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To detect and to diagnose, the localized defect in rolling bearings, a statistical model based
on the sequential Wald test is established to generate a “hypothetical” signal which takes
the state zero in absence of the defect, and the state one if a peak of resonance caused by the
defect in the bearing is present. The autocorrelation of this signal allows one to reveal the
periodicity of the defect and, consequently, one can establish the diagnosis by comparing the
frequency of the defect with the characteristic frequencies of the bearing. The originality of
this work is the use of the Wald test in the signal processing domain. Secondly, this method
permits the detection without considering the level of noise and the number of observations,
it can be used as a support for the Fast Fourier Transform. Finally, the simulated and
experimental signals are used to show the efficiency of this method based on the Wald test.
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1. Introduction

In the industry, a great attention has been given to monitoring conditions and maintenance
for the purpose to improve the quality of production. Edwards et al. (1998) and Tandon and
Choudhury (1999) showed the importance of maintenance as the best way to avoid maintenance
problems that are often very expensive. And also how the predictive maintenance techniques
have evolved to keep a check of mechanical health by generating information on the machine
condition. In rotating machines, the transmission elements: belts, gears and bearings are of major
interest in industrial maintenance as the operation of a mechanical system heavily depends on
health of these elements. Particularly, the rolling bearing is one of the most critical components
that determine machinery health and its remaining life time in modern production machinery
(Jayaswal et al., 2008). Robust Predictive Health Monitoring tools are needed to guarantee
the healthy state of rolling bearings during the operation. A predictive health monitoring tool
indicates upcoming failures which provide sufficient lead time for maintenance planning, as
showed by El-Thalji and Jantunen (2015), Mann et al. (1995) and Renwick and Babson (1985).

Over the past two decades, several methods have been the subject of studies and develop-
ments. Visibly noticed are revolution methods based on mechanical signal processing, which
are divided into two main categories, detection and diagnosis, and are based on time-frequency
methods and temporal methods or a combination of both. Thus, many methods are born, the
scalar indicators such as kurtosis, skew, crest factor (Dron et al., 2004; Pachaud et al., 1997),
demodulation and detection of the envelope (Sheen, 2004, 2008), amplitude modulation (Stack
et al., 2004), detection of vibration modes (Rizos et al., 1990), de-noising vibratory signals (Bo-
laers et al., 2004), the spectral density analysis (Krejcar and Frischer, 2011), the Fast Fourier
Transform (Lenort, 1995), the statistical model based on hypothesis test as KS-test Kolmogorov
and Smirnov (Kar and Mohanty, 2004; Dong et al., 2011; Yang et al., 2005), scalar and vector
statistical time series methods (Kopsaftopoulos and Fassois, 2011), neural networks (Samanta
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and Al-Balushi, 2003), wavelets (Bendjama and Boucherit, 2016), blind source separation (Wang
et al., 2014), fuzzy logic (Liu et al., 1996). El-Thalji and Jantunen (2015) and Rai and Upadhyay
(2016) reviewed almost all the techniques used in the domain predicting defects.

Typical defects in bearings are localized defects that occur generally in form of tiredness
cracking under cyclic pressure of contact (El-Thalji and Jantunen, 2015; Fajdiga and Sraml,
2009; Glaeser and Shaffer, 1996; Ismail et al., 1990; Tauqir et al., 2000). Thus, the detection of
cracking is frequently based on detection of the attack. During an abnormal operation, a series
of wide band impulses will be generated when the rolling element of the bearing (ball or roller)
(Brie, 2000; Ou et al., 2016) goes above the defect at a frequency determined by the shaft speed,
geometry of the bearing and the site of the defect (Barkov, 1999; Dyer and Stewart, 1978; Feng
et al., 2016; Ma and Li, 1995; Tandon and Choudhury, 1999). The site of the defect depending
on the characteristic frequencies gives the possibility of detecting the presence of the defect and
performing the diagnosis of the defective part.

