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In this work, we employ the multiple scale method to introduce a novel analytical solu-
tion for an extended four-degrees-of-freedom dynamical system modeled on a swinging At-
wood machine. We provide a methodology for obtaining the asymptotic solution up to the
second-order approximation for both the swinging and modified swinging Atwood machine,
demonstrating its solvability through the multiple scale approach. Subsequently, we present
a comparative analysis of time histories between numerical and analytical solutions. These
analytical solutions are of particular significance in applied mechanics, given their practical
applications in parametric dynamical models grounded in the pendulum concept.

Keywords: analytical solutions, asymptotic solutions, swinging Atwood machine, multiple
scale method

1. Introduction

Analytical solutions find extensive applications across physics, engineering, and mathematics.
Their versatility allows for simulating a wide range of systems, from elementary pendulums
to intricate electromagnetic fields. Furthermore, these solutions prove invaluable in validating
numerical methods, offering a reliable benchmark for precise comparison and assessment.
Drawing from the existing body of literature on variable-length pendulums (Yakubu et al.,

2022), it becomes apparent that the modeling and analysis of parametric dynamical models
for such pendulums can be intricate and demanding. The applications of such pendulums in
mechanical and mechatronic systems provide a compelling motivation for undertaking research
in this area, and they have a strong presence in both theoretical and practical engineering
applications.
The multiple scale approach is a widely utilized technique for finding analytical solutions

of dynamical systems, as evidenced by various authors in the following references: Abady et al.
(2022), Abohamer et al. (2023a,b), Awrejcewicz et al. (2022), Starosta et al. (2017), Manafian
and Allahverdiyeva (2022). A recent publication by Prokopenya (2021) tackled the problem of
finding solutions to the equations of motion of swinging Atwood machine, a system comprised
of two equal masses that oscillate and are in a state of dynamic equilibrium. The author derived
the system differential equations of motion and computed them in the form of a power series
with a small parameter.
Obtaining an analytical solution for novel 4-degrees of freedom (4-DOF) modified swinging

Atwood machine (SAM) holds immense significance. This is primarily due to its ability to provide
fast, stable, and precise solutions that can be readily understood and explicitly expressed due to
its parameter dependencies (Manafian and Allahverdiyeva, 2022; Seadawy and Manafian, 2018;
Starosta et al., 2017).
To explore the potentially intricate dynamics of a variable-length pendulum in a range of

engineering and mechatronic systems, we introduce a novel 4-DOF variable-length pendulum
model. This pendulum is analytically solved, and a comparative analysis is performed to identify
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correlative features between analytical and numerical solutions, thus verifying the accuracy of
the computational model. The primary objective of this analysis is to uncover the system internal
structure by identifying all the existing resonances. The analytical solution presented allows for
the resolution of resonance issues by making appropriate adjustments to the forcing term when
the model is applied in engineering and mechatronic systems. This ensures that the pendulum
operates optimally in various practical applications.
In this paper, we utilized the multiple scale method, which allowed us to derive an asymptotic

solution up to the second-order approximation of the SAM. The objective was to gain insight
into applying the same technique for analytically solving the novel modified SAM with 4-DOF.
Accordingly, we applied the same multiple scale method and derived the analytical solution for
the modified SAM.
Before delving into procedures for finding solutions, the main assumptions are presented in

Section 1.1. This approach ensures that the reader has a clear understanding of the underlying
assumptions that are used in developing the analytical solution. Furthermore, by establishing
the key assumptions upfront, the subsequent steps in the solution-finding process are grounded
in a well-defined set of criteria. Therefore, by clearly stating the main assumptions at the outset,
we can ensure that the subsequent analysis is rigorous, transparent, and logically consistent.

1.1. Main assumptions

To approximate the solution to the differential equation, a series expansion based on powers
of a small parameter is employed (Awrejcewicz et al., 2022). Each term in the series represents
a distinct time or length scale (Abohamer et al., 2023b; Awrejcewicz et al., 2022). In order to
streamline the resulting equations, the higher-order terms associated with the small parameter
are neglected.
The precision of a multiple scale solution relies on the small parameter size and the number

of terms incorporated in the series expansion. Generally, a more accurate solution is achieved
when more terms are added in the expansion (Awrejcewicz et al., 2022; Nayfeh, 2005). However,
it is important to acknowledge that despite the potential for increased accuracy with more terms,
the complexity of the equations often requires limiting Taylor’s series expansion to the inceptive
terms only.
Considering the assumptions mentioned earlier, we have neglected the impact of frictional

forces in the model equations. To make the system suitable for investigation, we transformed
the equations of motion into a dimensionless form to make it solvable using multiple scales. In
doing so, we introduced specific dimensionless terms. Furthermore, we offset the time-dependent
variables x(t) and φ̇(t) in the SAM model, and x1(t) and φ̇1(t) in the modified SAM model by
an independent variable designated by λ.

