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This paper presents an experimental investigation of the hot deformation behaviour of 15%
B4C particle reinforced AA6061 matrix composites and the establishment of a novel cor-
responding unified and physically-based visco-plastic material model. The feasibility of hot
forming of a metal matrix composite (MMC) with a low volume fraction reinforcement has
been assessed by performing hot compression tests at different temperatures and strain ra-
tes. Examination of the obtained stress-strain relationships revealed the correlation between
temperature and strain hardening extent. Forming at elevated temperatures enables obvious
strain rate hardening and reasonably high ductility of the MMC. The developed unified ma-
terial model includes evolution of dislocations resulting from plastic deformation, recovery
and punching effect due to differential thermal expansion between matrix and reinforcement
particles during non-steady state heating and plastic straining. Good agreement has been
obtained between experimental and computed results. The proposed material model contri-
butes greatly to a more thorough understanding of flow stress behaviour and microstructural
evolution during the hot forming of MMCs.
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1. Introduction

Metal matrix composites (MMC) comprise a relatively wide range of materials defined by com-
position of matrix and of reinforcement together with its geometry (Kaczmar et al., 2000).
Particle-reinforced aluminium alloy/B4C MMC is a popular candidate in automotive, aerospace
and nuclear industries, since boron carbide (B4C) exhibits very high hardness, relatively low
density and good thermal and chemical stability (Guo and Zhang, 2017). Raw MMCs are ma-
nufactured today using mostly either particle introduction techniques through liquid-stirring or
casting, pressure infiltration or powder metallurgy (Ye and Liu, 2004). The final geometry of
MMC parts with a high volume fraction reinforcement is usually obtained by machining. Where-
as, a low volume fraction MMCs may be processed by extrusion, drawing or rolling in which the
plasticity of the matrix material is exploited. The resultant bar or sheet often requires seconda-
ry manufacturing operations to produce the final product geometry. It is advisable to perform



458 K. Zheng et al.

such manufacturing processes on MMCs at elevated temperatures where ductility is higher and
forming load is lower (Aour and Mitsak, 2016). This combination increases manufacturing capa-
bility and results in an increased material yield compared with machining to achieve final part
geometry. Therefore, it is important to characterize the deformation behaviour of MMCs with
the low volume fraction of reinforcement under hot working conditions, including mechanisms
of deformation and corresponding microstructural evolution.

Significant research has been performed on hot forming of MMCs and related deformation
mechanisms. The mechanism of matrix strengthening and microstructure evolution during hot
deformation becomes more complicated with the addition of reinforcement particles of different
materials, shapes and sizes. Wang et al. (2017) found that a dynamic recrystallization (DRX)
phenomenon, which depends on temperature and strain rate, was the main softening mecha-
nism when hot compressing AA6061/B4C composite. Ganesan et al. (2004) observed dynamic
recrystallization and wedge cracking characterising the hot working of AA6061/15% SiCp. Ho-
wever, although relative microstructural evolutions were identified, steady flow stress was still
modelled phenomenologically using the Zener-Hollomon parameter and the Arrhenius constitu-
ent model. The evolution of dislocations associated with hardening was not taken into account.
Physically-based models of hot formed MMCs are lacking this phenomenon.

High strength ceramic particles, such as SiCp, B4C and ZrB2, are commonly used to increase
MMC strength and thermal stability (Ibrahim et al., 1991). When these MMCs are heated to
elevated temperatures, the differential thermal expansion between the particles and matrix alloy
can induce dislocation punching (Chawla and Chawla, 2004) during thermal quenching, which
is also believed to affect the hardening during deformation. Furthermore, plastic deformation
produces temperature increase which can further aggravate dislocation punching. The dominant
mechanisms influencing material flow stress behaviour of low volume fraction reinforcement
MMCs are punching dislocation and dislocation evolution during deformation of the matrix
material, exemplified by plastic strain induced dislocation accumulation and recovery (Lin et
al., 2005). Both mechanisms should be included in constitutive models for this type of material.

The objectives of this study are to investigate hot deformation behaviour of MMCs and to
further develop a unified physically-based visco-plastic constitutive model for hot forming of
discontinuously reinforced MMCs with a low volume fraction of high strength particles. Streng-
thening mechanisms of discontinuous particle reinforced MMCs are briefly reviewed in this paper,
then the development of a visco-plastic material model based on a dislocation evolution mecha-
nism is presented. The feasibility of hot forming of MMCs was proved through hot compression
tests. In addition, the constitutive equations of the material model were calibrated using experi-
mentally generated stress-strain relationships. The established model is believed to be the first
one ever presented, which is based on the physical mechanisms of particle strengthening and
dislocation evolution during hot deformation.

