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Divergence and flutter instabilities of viscoelastic rectangular plates under triangularly distri-
buted tangential follower loads are studied. Two sets of boundary conditions are considered,
namely, simply supported plates and plates with a combination of clamped and simply sup-
ported edges. The constitutive relations for the viscoelastic plates are of Kelvin-Voigt type
with the effect of viscoelasticity on stability studied numerically. The method of solution is
differential quadrature which is employed to discretize the equation of motion and the boun-
dary conditions leading to a generalized eigenvalue problem. After verifying the method of
solution, numerical results are given for the real and imaginary parts of the eigenfrequencies
to investigate flutter and divergence characteristics and dynamic stability of the plates with
respect to various problem parameters.
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1. Introduction

Dynamic stability of elastic structures subject to nonconservative loads is of practical importance
in such fields as aerospace, mechanical and civil engineering. As a result, the subject has been
studied extensively to quantify the behaviour of beams, plates and shells under follower forces.
These forces can be concentrated, uniformly distributed or triangularly distributed depending
on the specific application. They act in the tangential direction and are not derivable from a
potential due to their nonconservative nature as presented in works by Kumar and Srivasta
(1986), Przybylski (1999), Gajewski (2000), Krillov (2013).
Early work on the nonconservative instability under uniformly distributed follower loads

mostly involved one dimensional elastic structures, namely, columns (Sugiyama and Kawagoe,
1975; Leipholz, 1975; Chen and Ku, 1991). Stability of columns under triangularly distributed
loads was studied by Leipholz and Bhalla (1977), Sugiyama and Mladenov (1983) and Ryu et
al. (2000). More recent studies on nonconservative loading include columns subject to uniformly
distributed follower loads by Kim (2010), Kim et al. (2008) and Kazemi-Lari et al. (2013) and
to triangularly distributed follower loads by Kim (2011). The follower force can also be realized
by means of properly shaped loading heads which can affect the displacements of the loaded
end as studied by Tomski and Szmidla (2004) and Tomski and Uzny (2013b). The installation
of Tomski’s head can lead to a loading force which is tangent to the end of the column and can
be conservative (Tomski and Uzny, 2008, 2013a). The force in this case is directed to a constant
point which becomes a pole for the loading. Introduction of Tomski’s head can lead to new
characteristic curves such as pseudo flutter and allows one to control the dynamic behavior of
the system. Studies on nonconservative stability of two-dimensional structures mostly involved
rectangular plates under follower loads (Culkowski and Reismann, 1977; Farshad, 1978; Adali,
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1982) and under uniformly distributed tangential loads (Leipholz, 1978; Leipholz and Pfendt,
1982, 1983; Wang and Ji, 1992).

Recent research on the stability of elastic plates under nonconservative loads includes works
by Zuo and Shreyer (1996), Kim and Park (1998), Kim and Kim (2000), and Jayaraman and
Struthers (2005). Dynamic stability of functionally graded plates under uniformly distributed
axial loads was studied by Ruan et al. (2012) and shells by Torki et al. (2014a,b). These studies
neglected the effect of viscoelasticity on the stability of the columns and plates.

Dynamic stability of one-dimensional viscoelastic structures was the subject of the works
by Marzani and Potapov (1999), Langthjem and Sugiyama (2000), Darabseh and Genin (2004),
Zhuo and Fen (2005), Ilyasov and Ilyasova (2006) and Elfelsoufi and Azrar (2006). Recently,
the dynamic stability of viscoelastic plates has been studied for a number of cases (Ilyasov and
Aköz, 2000; Wang et al., 2007, 2009, 2013; Zhou and Wang, 2014; Robinson and Adali, 2016).
Vibrations of a simply supported plate with nonlinear strain-displacement relations and subject
to a uniformly distributed tangential force were studied by Robinson (2013). Dynamic stability
of viscoelastic shells was studied by Ilyasov (2010).

Although the dynamic stability under triangularly distributed tangential forces have been
studied in the case of columns (see Leipholz and Bhalla, 1977; Sugiyama and Mladenov, 1983;
Ryu et al., 2000; Kim, 2011), dynamic stability of plates and, in particular, viscoelastic plates
under this type of loading does not seem to be studied so far.