The difficulty of detection of localized defects (Niu et al., 2015) is related to the bearing
energy which will diffuse through a wide band of frequency and hence it can be easily immersed
in the noise (Ma and Li, 1995; Van et al., 2016). Thus, under various operating regimes (varying
loads and speeds), many methods remain inefficient for the prediction (El-Thalji and Jantunen,
2015), because it may happen that an excited resonance mode at the beginning of the attack may
not be excited later when the defect has developed (Ma and Li, 1995; Mikhlin and Mytrokhin,
2008). In this paper, and to refer on the sequential analysis developed by Wald in the 1940s
(Schneeweiss, 2005; Wald, 1943, 1945, 1947, 1949; Wald and Wolfowitz, 1943, 1948), a composite
hypothesis test is used for the detection and diagnosis of localized defects in rolling bearings. To
this end, it is necessary to be provided with a significant and exact variance without any need
to estimate when the resonances modes occur.

2. Problem position

2.1. Probability Density Function (PDF) of vibrations of rolling bearings

To characterize vibration of rolling bearings, which is supposed to be a stationary stochastic
process, and the PDF can describe the percentage in time when the signal reaches a given
amplitude x. For the given amplitude, the PDF is estimated by

P (x) = lim
∆x→0

Pr {x ¬ x(t) ¬ x+∆x}

∆x
= lim
∆x→0

1

∆x

j
∑

i=1

∆ti
T

(2.1)

where T is the total time of observation and ∆ti is the i-th duration while x(t) is inside the
interval [x, x + ∆x]. For vibration without a defect, which represents healthy functioning, the
distribution of the amplitude can be considered as a Gaussian process. This vibratory signature
will have a well-defined variance σ20 which is different from the variance σ

2
1 of a signal with a

localized fault (Fig. 1) and, consequently, the overall vibration of the bearing will be constituted
by two alternately periodic parts with different variances (Ma and Li, 1995).

2.2. Sequential Probability Test (SPRT)

Introduce now the sequential probability test (SPRT) of a simple null hypothesis H0 which
indicates the good operating condition and a simple alternative hypothesis H1 which indicates
the presence of a defect, based on N independent observations x1, x2, . . . , xN having a common
probability density function developed by Wald (1945, 1949) and Weiss (1956).
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Fig. 1. Real signal of the rolling bearing with a defect

The hypotheses are

H0 : P (x/H0) =
1

√

(2π)NσN0

exp

(

−
N
∑

i=1

x2i
2σ20

)

H1 : P (x/H1) =
1

√

(2π)NσN1

exp

(

−
N
∑

i=1

x2i
2σ21

)

(2.2)

where x = [x1, x2, . . . , xN ] and σ
2
i are the variances with σ

2
0 < σ

2
1.

For the analysis of any vibratory signal, certainly one of the two variances will be retained
outside the test hypothesis H1 and one will have information whether or not it occurs with one
of the characteristic frequencies of the rolling bearings (inner race, outer race, ball and cage). In
the case of healthy rolling bearings, during a time ∆t for the signal x(t), all measurements of M
observations will have a Gaussian distribution given by relation (2.2)1, In the case of a defective
bearing given by (2.2)2 and by varying the number M of observations in the time ∆t, and as
soon asM is sufficiently large, and it is always possible to calculate the estimated variance σ21 of
the acquired vibratory signal with the defect in the rolling bearing. The variances σ20 for healthy
rolling bearings could be calculated by

σ20 =
1

M

M
∑

1

x2i (2.3)

and σ21 = M
−1∑M

1 x
2
i is considered as an estimated variance of the defect signal. Such an

estimate will lead to a test for probability of both detection or false alarm (Ma and Li, 1995).

3. Sequential test

3.1. The likelihood ratio test with simple choice

The likelihood ratio test (PRT) of the σ21 measurement could then be expressed as follows
(Ma and Li, 1995; Paulson, 1947)

{

if ξ(x) > µ choose H1

if ξ(x) < µ choose H0
(3.1)

where ξ(x) is the likelihood ratio, which is defined by

ξ(x) =
P (x/H1)

P (x/H0)
=
σN1
σN0
exp

(

σ21 − σ
2
0

2σ20σ
2
1

N
∑

i=1

x2i

)

(3.2)
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By taking the natural logarithm of the two parts, the test can be simplified into

