type of pump was used
for experimental verification) manufactured by the Warsaw Waryński Construction Machine-
ry Plant. The dominant frequency in the pump delivery fluctuation spectrum follows from the
relation

fi =
npztK

60
(3.3)

where: np is the rotational speed of the pump shaft [rpm], zt – number of teeth, K – next
number of the harmonic component, f1 = 250Hz, zt = 10 teeth and pump shaft rotational
speed np = 1500 rpm

−1. From formula (3.3), after transformations, it follows that the initial
damper impedance modulus |Zd| for the lossless model will be minimal when the following
condition is satisfied

ωw
co
L0 = Kπ +

π

2
(3.4)

whereK = 0, 1, 2, . . .. Using the dependence between the angular frequency ωw and frequency fw,
and the following expression for pressure wavelength λf (Kudźma, 2012)

λf =
co
fw

(3.5)

one can determine (from condition (3.5)) length L0 of the branch damper ensuring the maximum
pressure fluctuation amplitude damping for a given frequency fw as a function of length λf of
the pressure wave in the pipeline

L0 =
λf
4

(3.6)

Fig. 2. Modulus of the initial impedance |Zd| of the branch damper as a function of its length L0 for
different friction models at viscosity µ = 30 · 10−3Ns/m2, pressure wave propagation velocity

coszt = 1288m/s (acc. to Kudźma (2012)) and R = 4.5mm

Numerous numerical studies, corroborated by experiments, indicate that in order to obtain
the maximum pressure fluctuation damping for a given excitation frequency fw, the damper
length calculated for the ideal liquid should be shortened by the value of correction ∆L0 deter-
mined assuming the nonstationary friction model and introducing the notion of relative change χ
in damper length

χ =
∆L0
L0

(3.7)
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Fig. 3. Relative change χ in the branch damper length versus viscosity υ of the working medium

The numerically determined value of coefficient χ depending on the kinematic viscosity of the
oil is shown in Fig. 3.
In real conditions, the optimal length of the branch damper should be calculated from relation

L0opt =
λ

4
(1− χ) (3.8)

4. Experimental verification

Branch damper effectiveness tests and acoustic tests were carried out in the real loader
Ł-200 boom lifting gear system incorporating P2C2110C5B26A gear pump made by the War-
saw Waryński Construction Machinery Plant (the manufacturer-installed pump model). Figure 4
shows a schematic of the hydraulic system of the Ł-200 loader boom lifting gear which was pla-
ced in a sound chamber (the drive motor and the supply system were outside the chamber) with
an insulating power of 50 dB.

Fig. 4. Schematic of Ł-200 loader boom lifting gear hydraulic system with throttle valves and dampers:
1 – pump, 2 – distributor R1011VF1V, 3 – throttle valve, 4 – branch damper, 5 – branch damper λ/8,

6, 7 – pressure sensors

A retunable damper, with adjustable length Lo (and so with adjustable natural frequency)
was designed in order to experimentally verify the method of determining (selecting a friction
model) the optimal length. Figure 5 shows an axial cross section of the investigated damper.
The pressure fluctuation amplitude levels pT1 in the hydraulic system versus branch damper
length L0 are shown in Fig. 6. The damper whose length L0opt = 1.24m was determined on the
basis of the nonstationary friction model was found to be most effective. For the lossless model
the damper length was 1.28m, but the effectiveness of the damper was by 4 dB lower than that
of the damper with the nonstationary friction model.
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Fig. 5. Branch damper with retunable natural frequency: 1 – branch damper, 2 – piston, 3 – bleeder
screw, 4 – copper washer, 5 – cotter pin, 6 – sealing ring, 7 – connector shell, 8 – connecting nut,

9 – cutting ring, 10 – coupling shell, 11 – nut, 12 – cutting ring

Fig. 6. Pressure fluctuation amplitude levels pT1 in the hydraulic system versus the branch damper
length L0 – pump delivery fluctuation first harmonic f1 = 250Hz, average pressure pT = 10MPa

5. Conclusion

The branch damper whose dimensioning comes down to determining its length is effective in re-
ducing amplitudes only for specific frequencies. If in the first approximation the optimal length is
assumed in accordance with L0 = λf1/4 (leaving out oscillatory flow resistances in the damper),
the pressure fluctuation amplitude damping is obtained for the basic harmonic f1and harmo-
nic 3f1, i.e. generally fw = 2K − 1, K = 1, 2, 3, . . .. In order to suppress even harmonics, one
should assume damper length L0 = λf1/8 (λf1 – the wavelength for the basic harmonic). In
terms of pressure fluctuation effectiveness, the most advantageous solution is to use a double
branch damper. When the flow resistances are left out and the optimum length is adopted, the
particular pressure fluctuation components are suppressed completely. In real conditions, when
the nonstationary friction model is assumed, the optimal length of the branch damper for a given
excitation frequency is calculated from relation (3.2). One can determine the optimal branch
damper length using simplified relation (3.8) and the data shown in Fig. 3. In this case, the
following regularity is observed: the higher the coefficient of viscosity of the working liquid, the
shorter (by 2-15%) the optimal length in comparison with the length defined by formula (3.6) for
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the ideal liquid. When the double branch damper is installed in the outlet port of the pump in
the Ł-200 loader boom lifting system, the pressure fluctuation amplitude is reduced several times
in the whole range of the excitation frequencies, whereby the total noise (the measure of which
is the sound pressure level subject to correction) is reduced by a few to about twenty dB(A),
depending on the system load, see Fig. 7.

Fig. 7. Corrected sound pressure level LAdB(A) of Ł-200 loader boom lifting gear hydraulic system
with the double branched damper and without damper versus the forcing pressure pT
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