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The break-up of liquid ligaments and formation of droplets are elementary phenomena in
multiphase flows which are of high importance in industrial and medical applications. From
the numerical point of view, they require proper interface and surface tension treatment.
In the present work, we apply Smoothed Particle Hydrodynamics, a meshless approach, to
simulate the break-up of a liquid cylinder inside the gaseous phase, i.e. the Rayleigh-Plateau
instability. Results obtained in 3D show that even a relatively coarse resolution allows one
to predict correctly the size of droplets formed in the process. The detailed analysis of the
break-up time in 2D setup implies that a certain level of spatial discretisation needs to be
reached to determine this moment precisely.
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1. Introduction

Multiphase flows have been of interest for both academic and industrial communities for a
long period of time. Accurate interface tracking and surface tension modelling are of particular
importance due the influence on the flow solution as a whole. Another challenge has been the
ability to properly treat high density ratios, frequently appearing in industrial problems. Over
the years, many different approaches have been developed to tackle this matter, including Volume
of Fluid, Level Set and Front Tracking methods, for a comprehensive overview see the handbook
by Tryggvason (2011).
Among existing methods for fluid flow modelling, Smoothed Particle Hydrodynamics (SPH)

remains a relatively new alternative. It is a particle based meshless method of Lagrangian nature.
SPH was originally developed in the 1970s for astrophysical problems, and later adapted for fluid
mechanics simulations (Monaghan, 2012), where it gained more and more interest over the recent
years. Branches where its meshless nature is notably favorable are free-surface flows (Violeau and
Rogers, 2016) and general two-fluid flows with interfacial surfaces (Das and Das, 2010b; Szewc
et al., 2013; Olejnik et al., 2016). SPH advantages in the latter case are mainly the easiness
in dealing with high density ratios and straightforward treatment of the interface. Recently,
applications of SPH have appeared in the area of microfluidics (Wieth et al., 2016).
In the present paper, we focus on a particular application of SPH to interfacial flows which

is the Rayleigh-Plateau (R-P) instability. This fundamental phenomenon leads to atomisation of
liquid jets and, likewise, the Kevin-Helmholtz instability (Boeck et al., 2007) is one of the basic
mechanisms of the regime change in complex multiphase flows. Another area where breaking-up
liquid ligaments is of high concern is the formation of droplets of a desired size in drug delivery
and lab-on-a-chip devices (Abate et al., 2009; Guzowski et al., 2013). In our work, we test
feasibility of SPH in these problems. Although attempts in this matter have already been made
for the case of gravity-driven dripping break-up, see Sirotkin and Yoh (2012), they focused on
qualitative results and influence of dimensionless numbers. In the present study, we pay special
attention to the resolution needed for accurate prediction of the liquid ligament break-up time.
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2. SPH for multiphase flows

2.1. Basics of the method

The general idea behind SPH lies in interpolation theory. Let us consider any scalar (for
simplicity) field A. The integral formula

A(r) =

∫

Ω

A(r′)δ(r− r′)dr′, (2.1)

where δ(r) is the Dirac delta function, can be used to express the field value at the point r in
space Ω. To obtain SPH approximation, we first replace δ(r) with the weighting kernel func-
tion W (r, h) which should be normalised, symmetrical and converging to δ(r) with h→ 0 (Mo-
naghan, 1992). Argument h is the so-called smoothing length and it determines the interpolation
range. In our work, we use the quintic kernel proposed by Wendland (1995)

W (r, h) = C






(
1−
q

2

)4
(2q + 1) for q < 2

0 otherwise
(2.2)

where q = |r|/h and C is the normalisation constant (C = 7/4πh2 in 2D and C = 21/16πh3

in 3D), as guaranteeing good stability of computations (Dehnen and Aly, 2012; Szewc et al.,
2012a).
The second step consists in discretisation of the space into a set of particles of the volume

Ωb = mb/̺b, where mb is mass and ̺b is density of the b-th particle. As a result, the integral
from Eq. (2.1) is approximated by a sum, i.e.