{

if f(x) > γ choose H1

if f(x) < γ choose H0
(3.3)

where

f(x) =
N
∑

i=1

x2i γ =
2σ20σ

2
1

σ21 − σ
2
0

ln
(σN1
σN0
µ
)

(3.4)

Then probability Pf of the false alarm and the detection probability Pd of the PRT are

Pf = P (f(x) > γ/H0) = P
(

∑

x2i > γ/H0
)

=

∫

∑

x2
i
>γ

P (x/H0) dx

Pd = P (f(x) > γ/H1) = P
(

∑

x2i > γ/H1
)

=

∫

∑

x2
i
>γ

P (x/H1) dx
(3.5)

From equations (2.2) and (3.5)1, the Pf is a decreasing monotone function of the parameter γ.

Integration of equations (3.5) leads to

Pf = exp
(−γ

2σ20

)

Pd = exp
(−γ

2σ21

)

(3.6)

where σ20 is the variance measured during healthy operation, σ
2
1 –variance measured during

unspecified operation and γ – the threshold of the test determined by

γ = −2σ20 lnPf (3.7)

while combining Pd with Pf we will have

Pd = P

σ
2

0

σ
2

1

f (3.8)

Using equation (3.5)1 to determine the probability of the false alarm Pf which corresponds to
threshold equation (3.7) on the one hand and, on the other, using this same threshold will give
the maximum probability of detection Pd defined by equation (3.5)2 related to the variance σ

2
1

which is an unknown parameter estimated in one duration of the previously signal fixed. It can
be deduced that the uniformly most powerful test (UMP) exists in the sense of Neyman-Pearson
criterion which maximizes Pd (3.8) for a given Pf because the optimal probability rate test
(PRT) (3.3) for each σ21 > σ

2
0 could be completely defined apart from the knowledge of the

true variance σ21 of the signal defect. Finally, the UMP test is defined by system (3.3) and is
constructed by equations (3.1), (3.2) with a determined γ by the pre-established false alarm
probability α, where α is the threshold of significance

Pf (γ) = α (3.9)

3.2. Wald sequential test

Contrarily to the classical test (test with a simple choice), one is not obliged to make a choice
between the two hypotheses H0 and H1, consequently, one deals with another type of test. If the
size of observations is fixed, the construction of the test leads to the sharing of possible values
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of the statistical domain in three regions (Wald, 1945; Berger and Wald, 1949; Wolfowitz, 1949;
Sobel and Wald, 1949)

Ψ (n) = Ψ(x1, x2, . . . , xn) (3.10)

that is the region of probable values and the region of improbable values (knowing that the basic
hypothesis H0 is true). If a given value of Ψ(x1, x2, . . . , xn) falls into the region of improbable
values, the basic hypothesis is rejected. The sequential test, that is, the test based on a sequential
procedure of observation, is built up as follows. For each value of

ν = 1, 2, . . . , n, n+ 1 (3.11)

the domain Γν of possible values of the critical statistics Ψ(x1, x2, . . . , xn) is divided into three
disjoined regions: ΓH0ν – region of probable values, Γ

H1
ν – region of improbable values and Γ

∗

ν –
region of doubtful values (knowing that H0 is true)

Γν = Γ
H0
ν ∪ Γ

H1
ν ∪ Γ

∗

ν (3.12)

where ν = 1, 2, . . . with each step ν of the sequential procedure of observation. After having
recorded the observations x1, . . . , xν , ν = 1, 2, . . . one makes a decision relying on the following
rule which defines the Wald test: if Ψ(x1, x2, . . . , xn) ∈ Γ

H0
ν one accepts H0; if Ψ(x1, x2, . . . , xn) ∈

ΓH1ν one accepts H1 and if Ψ(x1, x2, . . . , xn) ∈ Γ
∗

ν the problem remains open until the ν-th
observation. For this reason, the region Γ ∗ν is called the region of indetermination or the region
of the observation pursuit.
For the establishment of the Wald test of probability, one considers two simple hypotheses

of the following form, see Wald (1945, 1947) and Wald and Wolfowitz (1948)

H0 The observation is extracted from a density population f(x, θ0)

H1 The observation is extracted from a density population f(x, θ1)
(3.13)

The critical statistics of this test is defined by the relation (Wald, 1945, 1947; Paulson, 1947)

Ψ (ν) = ln
f(x1, θ1) · · · f(xi, θ1)

f(x1, θ0) · · · f(xi, θ0)
=
ν
∑

i=1

ln
f(xi, θ1)

f(xi, θ0)
(3.14)

where: f(xi, θ0) = P (x/H0) with θ0 = σ
2
0 and f(xi, θ1) = P (x/H1) with θ1 = σ

2
1.

