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Shear wave based acoustic devices are being used in gaseous and liquid environments be-
cause of their high-sensitivity. The theoretical study of horizontally polarized shear (SH)
waves in a layered structure consisting of a piezoelectric ceramic of PZT − 5H or BaT iO3
material overlying a couple stress substrate is presented in this paper. The considered sub-
strate is supposed to be exhibiting microstructural properties. The closed form expression of
dispersion relations are derived analytically for electrically open and short conditions. The
effects of internal microstructures of the couple stress substrate, thickness of PZT − 5H
or BaT iO3 ceramic, piezoelectric and dielectric constants are illustrated graphically on the
phase velocity of the piezoelectric layer under electrically open and short conditions.
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1. Introduction

The propagation of surface waves in the layered system consisting of a finite layer having different
material properties lying over a semi-infinite solid substrate has been of interest due to its great
importance in geophysics, composite materials as well as in non-destructive evaluation. SH-waves
refer to the type of surface waves which are horizontally polarized and propagate at the surface
of the considered substrate. These waves exist only when a layer of finite thickness is deposited
on semi-infinite substrate and the shear wave velocity in the layer is less than that of substrate.
The piezoelectric material exhibits the linear coupling between mechanical and electric fields
because of the ability of its material to produce an electric charge when subjected to mechanical
stress and to produce deformation when subjected to an electric field. A thin film of piezoelectric
material bonded over a solid substrate is used to improve the performance of surface acoustic
wave (SAW) devices like sensors, transducer, resonators, filters, amplifiers, oscillators, delay lines
etc. which are extremely or widely used in navigation, communication and in many other fields
(Jakoby and Vellekoop, 1997).

Many researchers have investigated the piezoelectric layered structure to study propagation
characteristics of SH-waves. Liu et al. (2001) investigated the effect of initial stress on the
propagation behavior of Love waves in a layered piezoelectric structure. Wang (2002) examined
shear horizontal (SH) wave propagation in a semi-infinite solid medium surface bonded by a
layer of a piezoelectric material abutting the vacuum. Liu and He (2010) also illustrated the
properties of Love waves for a layered structure with an SiO2 layer sputtered on an ST-90

◦ X
quartz substrate and found the existence of a threshold of normalized layer thickness. Wang
et al. (2012) examined the dispersion behavior of SH waves propagating in a layered structure
consisting of a piezoelectric layer and an elastic cylinder with an imperfect bonding. Wang and
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Zhao (2013) studied propagation of the Love wave in two-layered piezoelectric/elastic composite
plates with an imperfect interface based on the shear spring model. Wei et al. (2009), Ezzin et
al. (2017) examined the propagation of an SH-guided wave in the piezoelectric/piezomagnetic
layered plates. Singh et al. (2015) investigated the propagation of a Love-type wave in an irregular
piezoelectric layer lying over a piezoelectric half-space. Gupta and Vashishth (2016) studied Bulk
wave propagation in a monoclinic porous piezoelectric material.
Though, Love or SH-wave propagation has been examined in detail for a piezoelectric layer

overlying a solid substrate but the role of microstructure of the substrate has not been inve-
stigated to the full extent. The study of wave propagation in couple stress elastic space is of
great interest due to its many applications, e.g. in polymers, cellular solids, composite materials
and bones etc. Voigt (1887) proposed the idea of couple stress on the micro sized materials.
The relevant mathematical model was presented by Cosserat and Cosserat (1909). Later, many
researchers like Mindlin and Tiersten (1962), Koiter (1964), Eringen (1968) proposed different
theories to explore this field further. The theories presented by these researchers carry certain
drawbacks like indeterminacy of the spherical part of the couple-stress tensor and involvement
of separate material length scale parameters. Hadjesfandiari and Dargush (2011) gave consi-
stent couple stress theory which consisted of three material parameters λ, µ and characteristic
length (l) which described the effects of inner microstructure of the material. This characteristic
length is negligible as compared to the dimensions of the body and is of the order of the average
cell size or internal microstructure of the material. The propagation of SH-waves are examined
by various researchers under different conditions. Vardoulakis and Georgiadis (1997) examined
the existence of SH surface waves in a homogeneous gradient-elastic half space with surface
energy. Recently, co-authors Sharma and Kumar (2017) have investigated the propagation of
SH waves in a viscoelastic layer bonded imperfectly with a couple stress substrate.
Thus, to enhance the domain of shear wave propagation, we intend to study the SH-wave