2. Strengthening mechanisms in hot working particle reinforced MMCs

2.1. Modulus

Various methods have been proposed to predict the elastic modulus of composites. Each of
the existing models has limits and is unable to cover factors of reinforcement volume fraction,
shape, contiguity and distribution. Hashin and Shtrikman (1963) proposed upper and lower
bounds for an isotropic aggregate, based on variational principles of linear elasticity. For high
volume fraction cases, normally greater than 0.5, Kröner (1958) and Budiansky (1965) propo-
sed a self-consistent methodology to model effective Young’s modulus of MMCs with spherical
reinforcements. The relationships between Young’s modulus E, shear modulus G and bulk mo-
dulus K is given in Eq. (2.1)1. On the assumption of an unchanged Poisson’s ratio, Young’s
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modulus can be obtained from shear and bulk modulus. Mura (1987) provided an estimation of
the effective moduli for relatively small volume fractions of reinforcing particles, as shown in Eqs.
(2.1)2 and (2.1)3. The moduli of a composite are determined by the reinforcement and matrix
material for a certain volume percentage of reinforcements. In this theory, the reinforcement
geometry is assumed to be spherical. Then, the effective Young’s modulus of composite can be
obtained from Eq. (2.1)1. It should be noted that the theory was focused on finite concentra-
tions of reinforcements, and the approach is only valid for a relatively small volume fraction of
reinforcements, normally less than 0.25

E = 2G(1 + ν) = 3K(1− 2ν)

Gc = Gm
[

1 + Vp(Gm −Gp)
/{

Gm + 2(Gp −Gm)
4− 5νm
15(1 − νm)

}]

−1

Kc = Km
[

1 + Vp(Km −Kp)
/{

Km +
1

3
(Kp −Km)

1 + νm
1− νm

}]

−1

(2.1)

where ν is the Poisson’s ratio, G is the shear modulus and K is the bulk modulus of the material.
Gc, Gm and Gp are the shear modulus of the composite, matrix and reinforcement, respectively.
Kc, Km and Kp are the bulk modulus of the composite, matrix and reinforcement, respectively.
νc, νm and νp are the Poisson’s ratio of the composite, matrix and reinforcement, respectively.
Vp represents the volume fraction of reinforcements.

2.2. Strengthening

2.2.1. Direct strengthening

Direct strengthening is common in continuous fiber-reinforced (Khosoussi et al., 2014) and
discontinuously fiber or particle reinforced composites. The main mechanism of direct strengthe-
ning is load transfer from the point of application through the low strength matrix to the high
strength reinforcement across the matrix/reinforcement interface. Therefore, apparent streng-
thening results from the additional load carried by the reinforcements. To model such a streng-
thening phenomenon, Nardone and Prewo (1986) proposed a modified shear-lag model for load
transfer in particulate materials. The model incorporates load transfer from the particle ends
(which is not applicable to continuous-fiber reinforced composites due to the large aspect ra-
tio). The yield strength of the particulate composite σcy is increased over the matrix yield
strength σmy

σcy = σmy
[

Vp
(S + 4

4

)

+ Vm
]

(2.2)

where S is the aspect ratio of the particle, Vp is the volume fraction of particles, and Vm is
the volume fraction of the matrix. The relation shown in Eq. (2.2) does not include effects of
particle size and matrix microstructure on the load transfer. Wu et al. (2016) investigated the
effects of particle size and spatial distribution on the mechanical properties of B4C reinforced
composites. It is demonstrated that for a given volume fraction, reducing the particle size of the
B4C leads to a greater increase in the strength. The contribution of reducing the particle size
can be estimated using as

∆σd ∝
√

1

d
(2.3)

where∆σd represents the increment of the yield strength due to particle size, and d is the average
size of particles in the spherical assumption.
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2.2.2. Indirect strengthening