P (x/H0) and P (x/H1) could be drawn from equation (2.2). So, one establishing the likeli-
hood ratio, the critical statistics would be expressed as follows

Ψ (ν) = ln

{[

exp
(

− 1
2σ2
1

∑ν
i=1 x

2
i

)

√

(2π)νσν1

]/[

exp
(

− 1
2σ2
0

∑ν
i=1 x

2
i

)

√

(2π)νσν0

]}

(3.15)

After simplification of equation (3.15) and arrangement of the logarithmic term, one gets

Ψ (ν) =
σ21 − σ

2
0

2σ20σ
2
1

ν
∑

i=1

x2i +
ν

2
ln
σ21
σ20

(3.16)

The three regions are defined roughly by relations (3.11), (3.12), (3.13) and (3.16) that define
the completely Wald test (WT) (Aı̈vazian, 1986; Wald, 1947; Weiss, 1956)

ΓH0ν =
{

Ψ : Ψ (ν) ¬ ln
β

1− α

}

ΓH1ν =
{

Ψ : Ψ (ν) ¬ ln
1− β

α

}

Γ ∗ν =
{

Ψ : ln
β

1− α
¬ Ψ (ν) ¬ ln

1− β

α

}

(3.17)

Wald test (3.17) is more optimal than all tests between hypotheses (3.13) with risks of the first
and second species lower than the respective given values α and β.
Values of α and β (Aı̈vazian, 1986) are: 0.1, 0.05, 0.025, 0.01, 0.005, 0.001, 0.002.
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4. Rolling element bearings defects detection

4.1. Detection procedure

The detection procedure is divided into many steps which can be stated as follows:

1 – Take the discrete vibration for M samples, which is larger than the amount of the
characteristic period of the defect.

2 – Select a window of size N for the test.

3 – Estimate the variance σ20 by using equation (2.3).

4 – Suggest a choice of α and β.

5 – Position the window at the beginning of recording of the vibration.

6 – Compute Ψ (N) by using equation (3.16).

7 – Define the intervals of the three regions by the terminals a = ln[β/(1 − α)] and
b = ln[(1 − β)/α].

8 – Make the test by using equation (3.17).

9 – Generate a hypothetical signal defined by

h(i) =

{

0 if H0 is true (Ψ ¬ a)

1 if H1 is true (Ψ ­ b)

If a ¬ Ψ ¬ b, carry on with pursue for data opening another window (here, one does not
make a decision but only increases the size of the window).

10 – After generation of the hypothetical signal, if a defect is present, there will be a data
vector composed of two values 0 and 1. If 1, then appears periodically with a period of the
characteristic frequency of the bearing and is considered defective.

11 – To compare the detected frequency with the main characteristic frequencies of the rolling
bearings, it would be very easy to locate the defect so the diagnosis could be established
by comparing the multiple of this frequency detected with that of the most well-known
defects.

4.2. Test plan

Based on the detection procedure described in Section 4.1, a test plan can be established
which is shown by the procedure diagram shown in Fig. 2. So that the experiment is valid,
one chooses N as a small fraction of the characteristic period of the defect, that is to say one
fifth (Ma and Li, 1995). By examining step 10 in the detection procedure in Section 4.1 (to
show if there is periodicity), one uses autocorrelation of the signal, a peak in the autocorrelation
function reveals the periodicity of the signal, and the value of the time of this peak will give
the period of the defect Td. Consequently, one can determine the frequency of the defect fd, and
comparing it with the characteristic frequency fc, one can establish the diagnosis.