A(r) ≃
∑

b

A(rb)W (r− rb, h)Ωb (2.3)

In the shorthand notation, the SPH approximation 〈A〉a of the field A at any point a is defined
as

〈A〉a =
∑

b

AbWab(h)Ωb (2.4)

where Ab = A(rb) and Wab(h) = W (ra − rb, h). Thanks to the properties of W (r, h), differen-
tiation can be shifted from the field to the kernel function yielding

〈∇A〉a =
∑

b

Ab∇Wab(h)Ωb (2.5)

Further derivatives can be obtained in a similar way.
Using the above method, various kinds of differential equations can be rewritten into the SPH

formalism and solved by calculating interactions between particles, hence its wide application.
More detailed information on the derivation of SPH and basics of the method can be found in
the handbook by Violeau (2012).

2.2. Governing equations

The set of governing equations for viscous flow consists of the Navier-Stokes (momentum)
equation

du

dt
= −
1

̺
∇p+

µ

̺
∆u+ a (2.6)
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and the continuity equation

d̺

dt
= −̺∇ · u (2.7)

where u denotes the velocity vector, ̺ is fluid density, p is pressure and µ is dynamic viscosity.
In Eq. (2.6), a stands for the interfacial term, detailed in Section 2.3. Due to the Lagrangian
nature of SPH, we also include the advection equation

dr

dt
= u (2.8)

Depending on the purpose and assumptions, different SPH formalisms for the fluid flow can be
obtained by using Eqs. (2.4) and (2.5). In the present study, we use a formulation proposed by
Hu and Adams (2006). To the best of our knowledge, their approach is well suited for modelling
multiphase flows with large density ratios (Szewc et al., 2012b). The pressure term in Eq. (2.6)
will become
〈∇p
̺

〉

a
=
1

ma

∑

b

(pa
θ2a
+
pb
θ2b

)
∇aWab(h) (2.9)

where θ is the inverse of the particle volume. The viscous term of Eq. (2.6), obtained by combining
SPH formalism and Finite Difference Method, takes the form

〈µ
̺
∆u
〉

a
=
1

ma

∑

b

2µaµb
µa + µb

( 1
θ2a
+
1

θ2b

)rab · ∇aWab(h)
r2ab + 0.01h

2
uab (2.10)

where uab = ua − ub. The key feature of the approach proposed by Hu and Adams (2006) is
the treatment of the continuity equation. Instead of rewriting Eq. (2.7) into the SPH language,
density is found from

〈̺〉a = ma
∑

b

Wab(h) = maθa (2.11)

This allows the density field to be represented only by the spatial distribution of particles and not
by their masses. Thanks to this, densities of particles near the interface are not affected by the
other fluid, which is important in multiphase flow modelling. Note that Eq. (2.11) requires the
whole domain to be filled with SPH particles, hence it is not suitable for multiphase computations
in which the lighter phase is neglected, e.g. see the approach proposed by Ordoubadi et al. (2017).
In this work, we use the Weakly Compressible SPH approach (WCSPH). The set of equations

is closed with the state equation

p =
s2̺0
γ

[( ̺
̺0

)γ
− 1
]

(2.12)

where s is the artificial speed of sound, ̺0 is the reference (initial) density and γ is a numerical
parameter. Values of c and γ are chosen to ensure density fluctuations at a level of 1% or below.
In multiphase flow modelling, it is a common practice to treat the liquid as incompressible with
γ = 7, and the gas as compressible with γ = 1.4. We follow this approach in this study.

2.3. Surface tension

The influence of surface tension is modelled with the Continuum Surface Force method
(CSF), originally proposed by Brackbill et al. (1992), with SPH implementation due to Morris
(2000). In this approach, surface tension forces are converted into a force per unit volume

Fs = fsδs (2.13)
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where δs is a suitably chosen surface delta function and

fs = σκn̂ (2.14)

is the force per unit area, σ is the surface tension coefficient, κ is the local curvature of the
interface and n̂ is the unit vector normal to the interface. Using the so-called color function c
(say, c = 0 for the first phase and c = 1 for the second one) n̂ can be calculated using the formula

n̂ =
n

|n|
=
∇c

|∇c|
(2.15)

The vector n is obtained from

na = ̺a
∑

b

(c̃b − c̃a)∇aWab(h)Ωb (2.16)

where c̃ stands for the smoothed color function, i.e.

c̃a =
∑

b

cbWab(h)Ωb (2.17)

The local curvature is obtained from

κ = −∇ · n̂ (2.18)

Assuming that δs = |n|, the influence of surface tension can be included in Eq. (2.6) by adding
the term

aa =
σ

̺a
κana (2.19)

Following Morris (2000), we also exclude from calculations of surface tension effects particles
for which |na| is below the threshold of 0.01/h. This greatly improves accuracy of curvature
estimation on fringes of the interfacial area.