propagation in a piezoelectric ceramic lying over a couple stress elastic half-space. The substrate
is considered to have properties of a microstructure like granular macromorphic rock (Dionysos
Marble). Two sets of a piezoelectric layer, i.e. PZT − 5H and BaTiO3 materials are considered
over a solid substrate. Closed form expressions of the dispersion equation for both the cases of
electrically open and electrically short conditions for the propagation of SH-wave are obtained.
Numerical computations are preformed for studying the effect of underlying microstructure of
substrate, thickness of the layer, piezoelectric and dielectric constants on the phase velocity
profiles of the shear wave.

2. Formulation of the problem

Here, we consider a piezoelectric layer of thickness H (where −H ¬ x ¬ 0) lying over a couple
stress elastic half-space. The Cartesian coordinate system is considered in such a way that the
SH-wave is propagating along the y-axis, and x-axis is pointing positive vertically downward as
shown in Fig. 1. Conventionally, the poling direction is assumed along the z-axis.

If u
(p)
i = (u1, v1, w1) and u

(c)
i = (u2, v2, w2) are the mechanical displacement components

due to propagation of the SH-wave in the upper piezoelectric layer and the lower couple stress
elastic half-space respectively. As the SH-wave is propagating along the direction of the y-axis,
this causes displacement in the z-direction only. We shall suppose that

ui = 0 vi = 0 wi = wi(x, y, t) (i = 1, 2) (2.1)

Let us suppose that the electric potential function of the upper piezoelectric layer is

φ = φ(x, y, t) (2.2)
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Fig. 1. Geometry of the problem

2.1. Dynamics of the piezoelectric material layer

The equation of motion for a piezoelectric layer, the electric displacement equilibrium equ-
ation and the constitutive relations may be written as

σ
(p)
ij,j = ρ1

∂2u
(p)
i

∂t2
Di,i = 0 (2.3)

and

σ
(p)
ij = cijklSkl − ekijEk Dj = ejklSkl + ǫjkEk (2.4)

where i, j, k, l = 1, 2, 3; σ
(p)
ij and Skl are the stress and strain tensors, respectively, cijkl, ekij and

ǫjk are the elastic, piezoelectric and dielectric coefficients respectively, u
(p)
i = (u1, v1, w1) and

Dj denotes the mechanical and electric displacement respectively, Ek is the electrical potential
field, ρ1 is the mass density of the piezoelectric layer, the superscript index p is used for the
upper piezoelectric layer.
For the transversely isotropic piezoelectric layer, equation (2.4) can be expressed in the

component form with the z-axis being the symmetric axis of the material as (Liu et al., 2001)

σ(p)x = c11Sx + c12Sy + c13Sz − e31Ez σ(p)y = c12Sx + c11Sy + c13Sz − e31Ez
σ(p)z = c13Sx + c13Sy + c33Sz − e33Ez σ(p)yz = c44Syz − e15Ey

σ(p)zx = c44Szx − e15Ex σ(p)xy =
1

2
(c11 − c12)Sxy

Dx = e15Szx + ǫ11Ex Dy = e15Syz + ǫ11Ey

Dz = e31Sx + e31Sy + e33Sz + ǫ33Ez

(2.5)

where c11, c12, c13, c33, c44 are elastic constants, e15, e31, e33 are piezoelectric constants and
ǫ11, ǫ33 are dielectric constants. The relation between the strain components and mechanical
displacement components as well as the relation between the electric potential field and the
electric potential function as follows

Sij =
1

2
(ui,j + uj,i) i, j = 1, 2, 3 Ek = −φ,i (2.6)

Using equation (2.1) in equation (2.6)1 and equation (2.2) in equation (2.6)2, we have

Sx = 0 Sy = 0 Sz = 0 Sxy = 0

Syz =
∂w1
∂y

Szx =
∂w1
∂x

(2.7)
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and

Ex = −
∂φ

∂x
Ey = −

∂φ

∂y
Ez = 0 (2.8)

Now, substituting equation (2.7), (2.8) and (2.5), into equation (2.3), we can obtain the governing
equations for the piezoelectric layer as

c44∇2w1 + e15∇2φ = ρ1ẅ1 e15∇2w1 − ǫ11∇2φ = 0 (2.9)

Now, equations (2.9) take the form as

∂2w1
∂x2
+
∂2w1
∂y2
=
1

c2p

∂2w1
∂t2

∂2φ

∂x2
+
∂2φ

∂y2
=
1

c2p

(e15
ǫ11

)∂2w1
∂t2

(2.10)

where cp =
√

c∗44/ρ1 , c
∗

44 = c44 + e
2
15/ǫ11 and cp is the shear wave velocity in the piezoelectric

layer.