Indirect strengthening is believed to be caused by changes of matrix microstructure and
properties with the addition of the reinforcement. Thermal expansion mismatch between the
reinforcement and matrix alloy can result in a build-up of internal stresses where there is a change
in temperature, such as occurs during thermal quenching (Suh et al., 2009). Such a mismatch is a
general and important feature of MMCs, especially with the combination of a high coefficient of
thermal expansion (CTE) metallic matrix and a low CTE high strength ceramic reinforcement.
If the internal stress generated by differential thermal expansion is greater than the yield stress of
the matrix, then dislocations form at reinforcement/matrix interfaces and accumulate within a
domain surrounding the reinforcement, as shown in Fig. 1. Hence, “thermally induced dislocation

Fig. 1. Schematic of dislocation punching micromechanics (Suh et al., 2009)

punching” results in an indirect strengthening of the matrix. Besides the thermal effects of CTE
mismatch during thermal quenching, the internal stress related to differential thermal expansion
may also occur if the composite experiences a positive temperature variation under hot forming
conditions, such as externally applied heating or temperature rise due to plastic deformation.
The matrix domain expands but is constrained by the reinforcements. The matrix material
strength is much lower at elevated temperatures, so it is easier for the induced internal stress
to exceed the matrix yield strength resulting in dislocations being punched into the matrix. It
should be noted that the phenomenon of punched dislocations should be considered only if the
heating rate is high and if the soaking time is short. Otherwise, static recovery will eliminate the
punched dislocations during the non-steady positive temperature variation. Arsenault and Shi
(1986) developed a model to quantify the degree of dislocation punching due to CTE mismatch
between a particle and the matrix, schematically shown in Fig. 1. The dislocation density of the
punched zone due to differential thermal expansion is given by

ρCTE =
DεTMVp
b(1− Vp)d

(2.4)

where D is a geometric constant, b is the Burgers vector, d is the diameter of the reinforcement
particle, and εTM is the thermal misfit strain, εTM = ∆α∆T . ∆α is the difference in the coef-
ficient of thermal expansion between the matrix and reinforcement, and ∆T is the temperature
variation. The incremental increase in strength due to dislocation punching can be given as

∆σind = ψGmb
√
ρCTE (2.5)

where ψ is a constant. Substituting Eq. (2.4) into Eq. (2.5), the strength increment due to this
indirect strengthening mechanism is given by Eq. (2.6) with further consideration of the aspect
ratio of the reinforcement particles S
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∆σind = ψGmb

√

DεTMVpS

b(1− Vp)d
(2.6)

3. Development of the visco-plastic constitutive model

3.1. Modelling of modulus

The addition of reinforcement particles significantly increases the stiffness of composites
compared with that of the matrix alone. For simplicity, Eq. (2.1)3 may be used to represent
approximately the relationship between Young’s modulus and shear modulus by assuming the
Poisson’s ratio to be constant. Young’s modulus of composites can be also approximated by a
formulation shown as

Ec = Em
1 + Vp(Em − Ep)

Em + δ1(Ep − Em)δ2
(3.1)

where δ1 and δ2 are constants. Ec, Em and Ep are Young’s moduli of composite, matrix and
reinforcement, respectively.
In order to simplify Eq. (3.1), giving E1 = δ1δ2, substitute E1 into Eq. (3.1). Equation (3.1)

can be rewritten as follows

Ec = Em
[(1− E1 + Vp)Em + (E1 − Vp)Ep

(1− E1)Em + E1Ep

]

−1
(3.2)

In terms of hot forming low volume fraction composite materials, in this study, Young’s
modulus of the matrix metal is considered dependent on bulk temperature, while that of rein-
forcement particles is considered as constant.

3.2. Modelling punched dislocation density

The dislocation punching feature is determined by temperature variation during hot forming,
which can be divided into two parts. Contribution of the first part comes from heating the
composite from the room temperature to its forming temperature. The initial dislocation density
due to differential thermal expansion is considered to be zero. During heating and according to
Eq. (2.4), the rate of punched dislocation density can be expressed as a function of temperature
history. Considering the instantaneous heating rate, this becomes as defined in

ρ̇CTE =
D∆α∆ṪVp
b(1− Vp)d

(3.3)

where ∆Ṫ represents the rate of temperature change.