5. Validation of the model by simulated and experimental signals

5.1. Validation of the model by simulated signals

5.1.1. Generation of the simulated signals

To simulate the defect, a bearing of the type NJ2204ECP has been used. The shaft speed is
n = 1500 rpm, the characteristic frequencies are determined by the relations from Appendix A1,
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Fig. 2. Test plan

where the frequency of the cage is: fcage = 0.39fr (9.74Hz), the frequency of the outer race:
for = 0.39Zfr (87.68 Hz), the frequency of the inner race fir = 0.61Zfr (137.32 Hz), and the
frequency of the ball: fre = 4.754fr (118.85 Hz); where: fr = 25Hz, Z is the number of balls.
For NJ2204ECP: Z = 9, d = 7.5mm, D = 34mm, α = 0. The reference signal (Fig. 3a) is
taken as a sinusoid of frequency 25Hz, amplitude equal to unit and a null phase. The simulated
defect signal (Fig. 3b) is considered as the sum of a sinusoid of frequency 25Hz, amplitude
equal to unit and the null phase, a sinusoid of frequency 87Hz of amplitude 10 times the unit
(representing a defect of frequency 87Hz, which corresponds to the frequency of the outer race,
as one can use the function pulstran available in Matlab which generates a series of impulses),
and a Gaussian white noise centered with variance equal to 1 generated by the function “randn”
available in Matlab with a signal noise ratio SNR = 20 dB. The thresholds of significances are
fixed at α = 0.05 and β = 0.002.

Fig. 3. (a) Reference signal, (b) defect signal

5.1.2. Interpretation

One can say that periodicity of a hypothetical signal (h-signal, Fig. 4a) appeared in the
function of autocorrelation (Fig. 4b) reveals the existence of a defect. To determine its frequency,
one carries out Fourier fast transform (FFT) of the hypothetical signal, which reveals visually
the frequency of the defect (87Hz) which corresponds indeed to the characteristic frequency of
the outer race (Fig. 4c). Consequently, one can affirm that the plan suggested for detection and
diagnosis of the defect in the bearing has succeeded and to made diagnosis of the defective part.
During healthy running, the hypothetical signal will be zero, the autocorrelation of the h-signal
will not reveal any periodicity, and the FFT will confirm the absence of the defect.
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Fig. 4. (a) Hypothetical signal, (b) autocorrelation of hypothetical signal, (c) FFT of hypothetical signal

5.2. Validation of the model by experimental signals

5.2.1. Generation of the experimental signals

The test stand consists of a reinforced concrete frame, isolated from the ground by shock-
absorbing studs. Two rows of shafts each having diameter of 60mm and length of 680mm are
mounted in an open loop and fixed to the chassis by four rolling bearings with an average stiffness
of 3 · 107 daN/m as shown in Fig. 5.

Fig. 5. Architecture of the teststand (RB – roller bearing, BB – ball bearing)

The bearings in the vicinity of the test gear pair have ball bearings of the type 6012, while the
outer bearings are roller bearings of the type NU1013. The shaft lines are connected in rotation
by test gears. The applied speed and torque are measured by an electronic device composed of
a motor and a brake.

The dynamic behavior of the system can be studied using measurements of the acceleration,
transmission error and noise. The accelerations are measured using piezoelectric accelerometers
ENDEVCO 224C whose resonance frequency is 32 kHz. The accelerometers are mounted by
gluing small duralumin pellets onto the accelerometers which are screwed. The tests are carried
out on a spur gear with helical teeth. The gear ratio is 36/38 with modulusm = 2. The geometric
characteristics of the ball and roller bearing are given in Table 1.

Type of defect: To simulate the scaling on the bearings, a notch of 1.7mm and depth of 0.088mm
is made using a fine grinder as shown in Fig. 6. The roller bearing is removable without “NU
type” destruction or specialized tooling.