2. The swinging Atwood machine

The SAM is a classical mechanics concept that can aid in comprehending the variable-length
pendulum. In this particular system, the pendulum body oscillates within a two-dimensional
plane, displaying a diverse range of dynamic behavior while remaining disconnected from another
mass known as the counterweight (Elmandouh, 2016; Prokopeny, 2017; Tufillaro, 1985). In the
initial approach, the two bodies are linked by an unyielding weightless string suspended on two
pulleys devoid of friction (Tufillaro, 1994), as demonstrated in Fig. 1a.
The behavior of the SAM can be described by employing concepts of circular motion, cen-

tripetal force, and energy conservation. The tension in the string creates the centripetal force
which enables the pendulum, mass m, to move horizontally to follow a circular trajectory, and
the counterweight of mass M to move vertically, solely influenced by the force of gravity only
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Fig. 1. (a) The initial physical model of the 2-DOF SAM: M – counterweight, m – pendulum body;
(b) the proposed original Modified SAM

(Elmandouh, 2016; Tufillaro et al., 1988). By analyzing motion of this system, various phys-
ical phenomena can be explored, such as conservation of angular momentum and the impact
of centripetal force on object motion. Due to the pendulum reactive centrifugal force oppos-
ing the weight of the counterweight mass M , the dynamic response of the system can exhibit
characteristics such as singularity or non-singularity, chaos or quasi-periodicity, boundedness or
unboundedness, and even discontinuity (Casasayas et al., 1990; Tufillaro, 1986; Nunes et al.,
1995; Pujol et al., 2010; Yehia, 2006).

2.1. Equations of motion

The system being examined possesses two degrees of freedom. First, by utilizing the La-
grangian L, one can deduce the equation of motion (Elmandouh, 2016) for T and U , which
respectively denote the kinetic and potential energy. The equations of motion for the SAM as
described by Prokopenya (2021), Elmandouh (2016), Tufillaro et al. (1988), Tufillaro (1994),
Casasayas et al. (1990), Nunes et al. (1995), Pujol et al. (2010), Yehia (2006), Tufillaro (1985)
are presented below.
Upon considering the initial state-space variable, we observe that the two ordinary differential

equations (ODEs) encompass the dynamics along the two independent degrees of freedom, i.e.,
ϕ(t) and l(t)

∂L

∂ϕ
=

d

dt

(∂L
∂ϕ̇

) ∂L

∂l
=

d

dt

(∂L
∂l̇

)
(2.1)

Based on the presented model illustrated in Fig. 1a, we express the following

T =
1
2
Ml̇2(t) +

1
2
m[l̇2(t) + l2(t)ϕ̇2(t)] U =Mgl(t)−mgl(t) cosϕ(t) (2.2)

where M is the non-swinging mass, m – pendulum mass as it swings, l(t) – distance from the
pivot point to the center of the swinging pendulum body.
We determine the Lagrangian as L = T − U , i.e.

L =
1
2
Ml̇2(t) +

1
2
m[l̇2(t) + l2(t)ϕ̇2(t)]−Mgl(t) +mgl(t) cosϕ(t) (2.3)

Given that the Hamiltonian H = T + U is defined in terms of the canonical momenta pl
and pϕ, we obtain the following

H =
p2l

2(M +m)
+

p2ϕ
2ml2(t)

+Mgl(t)−mgl cosϕ(t) (2.4)

where: pl = (M +m)l̇(t), pϕ = ml2(t)ϕ̇(t).
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The equations governing dynamical behavior in the state-space variables ϕ and l can be
obtained based on the aforementioned assumptions

l(t)ϕ̈(t) + 2l̇(t)ϕ̇(t) + g sinϕ(t) = 0

ml(t)ϕ̇2(t)−Mg +mg cosϕ(t) = (M +m)l̈(t)
(2.5)

Taking into account the mass ratio µm =M/m, then Eq. (2.5)2 becomes

(µm + 1)l̈(t)− l(t)ϕ̇2(t) + g[µm − cosϕ(t)] = 0 (2.6)

In order to find the solution of the systems using the MSM method, the following parameters
are employed

ω22 =
g

l
ω24 =

ω22
ω21

σ1 =
λ3

(µ+ 1)ω21
+

µω24
µ+ 1

− ω24
µ+ 1

σ2 =
λ2

(µ+ 1)ω21
σ3 =

ω24
3(µ+ 1)

ζ5 =
1
λ

σ4 =
2λ2

(µ+ 1)ω1

σ5 =
2λ

(µ+ 1)ω1
σ6 = −

λ

µ+ 1
σ7 =

1
µ+ 1

ζ1 = ω24

ζ2 =
ω24
6

ζ3 =
2
ω1

ζ4 =
2
λ

(2.7)

Moreover, we employed the Taylor series to incorporate an additional approximation. In particu-
lar, we considered only the first term of Taylor’s expansion, resulting in the following expression

sinφ(t) = φ(t)− φ3(t)
6

cosφ(t) = 1− φ2(t)
2

(2.8)

By utilizing the parameters specified in Eqs. (2.7) and (2.8), Eqs. (2.5) are transformed into
their final dimensionless form, which can be expressed as follows

σ1 + σ2x(τ) + σ3φ(τ)2 + σ4φ̇1(τ) + σ5x(τ)φ̇(τ) + σ6φ̇(τ)2 + σ7x(τ)φ̇(τ)2 + ẍ(τ) = 0

ζ1φ(τ)− ζ2φ(τ)3 + ζ3ẋ(τ) + ζ4φ̇(τ)ẋ(τ) + φ̈(τ) + ζ5x(τ)φ̈(τ) = 0
(2.9)

where τ represents the dimensionless time, x(τ) and φ(τ) are dimensionless forms of l(t) and ϕ(t),
respectively. ω1 is first associated with φ̇(τ), then λ is introduced into both x(τ) and φ̇(τ) as a
way to partially linearize the nonlinear terms ensuring that they appear in the equation where
they should be. This effectively helps in decoupling the left-hand side of the approximate solution
using the multiple scale method.