We assume solutions to equations (2.10) in the form of

w1 =W1(x)e
iξ(y−ct) φ = ϕ(x)eiξ(y−ct) (2.11)

where ξ is the wave number and c is the phase velocity. With the help of (2.10) and (2.11), it
results in

d2W1(x)

dx2
+ α2ξ2W1(x) = 0

d2ϕ(x)

dx2
− ξ2ϕ(x) + ξ

2c2

c2p

e15
ǫ11
[A1 sin(αξx) +A2 cos(αξx)] = 0

(2.12)

where α2 = (c2/c2p)− 1.
Using the solutions to equations (2.11) and (2.12), we get solutions to equations (2.12) leads

to

w1(x, y, t) = [A1 sin(αξx) +A2 cos(αξx)]e
iξ(y−ct)

φ(x, y, t) =
(e15
ǫ11
[A1 sin(αξx) +A2 cos(αξx)] +A3e

−ξx +A4e
ξx
)

eiξ(y−ct)
(2.13)

where A1, A2, A3, A4 are arbitrary constants.

2.2. Dynamics of couple stress elastic half-space

The equation of motion for the couple stress elastic half-space in the absence of body forces
and with the constitutive relations (Hadjesfandiari and Dargush, 2011) is

(λ+ µ+ η∇2)∇(∇ · u(c)i ) + (µ− η∇
2)∇2u(c)i = ρ2

∂2u
(c)
i

∂t2

σ
(c)
ji = λuk,kδij + µ(ui,j + uj,i)− η∇

2(ui,j − uj,i)

µji = 4η(ωi,j − ωj,i) where ωi =
1

2
ǫijkuk,j

(2.14)

where i, j, k = 1, 2, 3; λ, µ are Cauchy-Lame constants, η is the couple stress coefficient, η = µl2

where l is characteristic length, u
(c)
i = [u2, v2, w2] is the displacement vector, ρ2 is the mass

density of the couple stress elastic half-space, σ
(c)
ji is the non-symmetric force-stress tensor and
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µji is the skew-symmetric couple stress tensor, δij is Kronecker’s delta and ǫijk is the alternating
tensor, the superscript index c is used for the lower couple stress elastic half-space.

Using equation (2.1) in (2.14)1, we have

∂2w2
∂x2
+
∂2w2
∂y2
− l2
(∂4w2
∂x4
+ 2
∂4w2
∂x2∂y2

+
∂4w2
∂y4

)

=
1

c21

∂2w2
∂t2

(2.15)

where c21 = µ/ρ is the shear wave velocity in the couple stress substrate.

We assume the solution to equation (2.15) to be

w2 =W2(x)e
iξ(y−ct) (2.16)

where ξ is the wave number and c is the phase velocity. Using this solution in equation (2.15),
we get

d4W2(x)

dx4
− Sd

2W2(x)

dx2
+ TW2(x) = 0 (2.17)

where

S = 2ξ2 +
1

l2
T = ξ2

[

ξ2 +
1

l2

(

1− c
2

c21

)]

Since the amplitude of waves decreases with an increase in depth in the couple stress elastic
half-space, so the solution to differential equation (2.17) becomes

w2(x, y, t) =
(

A5e
−ax +A6e

−bx
)

eiξ(y−ct) (2.18)

where

a =

√

S +
√
S2 − 4T
2

b =

√

S −
√
S2 − 4T
2

3. Boundary conditions

For propagation of SH-waves in a piezoelectric layer lying over a couple stress elastic half-space,
the following boundary conditions are to be satisfied:

(A) Boundary conditions for the traction-free surface of the piezoelectric layer:

1. The mechanical stress-free condition is: σ
(p)
zx = 0 at x = −H (3.1)

2. The electrical boundary condition on the traction-free surface is:

(a) Electrically open condition: Dx = 0 at x = −H (3.2)