A new method for automatic defects detection and diagnosis... 131

Table 1. Geometric characteristics of the ball and roller bearing

Geometric characteristics Ball bearing Roller bearing

Middle diameter to center of balls D [mm] 77.7 80.55

Diameter of ball d [mm] 9 7

Number of balls Z 14 21

Angle of contact α 0 0

Fig. 6. Defective inner race geometry of the roller bearing

Monitoring conditions: The applied load is equal to 12 daNm and 4300 rpm speed test. The cha-
racteristic frequencies of the ball bearing and the roller bearing are calculated by the geometrical
formulas given in Appendix A1.

Table 2. Characteristic frequencies of the ball and roller bearings

Bearing type Fr [Hz] Fcage [Hz] For [Hz] Fir [Hz] Fer [Hz]

6012 71.67 31.68 443.56 559.77 627.02

NU1013 71.67 32.72 687.11 817.89 830.91

Fr – rotating frequency, Fcage – frequency of the cage,
For – frequency of the outer race, Fir – frequency of the inner race,
Fer – frequency of the ball or roller

Experimental signals: The acquired reference signal and the acquired signal defect are shown in
Fig. 7a and 7b.

5.2.2. Interpretation

The detection and diagnostic plan applied to the experimental signals shown in Fig. 7a and
Fig. 7b is able to detect the fault frequency applied to the bearing inner ring shown in Fig. 8a.
It shows the presence of state “1” of the hypothetical signal and Fig. 8b shows a frequency of
814Hz very close to the fault frequency which is equal to 817.89 Hz. It indicates that the plan
has reacted well in establishing a correct diagnosis.

6. Diagnosis plan

To establish a good diagnosis of defects, it is necessary to know a significant number of defects.
Thus, by comparing the frequency detected by the Wald test presented before with the charac-
teristic frequencies we can locate the defect. By comparing the defect frequency with the main
defects of the rolling bearings (Barkov, 1999), we can establish the diagnosis by using the fre-
quency of modulation presented in the work of Barkov (1999). For the plan suggested by Fig. 2
it is possible to establish the diagnosis of the bearing defective part and its nature.
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Fig. 7. (a) Experimental reference signal, (b) experimental defect signal

Fig. 8. (a) Experimental hypothetical signal, (b) FFT of the experimental hypothetical signal

7. Conclusion

The detection and diagnosis plan based on the Wald test is described. This plan can be applied
to measurements of the bearings vibration signals with and without defects under various loads
and speeds. The effectiveness of the suggested detection plan is illustrated in Fig. 4 for the simu-
lated signal and in Fig. 8 for the experimental signal. The plan works very well with vibratory
signals of wide bands. Finally, the plan is very promising for automatic detection and diagnostic
applications.
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Appendix 1

Characteristic frequencies of the bearing (Barkov, 1999):
— frequency of the cage

fcage =
fr
2

(

1−
d

D
cosα

)

— frequency of the outer race

for = Z
fr
2

(

1−
d

D
cosα

)
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— frequency of the inner race

fir = Z
fr
2

(

1 +
d

D
cosα

)

— frequency of the ball

fre = fr
d

D

[

1 +
(D

d

)2
cosα

]

where α is the angle of contact, d [mm] – diameter of the ball, D [mm] – middle distance to the
center of balls, Z – number of balls, fr [Hz] – rotating frequency (fr = n/60), n [rpm] – shaft
speed.
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1. Aı̈vazian S., Énukov I., Méchalkine, 1986, Modeling Element and Primary Data Processing
(in French), Mir Moscou

2. Barkov A.V., Barkova N.A., Yudin I.A., Rogov S.N., 1999, The Peculiarities of Rolling
Element Bearing Vibroacoustic Diagnostics for Transportation Applications, Vibrotek

3. Bendjama H., Boucherit M.S., 2016, Wavelets and principal component analysis method for
vibration monitoring of rotating machinery, Journal of Theoretical and Applied Mechanics, 54, 2,
659-670

4. Berger A., Wald A., 1949, On distinct hypotheses, The Annals of Mathematical Statistics, 20,
1, 104-109

5. Bolaers F., Cousinard O., Marconnet P., Rasolofondraibe L., 2004, Advanced detection
of rolling bearing spalling from de-noising vibratory signals, Control Engineering Practice, 12,
181-190