The present work extends the results of Robinson and Adali (2016) who studied nonconse-
rvative stability of viscoelastic plates with free edges and under uniformly distributed follower
loads, to the case of plates with simply supported and simply supported-clamped plates and
subject to triangularly distributed follower loads. Comparisons are given for the uniformly and
triangularly distributed follower loads. The stability problem is solved for the simply supported
plates and for plates with a combination of simple and clamped supports by the differential
quadrature method. Divergence and flutter loads are determined and the effect of viscoelasticity
and the boundary conditions on dynamic stability is investigated. The method of solution is
verified against the known results in the literature.

2. Viscoelastic plate subject to triangularly distributed load

We consider a rectangular plate of uniform thickness h having dimensions a × b in the x and
y directions, respectively (see Fig. 1). It is subject to a non-uniform tangential follower force
qt = q0a(1 − x/a).

Fig. 1. Viscoelastic plate subjected to a triangular follower load

The material of the plate is viscoelastic which is expressed by the Kelvin-Voigt constitutive
relations given by
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sij = 2Geij + 2ηėij σii = 3Kεii (2.1)

where sij and eij are deviatoric tensors of stress and strain, respectively, and σii and εii are
spherical tensors of stress and strain with η denoting the viscoelastic coefficient. The bulk mo-
dulus K and shear modulus G can be expressed in terms of Young’s modulus E and Poisson’s
ratio ν as K = E/3(1 − 2ν) and G = E/(1 + 2ν). The equation of vibration of the viscoelastic
plate subject to a triangular follower load is first obtained in the Laplace domain (see Wang et
al., 2007; Zhou and Wang, 2014). By the inverse Laplace transformation, the governing equation
can be expressed in the time domain as

h3

12

(
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∂
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where ρ is density of the plate and
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After introducing dimensionless coefficients
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the non-dimensional equation of motion is obtained as
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In equations (2.8),H is the dimensionless delay time of the material and τ is the dimensionless
time defined in Eq. (2.6). Let

w(X,Y, τ) =W (X,Y )ejωτ (2.9)

where j =
√
−1 and ω the dimensionless vibration frequency. Substitution of equation (2.9) into

equation (2.7) yields the differential equation

(1 + g1jω + g2j
2ω2)∇4W + (1 + g3jω)

(

q(1−X)2 ∂
2W

∂X2
+ j2ω2

)

= 0 (2.10)

in terms of the space variables X and Y . The boundary conditions considered in the present
work are the simply supported plates (SSSS) and plates with two opposite edges clamped and
two others simply supported (CSCS).
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SSSS boundary conditions are given by
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CSCS boundary conditions are given by
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3. Differential quadrature (DQ) method

The DQ method involves approximating the partial derivatives of the function W (X,Y ) at
a sample point (Xi, Yj) by the weighted sum of the function Wij (see Bert and Malik, 1996;
Krowiak, 2008). Let the number of sample points denoted by N in the X direction andM in the
Y direction. The r-th order partial derivative with respect to X, s-th order partial derivative
with respect to Y and the (r + s)-th order mixed partial derivative of W (X,Y ) with respect to
both X and Y are discretely expressed at the point (Xi, Yj) as
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where i = 1, 2, . . . , N , k = 1, 2, . . . , N − 1, j = 1, 2, . . . ,M and l = 1, 2, . . . ,M − 1.
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For r = 2, 3, . . . , N − 1 and s = 2, 3, . . . ,M − 1

A
(r)
ik =























r
(

A
(r−1)
ii A

(1)
ik −

A
(r−1)
ik

Xi −Xk

)

for i, k = 1, 2, . . . , N (i 6= k)

−
N
∑

µ=1,µ6=i
A
(r)
iµ for i = 1, 2, . . . , N (i = k)

B
(s)
jl =























s
(

B
(s−1)
jj B

(1)
jl −

B
(s−1)
jl

Yj − Yl

)

for j, l = 1, 2, . . . ,M (j 6= l)