Contribution of the second part results from adiabatic heating during hot working (Bai et
al. 2013). Adiabatic heating is believed to result from plastic work during hot working (Khan et
al., 2004). The temperature increment can be calculated from experimental stress-strain curves
using

∆T =
η

cmρm

εp
∫

0

σ(εp) dεp (3.4)

where η represents the fraction of heat dissipation caused by plastic deformation (Khan et al.,
2004), cm and ρm are specific heat and mass density of the matrix material, respectively, σ is the
instant flow stress and εp is the plastic strain. In this study, the variable related to temperature
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increase arising from plastic deformation is expressed in terms of a derivative in order to unify
the constitutive equations

Ṫε = η
σ

cmρm
|ε̇p| (3.5)

where Tε is temperature rise due to plastic straining. In ideal isothermal deformation conditions,
the instantaneous temperature T is equal to the initial temperature T0. However, when heat ge-
nerated due to large plastic deformation cannot be neglected, the instantaneous temperature
T equals (T0 +∆T ), where ∆T is the temperature rise regarded as a function of the deforma-
tion and deformation rate. According to Eq. (3.5), deformation induced temperature increase
can be determined through numerical integration based on the stress-strain relationships for a
fixed strain rate and stress state. Therefore, substituting Eq. (3.5) into Eq. (3.3), the rate of
accumulated dislocation due to thermal expansion mismatch can be rewritten as

ρ̇CTE = D
Vp
1− Vp

η
σ

cmρm
|ε̇p| (3.6)

3.3. Formulation of constitutive equations

Physically-based visco-plastic constitutive equations have been proposed for the modelling
of plastic deformation of many metals, especially in hot forming conditions. The significant
contribution of these models is to enable a variety of phenomena to be modelled, including
dislocation accumulation and annealing, dynamic recovery and recrystallization, based on the
specific deformation mechanisms. Each aspect of microstructural evolution can be treated as
a variable in the constitutive equations. These constitutive equations are also suitable for hot
working discontinuous particle reinforced MMCs. However, high strength reinforcement adds
new mechanisms and effects on the modulus and microstructural evolutions which also need to
be considered and modelled. As interactions between different microstructural phenomena exist,
it is impossible to express all the physical phenomena active during hot forming by using a single
equation. To thoroughly understand their evolution, this study uses a constitutive model based
on an advanced dislocation dominated mechanism (Lin and Dean 2005).

A set of unified visco-plastic constitutive equations is established to model the contribution
of particles on the modulus and strength, evolution of dislocation, temperature increase due to
adiabatic deformation, and rationalise their effects on the steady plastic flow. This developed
material model derives from the dislocation evolution during isothermal hot deformation. The
relationships between dislocation density and strain hardening and recovery are characterised in
this model. Compared to conventional metals, the dislocation density in this model is divided
into plastic deformation induced and thermal expansion induced types. For simplification, several
assumptions are used in this model, they are (1) dynamic recrystallization of the material during
the initial deformation process is not considered for low-volume fraction reinforcement and
relatively high strain rates; (2) thermal strain is not taken into account compared with the
great total strain; (3) effects of precipitation on dislocation density are not considered. The
set of unified viscoplastic constitutive equations for modelling hot deformation of MMCs with
low-volume fraction reinforcements is summarised as follows

ε̇p =
(σ −R− ke

K

)n1
Ṙ =
1

2
B

ρ̇√
ρ

(3.7)

and

ρ̇str = A(1− ρstr)|ε̇p| − Cρn2str
ρ̇ = ρ̇str + ρ̇CTE σ = Ec(ε− εp)

(3.8)
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The fundamental equations used are Eq. (3.7)1 to Eq. (3.8)3, given above. To make it clear,
general description of each equation representing a particular microstructure mechanism is in-
troduced. Details of the form of each equation are given in the literature (Lin and Dean 2005).
Equation (3.7)1 represents the traditional power-law of visco-plastic flow formulation (Mohamed
et al. 2012), ke represents the initial yield stress of composites and R represents hardening stress
due to dislocation evolution. Equation (3.7)2 represents the evolution of material hardening,
which is a function of the normalised dislocation density ρ defined by ρ = (ρ− ρi)/ρmax, where
ρi is the initial dislocation density and ρmax is the maximum (saturated) dislocation density.
Therefore, the range of ρ is between 0 and 1 during the whole process. Unlike hot forming of
metals, the dislocation density in this study is divided into two parts; dislocation density evolu-
tion of hot straining of the matrix material ρstr and punched dislocation density evolution due
to differential thermal expansion ρCTE as given in Eq. (3.6). Equation (3.8)1 represents the rate
of accumulation of dislocations induced by the plastic deformation, which takes into account de-
formation and recovery. Equation (3.8)2 represents the sum of dislocation density arising from
plastic deformation and punched dislocations, Eq. (3.6), due to the difference of thermal expan-
sion of the matrix and reinforcement. It should be noted that the difference in thermal expansion
arises from the temperature increase resulting from plastic deformation, which is different from
the applied heating at the initial stage. Equation (3.8)3 is Hook’s law for a simple uniaxial state.
In this equation set, ke, K, n1, B, A, C and Ec are temperature dependent variables defined in
Eqs. (3.9) and (3.10), while n2 is temperature independent material constant

ke = k1 exp
( Qk
RgT

)