2.2. The multiple scale approach technique

In this Section, we apply the multiple scale approach to obtain asymptotic solutions for
the equations mentioned in Eqs. (2.9). In accordance with the multiple scale technique, we
examine the dynamics of the systems under consideration within a close range around their static
equilibrium position (Abohamer et al., 2023a; Awrejcewicz et al., 2022). In order to characterize
the amplitudes of oscillations within this region, we introduce a small parameter denoted as
0 < ε << 1, which allows us to establish the following relationship

x(τ) = εα(τ : ε) φ(τ) = εγ(τ : ε) (2.10)

This enabled us to consider the following approximations

σ1 = ε2σ̃1 σ4 = ε1σ̃4 σ7 = ε−1σ̃7

ζ2 = ε−1ζ̃2 ζ3 = εζ̃3 ζ5 = ε0ζ̃5
(2.11)
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where ε is a parameter used for bookkeeping, having no impact on the computation and not
appearing in the final approximate solution. Its purpose is to ensure that all other terms from
the original equations are included in the solution process. We assume that ε is small enough to
avoid computational errors.
In accordance with the multiple scale approach, the time-dependent variable x(τ), and

φ(τ) can be considered as a power series of ε

x(τ) =
2∑

k=1

εkx,k(τ0, τ1) +O(εk) φ(τ) =
2∑

k=1

εkφ,k(τ0, τ1) +O(εk) (2.12)

where τn = εnτ(n = 0, 1) with τ0 being the fastest and τ1 being the slowest.
To convert the derivatives with respect to τ to the new time scales τn, the following operators

are employed

d

dτ
=

∂

∂τ0
+ ε

∂

∂τ0

d2

dτ2
=

∂2

∂τ20
+ 2ε

∂2

∂τ0∂τ1
+O(ε2) (2.13)

It is worth noting that these operators neglect terms of O(ε2) and higher orders. To obtain the
partial differential equation (PDE) groups corresponding to different powers of ε, we substitute
equations (2.10)-(2.13) into the dimensionless form of governing equations (2.9). This procedure
leads to derivation of the preceding four linear PDEs. Based on the perturbation parameter ε,
the splitting method is employed for obtaining these PDEs (Awrejcewicz et al., 2022). These
equations are the orders of ε and ε2:
— first-order equations (coefficient 1 at ε1)

∂2α1
∂τ20
+ σ2α1 = 0

∂2γ1
∂τ20
+ ζ1γ1 = 0 (2.14)

— second-order equations (coefficient 2 at ε2)

σ̃1 + σ2α2 + σ3γ21 + σ̃4γ1
∂γ1
∂τ0
+ σ5α1γ1

∂γ1
∂τ0
+ σ6

(∂γ1
∂τ0

)2

+ σ̃7α1
(∂γ1
∂τ0

)2
+ 2

∂2α1
∂τ0∂τ1

+
∂2α2
∂τ20
= 0

ζ1γ2 − ζ̃2γ31 + ζ̃3
∂α1
∂τ0
+ ζ4

∂α1
∂τ0

∂γ1
∂τ0
+ 2

∂2γ1
∂τ0∂τ1

+ ζ̃5α1
∂2γ1
∂τ20
+
∂2γ2
∂τ20
= 0

(2.15)

where α1 and γ1 represent the solution of the first-order approximations of the time-dependent
variables x(τ) and φ1(τ), respectively. Also, α2 and γ2 are the solution of the second-order ap-
proximations of the time-dependent variables x(τ) and φ1(τ). Meanwhile, α and γ will represent
the respective general solutions of the time-dependent variables.
The solutions to Eqs. (2.15) are required to be solved in a specific order. Notably, the solutions

obtained from the first group hold significant importance. Therefore, our initial emphasis lies in
acquiring the general solutions to Eq. (2.14). The resulting established solutions are presented
as follows

α1 = eiσ2τ0B1(τ1) + e−iσ2τ0B̃1(τ1) γ1 = eiζ1τ0B3(τ1) + e−iζ1τ0B̃3(τ1) (2.16)
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Consequently, by substituting solutions (2.16) into the second group of PDEs (2.15), we obtain
the following second-order solutions with Bi and B̃i being τ1 dependent, where i = 1, 2

α2 = −
−2ζ21σ6B2(τ1)B̃2(τ1)− 2σ3B2(τ1)B̃2(τ1) + σ̃1

σ22
+
iσ5B1(τ1)B2(τ1)eiτ0(ζ1+σ2)

ζ1 + 2σ2

− e
2iζ1τ0 [ζ21σ6B2(τ1)

2 − σ3B2(τ1)2]
(2ζ1 − σ2)(2ζ1 + σ2)

+
iζ1σ̃4B2(τ1)eiζ1τ0

(ζ1 − σ2)(ζ1 + σ2)
− ζ1σ̃7B1(τ1)B2(τ1)2eiτ0(2ζ1+σ2)

4(ζ1 + σ2)

+
iσ5B2(τ1)B̃1(τ1)eiτ0(ζ1−σ2)

ζ1 − 2σ2
− ζ1σ̃7B2(τ1)2B̃1(τ1)eiτ0(2ζ1−σ2)

4(ζ1 − σ2)
+ CT

γ2 = −
ζ̃2B2(τ1)3e3iζ1τ0

8ζ21
− e
iτ0(ζ1+σ2)[ζ21 ζ̃5B1(τ1)B2(τ1) + ζ1ζ4σ2B1(τ1)B2(τ1)]

σ2(2ζ1 + σ2)

+
iσ2ζ̃3B1(τ1)eiσ2τ0

(σ2 − ζ1)(ζ1 + σ2)
+
eiτ0(ζ1−σ2)[ζ21 ζ̃5B2(τ1)B̃1(τ1)− ζ1ζ4σ2B2(τ1)B̃1(τ1)]

σ2(2ζ1 − σ2)
+ CT

(2.17)

where CT represents the conjugates of the preceding terms.