(b) Electrically short condition: φp = 0 at x = −H (3.3)

(B) Boundary conditions at the common interface of the layer and half-space:

3. Stresses are continuous at the common interface: σ
(p)
zx = σ

(c)
zx at x = 0 (3.4)

4. Displacement fields are continuous at the common interface: w1 = w2 at x = 0 (3.5)

5. Electric potential function should vanish at the common interface: φp = 0 at
x = 0 (3.6)

6. Couple stress tensor should vanish at the common interface: µxy = 0 at x = 0 (3.7)
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4. Dispersion equations

Using equations (2.13), (2.18) and their corresponding stress and electrical displacement compo-
nents into boundary equations (3.1)-(3.7), we obtain the following algebraic equations in terms
of unknown coefficients A1, A2, A3, A4, A5 and A6

αc∗44 cos(αξH)A1 + αc
∗

44 sin(αξH)A2 − e15 exp(ξH)A3 + e15 exp(−ξH)A4 = 0 (4.1)

exp(ξH)A3 − exp(−ξH)A4 = 0 (4.2)

−e15
ǫ11
sin(αξH)A1 +

e15
ǫ11
cos(αξH)A2 + exp(ξH)A3 + exp(−ξH)A4 = 0 (4.3)

αξc∗44A1 − ξe15A3 + ξe15A4 + µa[1− l2(ξ2 − a2)]A5 + µb[1− l2(ξ2 − b2)]A6 = 0 (4.4)

A2 −A5 −A6 = 0 (4.5)
e15
ǫ11
A2 +A3 +A4 = 0 (4.6)

(ξ2 − a2)A5 + (ξ2 − b2)A6 = 0 (4.7)

4.1. Dispersion equations for the case of electrically open circuit

The conditions mentioned in equations (4.1), (4.2) and (4.4)-(4.7) constitute six boundary
conditions for this case. To obtain a non-trivial solution, the determinant of coefficients of the
unknowns A1, A2, A3, A4, A5 and A6 vanishes. The frequency equation for the SH-wave in an
electrically open circuit is obtained as

ξ(ka − kb)
(e215
ǫ11
tanh(ξH) + αc∗44 tan(αξH)

)

+ [µa(1− l2ka)kb − µb(1− l2kb)ka] = 0 (4.8)

where ka = ξ
2 − a2 and kb = ξ2 − b2.

Equation (4.8) represents dispersion relations of the SH-wave in an electrically open circuit
for the piezoelectric layer lying over couple stress elastic half-space.

4.2. Dispersion equations for the case of electrically short circuit

The conditions mentioned in equations (4.1) and (4.3)-(4.7) constitute six boundary con-
ditions for this case. To obtain a non-trivial solution, the determinant of coefficients of the
unknowns A1, A2, A3, A4, A5 and A6 vanishes. The frequency equation for the SH-wave in an
electrically short circuit is obtained as

ξ(ka − kb)
[(

α2c∗244 −
e415
ǫ211

)

tan(αξH) tanh(ξH) + 2αc∗44
e215
ǫ11

(

1− sec(αξH)
cosh(ξH)

)]

+ [µa(1− l2ka)kb − µb(1− l2kb)ka]
(

αc∗44 tanh(ξH)−
e215
ǫ11
tan(αξH)

)

= 0

(4.9)

Equation (4.9) represents dispersion relations of the SH-wave in an electrically short circuit for
the piezoelectric layer lying over the couple stress elastic half-space.

5. Numerical results

For illustrating the results, we have considered a semi-infinite couple stress substrate which is
made of Dionysos Marble having microstructural properties (Vardoulakis and Georgiadis, 1997):
ρ = 2717 kg/m3, µ = 30.5 · 109 N/m2 and cp = 3350m/s.
Piezoelectric layers of PZT − 5H or BaTiO3 are considered (Liu et al., 2001) having pro-

perties as given below:
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(a) For PZT − 5H ceramics: c44 = 2.30 · 1010 N/m2, ρ = 7.50 · 103 kg/m3, e15 = 17.0C/m2,
ǫ11 = 277.0 · 10−10 C2/Nm2

(b) For BaTiO3 ceramics: c44 = 4.40 · 1010 N/m2, ρ = 7.28 · 103 kKg/m3, e15 = 11.0C/m2,
ǫ11 = 128.0 · 10−10 C2/Nm2

Dispersion curves of SH-type waves propagating in a piezoelectric layer overlying a couple
stress medium have been examined in Figs. 2-9. Figures 2, 4, 6, 8 correspond to electrically
open conditions and Figs. 3, 5, 7, 9 correspond to electrically short conditions. Phase velocity
profiles are highly important for propagation of surface waves in the layered structure for its
possible applications in sensors, delay lines, filters etc. One of the common feature of all theses
characteristic curves is that the non-dimensional phase velocity c/cp decreases with an increase
in the non-dimensional wave number ξH.