6. Brie D., 2000, Modelling of the spalled rolling element bearing vibration signal : An overview and
some results, Mechanical Systems and Signal Processing, 14, 3, 353-369

7. Dong Y., Liao M., Zhang X., Wang F., 2011, Faults diagnosis of rolling element bearings based
on modified morphological method, Mechanical Systems and Signal Processing, 25, 1276-1286

8. Dron J.P., Bolaers F., Rasolofondraibe L., 2004, Improvement of the sensitivity of the sca-
lar indicators (crest factor, kurtosis) using a de-noising method by spectral subtraction: application
to the detection of defects in ball bearings, Journal of Sound and Vibration, 270, 270, 61-73

9. Dyer D., Stewart R.M., 1978, Detection of rolling element bearing damage by statistical vibra-
tion analysis, Journal of Mechanical Design, 100, 229

10. Edwards D.J., Holt G.D., Harris F.C., 1998, Predictive maintenance techniques and their
relevance to construction plant, Journal of Quality in Maintenance Engineering, 4, 1, 25-37

11. El-Thalji I., Jantunen E., 2015, A summary of fault modelling and predictive health monitoring
of rolling element bearings, Mechanical Systems and Signal Processing, 60-61, 252-272

12. Fajdiga G., Sraml M., 2009, Fatigue crack initiation and propagation under cyclic contact
loading, Engineering Fracture Mechanics, 76 , 1320-1335

13. Feng Z., Ma H., Zuo M.J., 2016, Vibration signal models for fault diagnosis of planet bearings,
Journal of Sound and Vibration, 370, 372-393

14. Glaeser W.A., Shaffer S.J., 1996, Contact fatigue, ASM Handbook, Fatigue and Fracture, 19,
331-336

15. Ismail F., Ibrahim A., Martin H.R., 1990, Identification of fatigue cracks from vibration testing,
Journal of Sound and Vibration, 140, 2, 305-317



134 A. Chiter et al.

16. Jayaswal P., Wadhwani A.K., Mulchandani K.B., 2008, Machine fault signature analysis,
International Journal of Rotating Machinery, DOI: 10.1155/2008/583982

17. Kar C., Mohanty A.R., 2004, Application of KS test in ball bearing fault diagnosis, Journal of
Sound and Vibration, 269, 439-454

18. Kopsaftopoulos F.P., Fassois S.D., 2011, Scalar and vector time series methods for vibration
based damage diagnosis in a scale aircraft skeleton structure, Journal of Theoretical and Applied
Mechanics, 49, 3, 727-756

19. Krejcar O., Frischer R., 2011, Non destructive defect detection by spectral density analysis,
Sensors, 11, 2334-2346

20. Lenort F., 1995, A Fast Discrete Fourier Transform with unequally-spaced frequencies, Journal
of Theoretical and Applied Mechanics, 33, 1, 73-81

21. Liu T.I., Singonahalli J.H., Iyer N.R., 1996, Detection of roller bearing defects using expert
system and fuzzy logic, Mechanical Systems and Signal Processing, 10, 5, 595-614

22. Ma J., Li J.C., 1995, Detection of localised defects in rolling element bearing via composite
hypothesis test, Mechanical Systems and Signal Processing, 9, 1, 63-75

23. Mann Jr L., Saxena A., Knapp G.M., 1995, Statistical-based or condition-based preventive
maintenance, Journal of Quality in Maintenance Engineering, 1, 46-59

24. Mikhlin Y., Mytrokhin S., 2008, Non linear vibration modes of the tracked raod vehicle, Journal
of Theoretical and Applied Mechanics, 46, 3, 581-596

25. Niu L., Cao H., He Z., Li Y., 2015, A systematic study of ball passing frequencies based on
dynamic modeling of rolling ball bearings with localized surface defects, Journal of Sound and
Vibration, 357, 207-232

26. Ou L., Yu D., Yang H., 2016, A new rolling bearing fault diagnosis method based on GFT
impulse component extraction, Mechanical Systems and Signal Processing, 81, 162-182

27. Pachaud C., Salvetat R., Fray C., 1997, Crest factor and kurtosis contributions to identify
defects inducing periodical impulsive forces, Mechanical Systems and Signal Processing, 11, 6,
903-916