2.3. Modulation equations

The modulation equations are a group of four first-order ODEs that describe the modulation
of amplitudes and phases, since the procedures for solving them are complemented by initial
conditions.
Secular terms in Eqs. (2.18) appear when the previous solutions are substituted into second-

-order Eqs (2.17). These terms act as conditions for solvability, which must be eliminated to
obtain the modulation equations.
In order to eliminate the secular terms from the equations, we use a method that involves

introducing new, unknown complex value functions that are defined in Eq. (2.19). These func-
tions are then substituted into the secular terms. Canceling them effectively allows us to obtain
the modulation equations. This, in turn, enables us to arrive at the final asymptotic solution.
These secular terms in α2 and γ2 follow

α2,s = −2ζ21B1(τ1)B2(τ1)σ̃7(τ1)B̃2(τ1)− 2iσ2
∂B1(τ1)
∂τ1

γ2,s = 3ζ̃2B2(τ1)2B̃2(τ1)− 2iζ1
∂B2(τ1)
∂τ1

(2.18)

and

Bk =
1
2
ak(τ)eiψk B̃k =

1
2
ak(τ)e−iψk k = 1, 2 (2.19)

where the order ψj and aj represent the phases and amplitude of the solutions α and γ, respec-
tively, for j = 1, 2.
Once we removed the secular terms from α2 and γ2, we arrived at the ensuing modulation

equations

ȧ1(τ) = 0 ȧ2(τ) = 0 ψ̇1(τ) =
ζ21a2(τ)

2σ7
4σ2

ψ̇2(τ) = −
3a2(τ)2ζ2
8ζ1

(2.20)

Once we reconstituted the modulation equations for nonresonant cases and took into account
established equations (2.20), we obtained the final asymptotic solution up to the second-order
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approximations, with ai and ψi being dependent on τ1 for i = 1, 2. The resulting solution is as
follows

α =
a2(τ)2(ζ12σ6 + σ3)− 2σ1

2σ22
+ a1(τ) cos(σ2τ + ψ1(τ))

+
a2(τ)2(σ3 − ζ21σ6) cos[2(ζ1τ + ψ2(τ))]

8ζ21 − 2σ22
− σ5a1(τ)a2(τ) sin[τ(ζ1 + σ2) + ψ1(τ) + ψ2(τ)]

2(ζ1 + 2σ2)

− σ5a1(τ)a2(τ) sin[τ(ζ1 − σ2)− ψ1(τ) + ψ2(τ)]
2(ζ1 − 2σ2)

− ζ1σ7a1(τ)a2(τ)2 cos[τ(2ζ1 + σ2) + ψ1(τ) + 2ψ2(τ)]
16(ζ1 + σ2)

− ζ1σ4a2(τ) sin(ζ1τ + ψ2(τ))
ζ21 − σ22

− ζ1σ7a1(τ)a2(τ)2 cos[τ(2ζ1 − σ2)− ψ1(τ) + 2ψ2(τ)]
16(ζ1 − σ2)

γ = a2(τ) cos(ζ1τ + ψ2(τ)) +
ζ1a1(τ)a2(τ)(ζ1ζ5 − ζ4σ2) cos[τ(ζ1 − σ2)− ψ1(τ) + ψ2(τ)]

2σ2(2ζ1 − σ2)

− ζ1a1(τ)a2(τ)(ζ1ζ5 + ζ4σ2) cos[τ(ζ1 + σ2) + ψ1(τ) + ψ2(τ)]
2σ2(2ζ1 + σ2)

+
ζ3σ2a1(τ) sin(σ2τψ1(τ))

ζ21 − σ22
− ζ2a2(τ)3 cos[3(ζ1τ + ψ2(τ))]

32ζ21

(2.21)

2.4. Comparison between analytical and numerical solutions using time histories

To compare the dimensionless form of equations of motion (2.9) with second-order asymptotic
solution (2.21), we present a time history based on the data provided in Eqs. (2.22).
In Figs. 2a,b, we depict the time histories for two degrees of freedom of the dynamical

system, namely, x(τ) and φ1(τ), respectively. It is noteworthy that both the analytical and
numerical solutions demonstrate satisfactory accuracy of the obtained approximation. Hence,
even a simplified model of the dynamical system can be efficiently solved analytically using the
presented approach.

σ1 = 0.0025 σ2 = 1.01 σ3 = 0.06 σ4 = 0.014

σ5 = 0.06 σ6 = 0.01 σ7 = 0.05 ζ1 = 1.0

ζ2 = 0.1667 ζ3 = 0.0005 ζ4 = 0.01 ζ5 = 0.005

x(τ) = 0.04 ẋ(τ) = 0 φ(τ) = 0.01 φ̇(τ) = 0

(2.22)

The obtained solutions are then compared by plotting them in time history plots. The masses
of pendulums and length of the string greatly influence the simulation results. Furthermore, these
results can be utilized to gain more insights into energy transfers, tension in the string, and other
critical characteristics of the system.