5.1. Effects of microstructure of the substrate

Figures 2 and 3 show variation of the non-dimensional phase speed c/cp with respect to the
non-dimensional wave number ξH for different values of characteristic length l = 0.00001 m,
0.0001m, 0.0004m. Here, the thickness of the piezoelectric layer is taken as H = 0.002m. It can
be observed that the microstructure of the substrate affects the phase velocity profiles signifi-
cantly. It can be seen from the profiles that with an increase in characteristic length, the phase
velocity increases for both considered layers, i.e. for PZT − 5H material shown in 2(i) and 3(i)
under electrically open conditions and for BaTiO3 material shown in 2(ii) and 3(ii) under elec-
trically short conditions, as shown in Figs. 2 and 3, respectively. The characteristic curves clearly
demonstrate microstructural effects of the semi-infinite solid substrate that remains ignored in
the classical elastic model.

Fig. 2. Variation of the non-dimensional phase velocity against the non-dimensional wave number for
different values of characteristic length l = 0.00001m, 0.0001m, 0.0004m, when H = 0.002m in the case

of electrically open conditions; (a) 2(i) for PZT − 5H ceramic, (b) 2(ii) for BaT iO3 ceramic

5.2. Effects of thickness of a piezoelectric layer

To demonstrate the effects of thickness of a layer on the phase velocity profiles of the
SH-wave propagating in a layered structure, here in Figs. 4 and 5 we consider different va-
lues of the thickness of the layer i.e. H = 0.0005m, 0.002m, 0.05m, their characteristic length
l = 0.0001m is kept constant. It is observed that thickness of the layer has adverse effects on
the phase velocities and the phase velocity decreases with an increase in thickness of the layer.
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Fig. 3. Variation of the non-dimensional phase velocity against the non-dimensional wave number for
different values of characteristic length l = 0.00001m, 0.0001m, 0.0004m, when H = 0.002m in the case

of electrically short conditions; (a) 3(i) for PZT − 5H ceramic, (b) 3(ii) for BaT iO3 ceramic

Fig. 4. Variation of the non-dimensional phase velocity against the non-dimensional wave number for
different values of width of the piezoelectric layer H = 0.0005m, 0.002m, 0.05m, when l = 0.0001m in
the case of electrically open conditions; (a) 4(i) for PZT − 5H ceramic, (b) 4(ii) for BaT iO3 ceramic

Fig. 5. Variation of the non-dimensional phase velocity against the non-dimensional wave number for
different values of width of the piezoelectric layer H = 0.0005m, 0.002m, 0.05m, when l = 0.0001m in
the case of electrically short conditions; (a) 5(i) for PZT − 5H ceramic, (b) 5(ii) for BaT iO3 ceramic
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Characteristic profiles for the corresponding electrically open and short conditions are shown in
Figs. 4 and 5, 4(i) and 5(i) correspond to PZT − 5H material and 4(ii) and 5(ii) correspond to
BaTiO3 material, respectively.

5.3. Effects of piezoelectric constants

Figures 6 and 7 show variation of the non-dimensional speed c/cp against the non-dimensional
wave number ξH for the SH-wave propagation. The characteristic curves are plotted for different
values of the piezoelectric parameter e15 = 17C/m

2, 21C/m2, 25C/m2 for PZT − 5H material
shown in 6(i) and 7(i) and e15 = 11C/m

2, 15C/m2, 19C/m2 for BaTiO3 material shown in 6(ii)
and 7(ii) for both cases of electrically open and short conditions, respectively. The thickness of
the layer H = 0.002m and the characteristic length l = 0.0001m associated with couple stress
substrate are kept constant. The piezoelectric constant associated with the piezoelectric layer
does not favor the phase velocity profiles of SH-waves. It is observed that an increase in the
piezoelectric constant leads in general to a decrease in phase velocity profiles for both cases of
electrically open and short conditions.