2.4. Interface correction

As already mentioned, SPH does not require any special treatment of the interface. In some
cases, however, particles of two immiscible phases can penetrate into the bulk of the other phase.
This is particularly visible in problems involving high density ratios. To prevent this unphysical
phenomenon, we enforce a small repulsive interaction between different phases (Szewc et al.,
2013), by adding to Eq. (2.6) the term

Ξa =
ε

ma

∑

b

cb 6=ca

( 1
θ2a
+
1

θ2b

)
∇aWab(h) (2.20)

where ε is a numerical parameter. This correction, however, may change the characteristics
of the flow if used improperly. Detailed analysis of this approach and the spurious interface
fragmentation in the case of gas bubbles rising in the liquid can be found in the work of Szewc
et al. (2015).
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3. Results

In order to validate the SPH approach for modelling of the break-up of liquid jets, we decided
to perform simulations of the case presented by Dai and Schmidt (2005). We consider a fully
periodic, cubic domain of the edge of length L containing a column of liquid l surrounded by
the gaseous phase g. The column is placed in the centre of the domain according to

(
y −
L

2

)2
+
(
z −
L

2

)2
¬ r20 (3.1)

where r0 = 0.1L and x ∈ [0, L]. The density and viscosity ratios are respectively ̺l/̺g = 1000
and µl/µg = 100. The initial perturbation of the liquid velocity field is given as

ux = u0 sin
2πx

L
uy = 0 uz = 0 (3.2)

where u0 is the initial velocity amplitude. Dimensionless numbers describing this case are the
Weber number

We =
̺lr0u

2
0

σ
(3.3)

and the Reynolds number

Re =
̺lu0r0
µl

(3.4)

In our study, we take We = 1.4 and Re = 18. The time is made dimensionless with

tc =

√
̺l(r0)D

σ
(3.5)

where D stands for the number of spatial dimensions. In the 2D case, we simply consider the
central slice of the domain in the xy plane.
In the present study, instead of raw particles data we analyse data interpolated onto a regular

grid. The reason for this is that the studied phenomena involve very thin liquid ligaments.
Even for relatively fine resolution positions of SPH particles may be slightly perturbed, which
creates impression of a misshapen interface. The grid used for post-processing has the cell size
of ∆r, which is the initial spacing between the particles. The interpolation is performed with
SPH formulation with the same weighting function, i.e. the Wendland kernel, that has been
employed in calculations. This way, without distorting any information, detailed analysis is
made significantly easier. Since in this work the shape of the interface is of utmost interest, we
treat it as the isoline or isosurface of the color function c = 0.5. To obtain the isoline/isosurface
Python libraries Matplotlib (2D cases, (Hunter, 2007)) and Mayavi (3D cases, (Ramachandran
and Varoquaux, 2011)) have been used. Figure 1 shows an exemplary result of such treatment.

3.1. 3D case

The SPH simulations have been performed for L/h = 64 and L/h = 128 with h/∆r = 1.5625
which resulted in 106 particles filling the whole domain, while 31 600 of them were forming the
liquid cylinder for the lower resolution, and 8 · 106 to 252 800 respectively for the higher one.
Figure 2 presents results obtained from SPH simulation with L/h = 64 for different values
of the interface sharpness correction term, Eq. (2.20), against the reference material (Dai and
Schmidt, 2005). The general agreement is good, however, some discrepancies can be observed at
later stages of simulations. The ligament break-up for SPH calculations occurs around t+ = 5.5,
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Fig. 1. Positions of SPH particles representing the liquid vs. isosurface of the color function c = 0.5
interpolated onto a uniform grid

while for the reference material it is t+ = 6.49. The main reason for this discrepancy is that
in the SPH computations we do not use the Adaptive Mesh Refinement (AMR) or any similar
techniques, contrary to calculations by Dai and Schmidt (2005). We should also mention that
in the cited work, due to the use of AMR, the break-up time was defined as the moment
when the liquid ligament between droplets reaches radius of 0.05r0. Note that AMR in grid-
-based methods is a standard technique, while in SPH it is still a novelty in development, see
Vacondio et al. (2016) or Olejnik et al. (2017). Furthermore, with an increase in the value of ε
we observe a decrease in the diameter of the liquid bridge between the droplets at t+ = 4.49.
This tendency is the outcome of additional interfacial pressure repelling phases from each other,
see Eq. (2.20). The quantitative comparison is shown in Fig. 3. It shows the disturbance growth
process quantified as