(VpS + Vm)

√

1

d
+ k2

√

Vp∆T

(1− Vp)d
(3.9)

and

K = K0 exp
(−QK
RgT

)

n1 =
n11

ε̇n12p
exp
(Qn1
RgT

)

B = B0 exp
( QB
RgT

)

A = A0 exp
( QA
RgT

)

C = C0 exp
(−QC
RgT

)

Em = E0 exp
( QE
RgT

)

(3.10)

Equation (3.9) represents the initial yield strength of the MMC considering direct and indi-
rect strengthening of the reinforcement particles, Vp and Vm represent volume fractions of the
reinforcement and matrix respectively. ∆T is the temperature increment during rapid heating.
Equations (3.9) to (3.10) represent the Arrhenius equations of temperature dependent variables,
where Q describes the activation energy for each variable, and Rg is the universal gas constant.
All the material constants in Eqs. (3.9) to (3.10) are temperature independent. It should be
noted that Young’s modulus of MMC is a function of the matrix modulus and particle modulus,
which is modelled in the previous Section. Considering the thermal stability of high strength
reinforcements, only Young’s modulus of the matrix is temperature dependent, defined in Eq.
(3.10), while Young’s modulus of reinforcements is considered to be a constant.

4. Hot compression tests

4.1. Materials

Experiments have been undertaken using AA6061/B4C provided by Harbin Institute of Tech-
nology. The composite samples were produced with a 15% volume fraction reinforcement using
a pressure infiltration method. Single crystal B4C particles were used having an average particle
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size of 17.5 µm (Zhou et al. 2014). The bulk composite material was then extruded into circular
bars and then machined into standard cylindrical samples with length of 12mm and diameter
of 8mm. The selection of sample dimensions was chosen so as to avoid inelastic buckling prior
to plastic deformation. The matrix material was AA6061. The main chemical compositions of
B4C and AA6061 are given in Tables 1 and 2, respectively.

Table 1. Main chemical composition of B4C [%]

Element B C Fe Si Ca F

wt [%] 80.0 18.1 1.0 0.5 0.3 0.025

Table 2. Main chemical composition of AA6061 [%]

Element Fe Si Mn Cr Mg Zn Al

wt [%] 0.70 0.80 0.15 0.35 1.2 0.25 Remain

4.2. Experimental set-up and test programme

High temperature uniaxial compression tests were performed using the thermo-mechanical
simulator Gleeble 3800. Specimens were heated at a pre-determined heating rate by resistance
heating, and temperature was precisely controlled by feedback from a thermocouple welded to
the middle of the specimen. Graphite foil and high-temperature graphite paste were used at the
interfaces between the specimen and Gleeble anvils to reduce interfacial friction and obtain a
more uniform deformation. Strain was measured using a C-gauge which detected a change in
the specimen diameter. The experimental set-up is shown in Fig. 2.

Fig. 2. Experimental set-up for hot compression test (all dimensions are in mm)

Figure 3 shows the temperature profile of a specimen in the hot compression test. A two-stage
heating strategy was utilised to obtain a uniform temperature and to avoid overshoot. Initially,
the specimen was heated up at a rate of 5◦C/s to 50◦C below the specified target deformation
temperature. Then, it was further heated to the target temperature at a rate of 2.5◦C/s. After
soaking for 1 min, the specimen was uniaxially hot compressed at different strain rates. In this
study, the temperatures selected were 350◦C, 400◦C, 450◦C. The strain rates used were 0.01 s−1,
0.1 s−1 and 1 s−1.