2.4.1. Compliance error

To ensure solution dependability and precision, time histories of compliance errors in the re-
sults are presented. This not only aids potential computation optimization but also contributes
to advancing numerical methods. These histories, integrated with the results, enhance visual-
ization of discrepancies in individual time intervals. Additionally, the Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE) are computed using

∑N
n=1[Numi − Apri)2]/n and∑N

n=1[|Numi −Apri|]/n, respectively. Here, Num is the numerical solution, Apr is the approx-
imate solution, and N is the number of observations. These metrics provide additional tools
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Fig. 2. (a) Comparison between the analytical (in blue, Eq. (2.9)1) and numerical (in red, Eq. (2.21)1)
solution using the parameters given in Eqs. (2.22). (b) Comparison between analytical (φ(τ) in green,
Eq. (2.9)2) and numerical (β in red, Eq. (2.21)2) solution using the parameters presented in Eqs. (2.22).
(c) Compliance error for x(τ) with RMSE = 0.00844126 and MAE = 0.00662222. (d) Compliance error

for φ(τ) with RMSE = 0.000152463 and MAE = 0.000111975

for a thorough assessment of solution accuracy, offering a more comprehensive understanding of
overall performance.
Figures 2c and 2d depict the deviation between numerical and approximate solutions along

the x-axis (representing time). The y-axis shows the compliance error at each point. Peaks or
shifts in error plots signify notable deviations between solutions, while a declining trend suggests
convergence of the numerical solution. Oscillations in the compliance errors indicate sensitivity
to parameters and initial conditions. RMSE and MAE values are very small, affirming improved
performance of the method and appropriateness of the dataset.
Moving forward to the next Section, we show a more advanced version of the variable-length

pendulum with 4-DOF. The process used to obtain the solutions for this system closely mirrors
the one employed earlier, encompassing all the fundamental assumptions and culminating in
generating and comparing the results in time history plots.

3. The original modification of SAM

We introduce a novel and innovative modification to the SAMmodel based on the work presented
in (Yakubu et al., 2022). This modified version demonstrates potentially richer dynamics, as
depicted in Fig. 1b. To achieve this, we have added a second spring pendulum to the non-swinging
mass M , on the opposite end. The two pendulums, with masses of m1 and m2, are connected
by a suspension configuration with a stiffness k and a damper c. Point 02 is free to rotate and
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subject to oscillation in the (X,Y ) plane, while point 01 is fixed, allowing for the variability of
length l1 and the double pendulum configurations. The distance of l20 is measured between the
two pendulums, and l2 denotes the extension caused by the spring between them. The original
Modified SAM model can be applied to various scenarios, including wave variability, suspension
systems, elastic robotic links, and load-lifting equipment such as cranes. X0 = f0 sin(ωt+ θ) is a
time function that represents the periodic kinematic excitation. The displacement is measured
from the origin of the coordinate system O specifically in the direction of the x-axis. Here, f0 is
the excitation force, ω and θ represent the angular frequency and phase shift of the excitation,
respectively, while s denotes the distance in the X direction from the point O to the fixed support
point O1.

3.1. Equations of motion

The equation of motion for the 4-DOF MSAM model is derived in (Yakubu et al., 2022)
using Newton’s second law and the Lagrangian mechanics. The system equations of motion,
when friction in pulley bearing is neglected, are

l̈1 =
1

m1 +M
[T2 cos(ϕ2 − ϕ1)− (M +m1 sinϕ1)Ẍ0 +m1(l1ϕ̇21 + g cosϕ1)−Mg]

l̈2 =
1

2m1m2(m1 +M)

(
{Mm1T2[cos(2(ϕ2 − ϕ1))]− 1}Mm1m2{Ẍ0[2 cos(ϕ2 − ϕ1)

+ sin(ϕ2 − 2ϕ1)− sinϕ2] + g}+ 2m1m2[Ml1ϕ̇
2
1 cos(ϕ2 − ϕ1) + (m1 +M)(l1 + l20)ϕ̇22]

− 2m1T2(m1 +m2 +M)
)

ϕ̈1 =
T2 sin(ϕ2 − ϕ1)−m1(2l̇1ϕ̇1 + Ẍ0 cosϕ1 + g sinϕ1)

m1l1

ϕ̈2 =
1

2(m21 +Mm1)(l2 + l20)

{
[−MT2 sin(2(ϕ2 − ϕ1))−Mgm1(2 sin(ϕ2 − ϕ1))

+ sin(ϕ2 − 2ϕ1) + sinϕ2]−Mm1Ẍ0[2 sin(ϕ2 − ϕ1)− cos(ϕ2 − 2ϕ1) + cosϕ2]

− 2Mm1l1ϕ̇
2
1 sin(ϕ2 − ϕ1)− 4m1l̇2ϕ̇2(m1 +M)

}

(3.1)

where T2 = (cl̇2 + kl2) and l1, l2, ϕ1, ϕ2 are t dependent variables.
Besides the assumptions outlined in Section 1.1, it is worth noting that the length l1 exhibits

motion opposite to that of l2. Thus, to transform the system to a solvable form using the multiple
scale method, we introduce dimensionless parameters presented in Appendix A.1 to adhere to
the system investigational process.