rmax(t)− r0
r0

(3.6)

where rmax(t) is the maximum distance of the liquid phase measured from the axis of symmetry.
The results show high agreement with the reference data, independently of the value of ε used.
The higher resolution also does not yield significantly different results. We can conclude that
even a coarse resolution is sufficient to correctly predict the size of formed droplets. As shown
in Fig. 4, the resolution does influence their shape. For L/h = 128, the curvature of the central
droplet is lower than for L/h = 64. All in all, the quality of SPH simulation of the considered
case proves that the method is suitable for simulations of the capillary jet break up provided
that the resolution is high enough. The issue of the interface correction term and its influence
on the flow requires further investigation.

3.2. 2D case

Since SPH simulations in 3D are costly, for the purpose of a more detailed analysis we
decided to settle on the 2D setup. To determine the influence of the resolution on the moment
of break-up, the calculations have been performed for h/∆r = 2 and different values of the



Smoothed particle hydrodynamics modelling of the Rayleigh-Plateau instability 681

Fig. 2. Results of SPH simulation of the R-P instability without the interface sharpness correction
term (1st row), with ε = 0.5 (2nd row) and ε = 0.75 (3rd row). The 4th row presents the reference data

of Dai and Schmidt (2005) reprinted with the permission from Elsevier
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Fig. 3. Disturbance growth in time; SPH results compared to the reference material from
Dai and Schmidt (2005)

Fig. 4. Results of SPH simulation of the R-P instability without the interface sharpness correction term
for L/h = 64 (top row) and L/h = 128 (middle row). In comparison to the reference data of

Dai and Schmidt (2005) reprinted with the permission from Elsevier
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smoothing length, i.e. L/h = 64, 128, 256, 384 and 512. Figure 5 shows the evolution of the
interface in the simulation for L/h = 512. We defined the break-up time as the moment when
the color function drops to the value c = 0.5 in any of the points situated on the symmetry line
of the liquid column. An example of the interface shape and the values of the color function at
such a moment are presented in Fig. 6. As shown in Fig. 7, the outcome is highly dependent
on the resolution. For the highest values of h the dependency is almost linear, i.e. the lower
resolution, the earlier moment of break-up. Beginning from L/h = 256, the growth is barely
visible, and it is safe to assume that this resolution is sufficient to fully resolve the flow without
computational overhead. Analysis of the disturbance growth in time, defined with Eq. (3.6),
confirms this statement. We see that the three highest resolutions tested are in agreement and
hard to distinguish while the three lowest ones tend to diverge from them, especially in the later
stage of simulation.

Fig. 5. Evolution of 2D R-P instability. Result of SPH simulation for L/h = 512

Fig. 6. Definition of the break-up time in SPH simulations; example for L/h = 256. Shape of the
interface (left) and color function profile (right) at t+ = 1.684
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Fig. 7. Dependency of the dimensionless moment of break-up on the resolution

Fig. 8. Disturbance growth in time in the 2D case

4. Conclusions

In the present study, we have successfully applied SPH to simulations of the R-P instability.
Results obtained in the 3D case showed that SPH can predict droplets size with a comparable
accuracy as a mesh based method using AMR, despite the relatively low resolution used. Analysis
of the break-up time in 2D, however, showed that resolution needs to be on a relatively high level
to correctly predict this moment. It is worth to note that thanks to the GPU parallelisation,
for which SPH is exceptionally suitable (Szewc, 2014), it is still affordable for a desktop class
computer.

The method proposed in this paper can naturally be extended for other situations involving
generations of microdroplets in the so-called lab-on-a-chip devices (Guzowski et al., 2013). The
presence of solid boundaries in such devices is not an issue since reliable implementations of
boundary conditions in SPH already exist (Adami et al., 2012). Recent works also show that
the wetting phenomena and contact angles can be properly treated within SPH framework (Das
and Das, 2010a; Yeganehdoust et al., 2016). This makes SPH an interesting alternative to the
traditional mesh based codes as a tool for engineering simulations. Optimisation of devices for
e.g. precise and repeatable delivery of microdroplets sequences (Abate et al., 2009) can readily
be performed with SPH.
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