Fig. 6. Variation of the non-dimensional phase velocity against the non-dimensional wave number for
different values of piezoelectric constants e15 = 17, 21, 25C/m

2 in 6(i) and e15 = 11, 15, 19C/m
2

in 6(ii), for electrically open cases; (a) 6(i) for PZT − 5H ceramic, (b) 6(ii) for BaT iO3 ceramic

Fig. 7. Variation of the non-dimensional phase velocity against the non-dimensional wave number for
different values of piezoelectric constants e15 = 17, 21, 25C/m

2 in 7(i) and e15 = 11, 15, 19C/m
2

in 7(ii), for electrically short cases; (a) 7(i) for PZT − 5H ceramic, (b) 7(ii) for BaT iO3 ceramic
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5.4. Effects of dielectric constants

Figures 8 and 9 show the trend of the non-dimensional speed c/cp with respect to the
non-dimensional wave number ξH on the SH-type wave propagation for different values of die-
lectric constants ǫ11 = 77C

2/Nm2, 177C2/Nm2, 277 C2/Nm2 for PZT − 5H material shown in
8(i) and 9(i) for electrically open conditions and ǫ11 = 98C

2/Nm2, 128 C2/Nm2, 158 C2/Nm2

for BaTiO3 material shown in 8(ii) and 9(ii) for electrically short conditions. Here, we have
taken the material characteristic length parameter l = 0.0001m and the thickness of the piezo-
electric layer H = 0.002m. Dielectric constants of the piezoelectric layer overlying couple stress
substrate affect the phase velocity profiles significantly. It is observed that the phase velocity of
SH-waves increases with an increase in the dielectric constant for both considered materials of
the piezoelectric layer i.e. PZT − 5H and BaTiO3 materials for both the cases of electrically
open and short conditions.

Fig. 8. Variation of the non-dimensional phase velocity against the non-dimensional wave number for
different values of dielectric constants ǫ11 = 77, 177, 277C

2/Nm2 in 8(i), ǫ11 = 98, 128, 158C
2/Nm2

in 8(ii), for electrically open cases; (a) 8(i) for PZT − 5H ceramic, (b) 8(ii) for BaT iO3 ceramic

Fig. 9. Variation of the non-dimensional phase velocity against the non-dimensional wave number for
different values of dielectric constants ǫ11 = 77, 177, 277C

2/Nm2 in 9(i), ǫ11 = 98, 128, 158C
2/Nm2 in

9 (ii), for electrically short case; (a) 9(i) for PZT − 5H ceramic, (b) 9(ii) for BaT iO3 ceramic
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6. Conclusion

Dispersion equations (4.8) and (4.9) provide implicit relations between the phase velocity of
SH-wave and different characteristic parameters associated with the layer and substrate. The
phase velocity profiles are affected with variation in the associated parameters of the considered
layered structure. The major conclusions of the study may be pointed out as follows:

(i) The wave number affects the phase velocity profiles of SH-waves significantly. The non-
-dimensional phase velocity decreases with an increase in the non-dimensional wave number
in each case of electrically open and short circuits for both considered materials of the
piezoelectric layer.

(ii) Internal microstructure of the couple stress substrate affects the phase velocity profiles
significantly. It is observed that the phase velocity of SH-waves increases with an increase
in the characteristic length l. This effect justifies consideration of microstructural properties
of the semi-infinite substrate.

(iii) Thickness of the piezoelectric layer shows an adverse effect on phase velocity profiles of
SH-waves. It is observed that the phase velocity of SH-waves decreases with an increase in
the thickness parameter associated with the piezoelectric layer.

(iv) The piezoelectric constant affects the phase velocity profiles of SH-wave substantially.
Specifically, an increase in the piezoelectric parameter leads to a decrease in the phase
velocity of SH-waves propagation in the piezoelectric layer overlying the couple stress
elastic half-space.

(v) Dielectric constants associated with the piezoelectric layer favor the phase velocity profiles
of SH-waves. It is observed that with an increase in the dielectric parameter, the phase
velocity increases.

The findings obtained in the paper through theoretical and numerical demonstrations could help
the development of more efficient and high performance Love wave based devices.
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