28. Paulson E., 1947, A note on the efficiency of the Wald sequential test, The Annals of Mathematical
Statistics, 18, 3, 447-450

29. Rai A., Upadhyay S.H., 2016, A review on signal processing techniques utilized in the fault
diagnosis of rolling element bearings, Tribiology International, 96, 289-306

30. Renwick J.T., Babson P.E., 1985, 1985, Vibration analysis-a proven technique as a predictive
maintenance tool, IEEE Transactions on Industry Applications, IA-21, 2

31. Rizos P.F., Aspragathos N., Dimarogonas A.D., 1990, Identification of crack location and
magnitude in a cantilever beam from the vibration modes, Journal of Sound and Vibration, 138,
3, 381-388

32. Samanta B., Al-Balushi K.R., 2003, Artificial neural network based fault diagnosis for rolling
element bearings using time-domain features, Mechanical Systems and Signal Processing, 17, 2,
317-328

33. Schneeweiss H., 2005, Abraham Wald, Department of Statistics, University of Munich, Collabo-
rative Research Center, 386, 439

34. Sheen Y.-T., 2004, A complex filter for vibration signal demodulation in bearing defect diagnosis,
Journal of Sound and Vibration, 276, 105-119

35. Sheen Y.-T., 2008, An envelope detection method based on the first-vibration-mode of bearing
vibration, Measurement, 41, 797-809

36. Sobel M., Wald A., 1949, A sequential decision procedure for choosing one of three hypotheses
concerning the unknown mean of a normal distribution, The Annals of Mathematical Statistics,
20, 4, 502-522



A new method for automatic defects detection and diagnosis... 135

37. Stack J.R., Harley R.G., Habetler T.G., 2004, An amplitude modulation detector for fault
diagnosis in rolling element bearings, IEEE Transactions on Industrial Electronics, 51, 5, 1097-1102

38. Tandon N., Choudhury A., 1999, A review of vibration and acoustic measurement methods for
the detection of defects in rolling element bearings, Tribology International, 32, 8, 469-480

39. Tauqir A., Salam I., ul Haq A., Khan A.Q., 2000, Causes of fatigue failure in the main
bearing of an aero-engine, Engineering Failure Analysis, 7, 127-144

40. Van M., Franciosa P., Ceglarek D., 2016, Rolling element bearing fault diagnosis using
integrated nonlocal means de-noising with modified morphology filter operators, Mathematical
Problems in Engineering, DOI: 10.1155/2016/9657285

41. Wald A., 1943, On the efficient design of statistical investigations, The Annals of Mathematical
Statistics, 14, 2, 134-140

42. Wald A., 1945, Sequential tests of statistical hypotheses, The Annals of Mathematical Statistics,
16, 2, 117-186

43. Wald A., 1947, Sequential Analysis, John Wiley and Sons, New York

44. Wald A., 1949, Statistical decision functions, The Annals of Mathematical Statistics, 20, 2,
165-205

45. Wald A., Wolfowitz J., 1943, An exact test for randomness in the non-parametric case based
on serial correlation, The Annals of Mathematical Statistics, 14, 4, 378-388

46. Wald A., Wolfowitz J., 1948, Optimum character of the sequential probability ratio test, The
Annals of Mathematical Statistics, 19, 3, 326-339

47. Wang H., Li R., Tang G., Yuan H., Zhao Q., Cao X., 2014, A compound fault diagno-
sis for rolling bearings method based on blind source separation and ensemble empirical mode
decomposition, Journals Plos, 9, 10

48. Weiss L., 1956, On the uniqueness of Wald sequential tests, The Annals of Mathematical Statistics,
27, 4, 1178-1181

49. Wolfowitz J., 1949, On Wald’s proof of the consistency of the maximum likelihood estimate,
The Annals of Mathematical Statistics, 20, 4, 601-602

50. Yang H., Mathew J., Ma L., 2005, Fault diagnosis of rolling element bearings using basis
pursuit, Mechanical Systems and Signal Processing, 19, 341-356

Manuscript received November 13, 2016; accepted for print July 28, 2017