x1(τ), x2(τ), φ1(τ) and φ2(τ) are dimensionless forms of l1(t), l2(t), ϕ1(t) and ϕ2(t), respec-
tively. ω1 is first associated with φ̇1(τ), then λ is introduced into both x1(τ) and φ̇1(τ) for the
same reasons stated in Section 2.1. Additionally, we employ the following approximation based
on the Taylor series. In this approximation, we retain only the first term of Taylor’s expansion,
which can be expressed as follows

sinφi(t) = φi(t)−
(φi(t))3

6
cosφi = 1−

(φi(t))2

2
sin[2(φi+1(t)− φi(t))] = 2[φi+1(t)− φi(t)] cos[2(φi+1(t)− φi(t))] = 1
sin(φi+1(t)− φi(t)) = φi+1(t)− φi(t) cos(φi+1(t)− φi(t)) = 1
sin(φi+1(t)− 2φi(t)) = φi+1(t)− 2φi(t) cos(φi+1(t)− 2φi(t)) = 1

(3.2)

Using the parameters in Appendix A.1, then the final dimensionless form of Eqs. (3.1) can
be written as it is presented in Appendix A.2.
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3.2. The multiple scale method

Our analysis concentrates on a small region near the system static equilibrium. To charac-
terize the amplitudes of the oscillations within this region, we use a small parameter, denoted
by 0 < ε << 1

x1(τ) = εα(τ : ε) x2(τ) = εβ(τ : ε)

φ1(τ) = εγ(τ : ε) φ2(τ) = εΓ (τ : ε)
(3.3)

By assuming a small area around the system static equilibrium position and the amplitude
of oscillations within that area, as is consistent with the MSM, we can make the following
approximations (Abohamer et al., 2023a; Awrejcewicz et al., 2022)

b = εb̃ F = εF̃ c1 = εc̃1 G2 = εG̃2 ω0 = εω̃0

σ1 = ε2σ̃1 σ2 = ε2σ̃2 σ3 = εσ̃3 σ4 = ε−1σ̃4 σ6 = εσ̃6

σ9 = ε−1σ̃9 A = εÃ b2 = εb̃2 b3 = εb̃3 G = ε−1G̃

G1 = ε−1G̃1 δ2 = εδ̃2 δ3 = εδ̃3 δ5 = ε−1δ̃5 δ7 = εδ̃7

δ8 = εδ̃8 δ9 = εδ̃9 δ1 = ε2δ̃1 y = εỹ c2 = εc̃2

ζ3 = εζ̃3 ζ2 = ε−1ζ̃2 h = ε−1h ξ1 = εξ̃1 ξ6 = ε−1ξ̃6

ξ9 = ε−1ξ̃9 ξ10 = ε−1ξ̃10 ξ11 = ε−2ξ̃11

(3.4)

In line with the methodology of the multiple scale approach, the time-dependent variables
x1(τ), x2(τ), φ1(τ) and φ2(τ) can be considered as power series of ε

x1(τ) =
2∑

k=1

εkx1,k(τ0, τ1) +O(ε
k) x2(τ) =

2∑

k=1

εkx2,k(τ0, τ1) +O(ε
k)

φ1(τ) =
2∑

k=1

εkφ1,k(τ0, τ1) +O(ε
k) φ2(τ) =

2∑

k=1

εkφ2,k(τ0, τ1) +O(ε
k)

(3.5)

It is worth emphasizing that these operators exclude terms of O(ε2) and higher orders. To derive
the PDE groups associated with different powers of ε, we substitute Eqs. (3.3)-(3.5) into the
dimensionless form of governing equations (A.2) in Appendix. This process involves a splitting
method based on the perturbation parameter ε (Awrejcewicz et al., 2022). Then, we derive the
preceding 8 linear PDEs, each corresponding to a specific order of ε and ε2:
— first-order equations (coefficient 1 at ε1)

∂2α1
∂τ20
+w2α1 = 0

∂2β1
∂τ20
+β1 = 0

∂2γ1
∂τ20
+ω24γ1 = 0

∂2Γ1
∂τ20
+ ξ24Γ1 = 0 (3.6)

— second-order equations (coefficient 2 at ε2) (refer to Appendix A.3) where α1, β1, γ1, Γ1
represent the solutions of the first-order approximations of the time-dependent variables x1(τ),
x2(τ), φ1(τ), φ2(τ), respectively. Also, α2, β2, γ2, Γ2 are the solutions of the second-order ap-
proximations of the time-dependent variables x1(τ), x2(τ), φ1(τ), φ2(τ). Meanwhile, the general
solutions of the time-dependent variables will be represented by α, β, γ, and Γ , respectively.
The solutions to obtained Eqs. (a.3) in Appendix, which can be solved in a particular se-

quence, emphasize the importance of the solutions in the first category. Thus, our primary focus
is on obtaining the general solutions to Eqs. (3.6). The solutions obtained are as follows

α1 = eiwτ0B1(τ1) + e−iwτ0B̃1(τ1) β1 = eiτ0B2(τ1) + e−iτ0B̃2(τ1)

γ1 = eiω4τ0B3(τ1) + e−iω4τ0B̃3(τ1) Γ1 = eiξ4τ0B4(τ1) + e−iξ4τ0B̃4(τ1)
(3.7)
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As a result, by substituting solutions (3.7) into the second group of PDEs (A.3) in Appendix,
we derive the 2-order solutions as α2, β2, γ2 and Γ2, where Bi and B̃i depend on τ1, i takes
values of 1, . . . , 4.