−
M
∑

µ=1,µ6=j
B
(s)
jµ for j = 1, 2, . . . ,M (j = l)

(3.3)

The distribution of the grid points are taken as non-uniform, and for the simply supported plate,
the grid points are specified as

X1 = 0 XN = 1 Xi =
1

2

[

1− cos
( 2i− 3
2N − 4π

)]

for i = 2, 3, . . . , N − 1

Y1 = 0 YM = 1 Yj =
1

2

[

1− cos
( 2j − 3
2N − 4π

)]

for j = 2, 3, . . . ,M − 1
(3.4)

For the plate with two opposite edges simply supported and other two edges clamped, the δ
method combined with the weighted coefficient method is adopted. Thus, the grid points for the
CSCS plate are given by
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where δ ≪ 1. Using equation (3.1), the discretized form of differential equation (2.10) can be
expressed as
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The discretized form of boundary conditions (2.11) are given by
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The corresponding equations for boundary conditions (2.12) are

W1j =WNj =Wi1 =WiM = 0 for i = 1, 2, . . . , N ∧ j = 1, 2, . . . ,M

N
∑

k=1

A
(1)
ik Wkj = 0 for i = 1, 2, . . . , N − 1 ∧ j = 2, 3, . . . ,M − 2

M
∑

l=1

B
(2)
jl Wil = 0 for i = 1, 2, . . . , N ∧ j = 1,M

(3.8)

4. Numerical results and discussion

The results for the viscoelastic plate subject to a triangularly distributed tangential force are
given in comparison to the results for a viscoelastic plate subject to a uniformly distributed
tangential force which was studied in Wang et al. (2007) and Zhou and Wang (2014). The results
for the SSSS and CSCS boundary conditions are given in Table 1 for H = 10−5 (nondimensional
viscoelasticity coefficient). Table 1 shows that the flutter load, denoted by qf , is higher in the
case of the load having triangular distribution as expected. In Table 1, qd1 and qd2 denote the
divergence loads of the 1st and 2nd modes, respectively.

Table 1. Comparison of flutter loads q of viscoelastic plates with H = 10−5 for various aspect
ratios

Aspect
ratio λ

Boundary
conditions

Uniformly Triangularly
distributed load, distributed
Wang et al. (2007) load

1.0
SSSS

qd1 = 67.5 qd1 = 95.1
qd2 = 132.1 qd2 = 225.1

CSCS
qd1 = 143.5
qf = 168.0 qf = 226.0

SSSS
qd1 = 136.8 qd1 = 174.0

1.5 qd2 = 224.7 qd2 = 329.0
CSCS qf = 202.8 qf = 270.0

SSSS
qd1 = 224.8 qd1 = 273.04

2.0 qd2 = 340.5 qd2 = 453.2
CSCS qf = 251.5 qf = 333.0

Figures 2-4 show the real and the imaginary parts of the first three frequencies plotted against
the load q for uniformly and triangularly distributed tangential loads for the SSSS plates with
H = 10−5 and λ = 1, λ = 1.5 and λ = 2, respectively. The corresponding results for the
imaginary part of the frequencies for H = 10−3 are given in Figs. 5 and 6. It is noted that the
results given in Figs. 2-6 for the uniformly distributed tangential load are the same as the ones
given in Wang et al. (2007). As such, they provide the verification of the method of solution
outlined in Section 3.

Comparisons of the loads with uniform and triangular distributions indicate that the results
are qualitatively similar, but the magnitudes of the follower load causing divergence or flutter
instability differ considerably. Comparisons between Figs. 2a, 3a, 4a (H = 10−5) and Figs. 5a,
5b and 6 (H = 10−3) indicate that the imaginary parts of the frequencies remain positive for
H = 10−3 up to the flutter load. The corresponding results for the CSCS plates with H = 10−5

are given in Figs. 7-9 with λ = 1, λ = 1.5 and λ = 2, respectively. The results for the uniformly
distributed tangential loads are also shown in the figures which verify the results of Wang et al.
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Fig. 2. First three frequencies of SSSS plate vs. follower force for λ = 1, H = 10−5; (1) uniformly
distributed load, (2) triangularly distributed load