Experimental investigation and modelling of hot forming B4C/AA6061 low... 465

Fig. 3. Temperature profile of the hot compression test

5. Results and discussion

5.1. Determination of constitutive equations

The experimental results from hot compression tests were used to determine material con-
stants in the developed constitutive relationships. Firstly, according to Eqs. (3.2), (3.9) and
(3.10), Young’s modulus and the initial yield strength of the composite vary with the tempera-
ture from the applied heat, and are also significantly greater than those of the matrix. Figure 4
shows the similarity between the equation fitted and experimentally determined values. Good
agreement exists between the fitted curves and experimental results. Differences that exist are
believed to be due to the difficulty in determining accurate values from hot compression results,
considering the slopes of the modulus are very sharp. Table 3 gives the material properties of the
matrix alloy and reinforcement particles at room temperature. Tables 4 lists values of material
constants used for calculating the strength variables.

Fig. 4. Comparisons of numerical fitting (solid lines) and experimental results (solid symbols) of
strength variables, where (a) Young’s modulus and (b) initial yield strength

Table 3. Material properties of the matrix alloy and reinforcement

Vp Vm
d Ep η

cm ρm
[µm] [MPa] [J/(kgK)] [kg/m3]

0.15 0.85 17.5 362000 0.9 890 2700

Other material constants in the dominant equation set were determined using a combination
of Evolutionary Programming (EP) optimisation techniques (Li et al., 2002) as well as trial and
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Table 4. Determined constants for Young’s modulus and initial yield strength

E0 QE E1 k1 Qk k2

590 20140 0.67 0.0017 40950 0.075

error methodology. The explanation of the optimisation method and description of numerical
procedures for determining the material constants of constitutive equations are described by
Cao and Lin (2008). Table 5 shows the determined material constants of Eqs. (3.10)1-5.

Table 5. Determined constants for material constants

K0 B0 C0 A0 n11 n12

326.5 0.2774 114.9 0.144 0.04691 −0.4111
QK QB QC QA Qn1 n2

9634 21780 51760 18420 29760 1

5.2. Comparison of experimental results and the constitutive model

Figures 5 and 6 show comparisons between the Gleeble experimental results (symbols) and
the modelling results (solid lines). Three typical hot forming temperatures 350◦C, 400◦C and
450◦C and three different strain rates from 0.01 s−1 to 1 s−1 were chosen. As can be seen in
both figures, good fitting accuracy was obtained. Dynamic recrystallization at the beginning of
deformation which results in the strain softening is neglected in the current model for simplicity
of numerical fitting. Figure 5 shows that MMC stress level reduces with the increasing forming
temperature, and is lower than that at the room temperature (Chen et al., 2015). When the

Fig. 5. Comparison of stress-strain relationships from hot compression tests at different temperatures
and a strain rate of 0.1 s−1. Symbols represent experimental results and solid lines are computed

predictions from the model

composite was compressed at higher temperatures, such as 450◦C and lower strain rates, such as
0.01 s−1, the stress level exhibited a plateau. The absence of strain hardening is believed to be
beneficial for bulk forming, such as extrusion and forging, as the strain hardening would increase
the forming load significantly and may cause cracks of the forming dies. In addition, the extent
of strain hardening increased with the decreasing temperature at a fixed strain rate, considering
dislocation recovery was not significant and visco-plastic feature was not obvious. The diffusion
process was not sufficient at lower temperatures. Moreover, compared with forming at the room
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temperature, an increased strain limit without crack was observed representing a reasonable
ductility improvement, which enhanced the feasibility of hot forming MMCs. For temperature
400◦C, a clear strain rate effect was also observed in the hardening curves. With increasing strain
rate, the stress level increased, as shown in Fig. 6. In summary, higher temperatures and lower
strain rates are recommended for hot bulk forming the low volume MMC materials.

Fig. 6. Comparison of stress-strain relationships from hot compression tests at different strain rates and
temperature of 400◦C. Symbols represent experimental results and solid lines are computed predictions

from the model

6. Conclusions

It is concluded that hot forming processes can be used to shape MMCs with a low volume
fraction of reinforcements. Stress-strain relationships obtained from hot compression tests of
AA6061/15% B4C MMC show that strain hardening is only obvious at relatively low tempera-
tures, and the flow stress and the flow stress remains relatively constant at higher temperatures,
which is believed to be beneficial for bulk forming. The strain rate hardening is also significant at
high temperatures dominated by the visco-plastic mechanism. In addition, the first ever unified
physically-based visco-plastic material model has been developed for hot forming of low volume
fraction reinforcement MMCs. The evolution of dislocations has been modelled taking into ac-
count the effects of temperature history and plastic deformation. This material model, suitable
for finite element simulations, can be further extended to predict stress-strain relationships of
MMCs under different process conditions.
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