3.3. Modulation equations

The modulation equations constitute a set of eight first-order ODEs describing the amplitude
and phase modulation. These equations necessitate initial conditions for the effective solution,
which complement the solving procedures.
Secular terms, as observed in Eqs. (3.8), emerge when inserting the previously derived so-

lutions into the second-order equations (refer to Eqs. (A.3) in Appendix). While serving as
solvability conditions, these secular terms must be eliminated to obtain the modulation equa-
tions.
To eliminate the secular terms (see Eqs. (3.8)), we employ a method introducing new

complex-valued functions, defined in Eqs. (3.9). Substituting these functions into the secular
terms eliminates them, allowing derivation of the modulation equations. The final asymptotic
solution is then obtained through these equations. The secular terms in α2, β2, γ2 and Γ2 are
expressed as

α2,s = −2ω24σ̃9B1(τ1)B3(τ1)B̃3(τ1)− 2iw
∂B1(τ1)
∂τ1

β2,s = −b̃2B2(τ1)− b̃3B2(τ1) + 2ξ42G̃B2(τ1)B4(τ1)B̃4(τ1)− 2i
∂B2(τ1)
∂τ1

+ 2ξ42G̃1B2(τ1)B4(τ1)B̃4(τ1)− ic̃1B2(τ1)− iδ̃7B2(τ1)− iδ̃8B2(τ1)

γ2,s = 3ζ̃2B3(τ1)2B̃3(τ1)− 2iω4
∂B3(τ1)
∂τ1

Γ2,s = −2ω24 ξ̃10B3(τ1)B4(τ1)B̃3(τ1)− 3ξ̃6B4(τ1)2B̃4(τ1)− 2iξ4
∂B4(τ1)
∂τ1

(3.8)

and

Bj =
1
2
aj(τ)eiψj(τ1) B̃j =

1
2
aj(τ)e−iψj(τ1) (3.9)

where ψj and aj represent the phases and amplitude of the solutions α, β, γ, and Γ , respectively.
For j = 1, 2, 3, 4.
After eliminating the secular terms from α2, β2, γ2 and Γ2, the modulation equations are

obtained as

ȧ1(τ) = 0 ȧ3(τ) = 0 ψ̇1(τ) =
ω24a3(τ)

2σ9
4w

ψ̇3(τ) = −
3a3(τ)2ζ2
8ω4

ȧ2(τ) = −
1
2
a2(τ)(c1 + δ7 + δ8) ȧ4(τ) = 0

ψ̇2(τ) =
1
4
[2b2 + 2b3 + ξ24a4(τ)

2(G+G1)] ψ̇4(τ) =
2ω24a3(τ)

2ξ10 + 3a4(τ)2ξ6
8ξ4

(3.10)

After reconstituting the modulation equations for nonresonant cases and considering the equa-
tions established in Eq. (3.7), the final asymptotic solution up to the second-order approximation
for α, β, γ and Γ , with ai and ψi being dependent on τ1, where i = 1, 2, 3, 4, have been obtained.

3.4. Comparison between analytical and numerical solutions using time histories

For comparison, the dimensionless form of the equations of motion (see Eqs. (A.1) and (A.2)
in Appendix) and the asymptotic solution up to the second-order approximation are shown in
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Fig. 3. (a) Comparison between analytical (in blue) and numerical (in red) solutions using the
parameters presented in Eq. (3.11). (b) Comparison between analytical (in green) and numerical (in
red) solutions using the parameters presented in Eq. (3.11). (c) Compliance error for x1(τ) with

RMSE = 0.187473 and MAE = 0.140302. (d) Compliance error for x2(τ) with RMSE = 0.0693299 and
MAE = 0.0543544. (e) Comparison between analytical (in blue) and numerical (in red) solutions using
the parameters presented in Eq. (3.11). (f) Comparison between analytical (in green) and numerical (in
red) solutions using the parameters presented in Eq. (3.11). (g) Compliance error for φ1(τ) with

RMSE = 0.000639732 and MAE = 0.000528905. (h) Compliance error for φ2(τ) with
RMSE = 0.00157617 and MAE = 0.0012515
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the time history using the data in below. All initial conditions, except for x2(0) = φ2(0) = 0.1,
are set to zero

A = 0.5 c1 = c2 = ξ1 = ξ3 = δ3 = 0.01 σ5 = ζ3 = 0.0001 ξ4 = 1.61

ω5 = ξ2 = 0.002 σ6 = σ7 = ξ10 = ξ11 = 0.0002 σ8 = 0.0004

ξ12 = 0.00004 ξ5 = 0.005 σ9 = ξ14 = ζ4 = 0.00005 δ2 = 0.001

δ4 = 0.003 δ5 = 0.00008 ξ7 = 0.0012 h = ω0 = 1

δ8 = 0.008 δ9 = 0.00009 δ0 = 0.00002 ξ6 = 0.00008

ξ9 = 0.000021 ω = 10 ξ13 = 0.00015 σ1 = 0.15

σ2 = 0.464 b2 = 2.11 b3 = 1.63 G = 0.8 G1 = 0.1

F = 0.81 ω4 = 1.72 ζ1 = 0.05 σ3 = 1.15 w = 0.25

(3.11)

Figure 3a, 3b, 3e and 3f represent the time history for x1(τ), x2(τ), φ1(τ) and φ2(τ), re-
spectively. As we can observe, both the analytical and numerical solutions indicate the accuracy
of the system equation. Figure 3c, 3d, 3g and 3h depicts the deviation between the numeri-
cal and approximate solutions for x1(τ), x2(τ), φ1(τ) and φ2(τ), respectively. The compliance
error for the modified SAM follows the same trend as that of the SAM. Therefore, it aligns
with the presumption stated in Section 2.4.1. It becomes evident that the 4-DOF system can
be effectively solved analytically by employing the multiple scale approach. However, it comes
with a drawback in that it offers an approximate solution, and its accuracy depends on the
number of time scales used. As a result, it becomes crucial to identify particular traits be-
tween the analytical and numerical solutions to compare them accurately and guarantee their
correctness.