Fig. 3. First three frequencies of SSSS plate vs. follower force for λ = 1.5, H = 10−5; (1) uniformly
distributed load, (2) triangularly distributed load

Fig. 4. First three frequencies of SSSS plate vs. follower force for λ = 2, H = 10−5; (1) uniformly
distributed load, (2) triangularly distributed load

(2007). In this case, it is observed that the real parts of the vibration modes behave differently
as compared to the SSSS plates shown in Figs. 2-4. For the case λ = 1 (Fig. 7a), the real parts of
the first and the third modes join to form a single mode. For λ = 1.5 and λ = 2, the first and the
second modes join as shown in Figs. 8a and 9a, respectively. Thus, in the case of CSCS boundary
conditions, there exists a threshold value q above which the first mode can join the second or
third mode to form a single mode, and this value depends on the aspect ratio. Moreover, it is
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Fig. 5. Imaginary parts of frequencies of SSSS plate vs. follower force for (a) λ = 1 and (b) λ = 1.5,
H = 10−3; (1) uniformly distributed load, (2) triangularly distributed load

Fig. 6. Imaginary part of frequency of SSSS plate vs. follower force for λ = 2, H = 10−3; (1) uniformly
distributed load, (2) triangularly distributed load

Fig. 7. First three frequencies of CSCS plate vs. follower force for λ = 1, H = 10−5; (1) uniformly
distributed load, (2) triangularly distributed load

observed that for the aspect ratios of λ = 1.5 and λ = 2, the plate does not show divergence
instability and loses stability by flutter.

For the CSCS boundary conditions with H = 10−3, the results are given in Figs. 10-12.
For this value of H = 10−3, the real parts of the frequencies do not form a single mode and
the imaginary parts remain positive until the threshold values are exceeded and the flutter
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Fig. 8. First three frequencies of CSCS plate vs. follower force for λ = 1.5, H = 10−5; (1) uniformly
distributed load, (2) triangularly distributed load

Fig. 9. First three frequencies of CSCS plate vs. follower force for λ = 2, H = 10−5; (1) uniformly
distributed load, (2) triangularly distributed load

Fig. 10. First three frequencies of CSCS plate vs. follower force for λ = 1, H = 10−3; (1) uniformly
distributed load, (2) triangularly distributed load

instability occurs as shown in Figs. 10b, 11b and 12b. The imaginary parts of the frequencies
exhibit negative values for q ­ qf leading to an exponential growth of the deflection.
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Fig. 11. First three frequencies of CSCS plate vs. follower force for λ = 1.5, H = 10−3; (1) uniformly
distributed load, (2) triangularly distributed load

Fig. 12. First three frequencies of CSCS plate vs. follower force for λ = 2, H = 10−3; (1) uniformly
distributed load, (2) triangularly distributed load

5. Conclusions

The differential quadrature method is employed to study the dynamic stability of rectangular
viscoelastic plates subject to triangularly distributed tangential follower loads. The Kelvin-Voigt
viscoelastic model is taken as the constitutive equation of the plate. Two boundary conditions
are investigated, namely, simple supports and a combination of simple and fixed supports. The
solution is verified against the previous results obtained for SSSS and CSCS viscoelastic plates
subject to uniformly distributed tangential loads by Wang et al. (2007).

Numerical results are given to study the effects of the aspect ratio and degree of viscoelasticity
on the real and imaginary parts of the frequencies. The effect of uniformly and triangularly
distributed follower loads on dynamic stability is compared numerically. It is observed that
in the case of CSCS plates, the flutter instability occurs before the divergence instability for
higher aspect ratios. In the case of SSSS plates, the degree of viscoelasticity does not affect
the divergence load, but this effect is more pronounced for CSCS plates. At higher levels of
viscoelasticity (higher values of H), the imaginary parts of the complex frequencies become
positive rather than zero for low values of the follower load. The results obtained for the present
case can be extended to different follower load cases and, in particular, to the cases where the
direction of the load is controlled by a head (Tomski and Uzny, 2013b).
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