4. Conclusions

This publication focuses on the modeling and analysis challenges posed by variable-length pen-
dulums, with a particular emphasis on the 4-DOF system. The attainment of an analytical
solution not only validates the model but also contributes to improved efficiency, accuracy, and
theoretical advancements. These analytical solutions serve as crucial tools for the investigation
of dynamical systems, finding applications across diverse scientific and engineering fields. Fur-
thermore, the study identifies promising directions for future research, urging exploration into
steady-state solutions and conducting thorough stability analyses.
The publication highlights the practical applications of the analyzed models, revealing their

potential in studying dynamic entities like robots and load-lifting devices. For instance, the
study suggests examining a system comprising three inverted pendulums to represent different
segments of the human body or analyzing the dynamics of load-lifting devices such as cranes.
This approach extends the utility of the findings, offering insights into a broader applicability of
the studied parametric dynamical models. Notably, the potential application of these insights in
the field of energy harvesting is also underscored, adding a dimension of practical significance
to the theoretical advancements presented in the publication.

A. Appendix

A.1. Dimensionless parameters for the modified SAM

A =
l20
l

G =
M

(m1 +M)
G1 =

m1
(m1 +M)

ω22 =
g

l
ω23 =

k

m1
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ω21 =
k

m1 +M
λ2 =

ω21ω1
G1

c1 =
c

(m1 +M)ω1
F =

f0ω
2

lω21

c2 =
c

λω1
b1 =

M

m1
b2 =

M

m2
b3 =

m1
m2

ω24 =
ω22
ω21

ω25 =
ω23
λω21

σ1 = ω2λ+Gω24 −
ω2ω21ω

2
4

λ2
σ2 = FG σ3 =

Fω2ω21
λ2

σ4 =
Fω2ω21
6λ2

σ5 =
ω2ω21ω

2
4

2λ2
σ6 = ω2ω1 σ7 =

ω2ω21
λ

σ8 =
2ω2ω21
λ

σ9 =
ω2ω21
λ2

δ0 = Gλ δ1 =
Gλ3

ω21
+
5Gω24
2

δ2 =
Gλ2

ω21
δ3 = FGω0 δ4 =

Gω24
4

δ5 =
FG

12
δ6 =

2Gλ
ω1

δ7 = b2c1 δ8 = b3c1 δ9 =
2Gλ2

ω1
ζ1 =

F

3
+
5Gω24
2

ζ2 =
ω24
6

ζ3 =
2
ω1

ζ4 =
1
λ

ξ1 =
Gλ3

Aω21
+ 2Gω24

ξ2 =
Gλ2

Aω21
ξ3 = Gω25 ξ24 =

Gλ3

Aω21
+Gω24 ξ5 =

hFG

4

ξ6 =
Gω24
12

h = 1 ξ7 = c2G ξ8 =
2Gλ2

Aω1
xi9 =

2Gλ
Aω1

ξ10 =
Gλ

A
ξ11 =

G

A
ξ12 =

2G
A

ξ13 =
2G1
A

ξ14 =
1
A

(A.1)

A.2. The final dimensionless form of the modified SAM equations of motion

σ1 − σ2 sin(ωτ)− w2x1(τ)− ω0x2(τ)− σ3 sin(ωτ)φ1(τ) + σ4 sin(ωτ)φ31(τ) + σ5φ22(τ)
− c1ẋ2(τ)− σ6φ1(τ)− σ7φ̇21(τ)− σ8x1(τ)φ̇1(τ)− σ9x1(τ)φ̇21(τ)− ẍ1(τ) = 0

δ1 − σ2 sin(ωτ) + δ2x1(τ)− x2(τ)− b2x2(τ)− b2x2(τ)− b3x2(τ) + δ3 sin(ωτ)φ1(τ)
− δ4φ22(τ)− δ5 sin(ωτ)φ32(τ)− c1ẋ2(τ)− δ7ẋ2(τ)− δ8ẋ2(τ) + δ9φ̇1(τ)

+ δ6x1(τ)φ̇1(τ) + δ0φ̇21(τ) +Gx1(τ)φ̇
2
1(τ) +

1
2
AG(τ)φ̇22(τ) +AG1(τ)φ̇

2
2(τ)

+G1x2(τ)φ̇22(τ)− ẍ2(τ) = 0

F sin(ωτ)− ω24φ1 + ω25x2(τ)φ1(τ) + ζ1φ31(τ)− ζ1 sin(ωτ)φ21(τ)− ω25x2(τ)φ2(τ)
− ζ3ẋ1(τ)− c2φ1(τ)ẋ2(τ) + c2φ2(τ)− ẋ2(τ)− 2ζ4ẋ1(τ)φ̇1(τ)− ζ4x1(τ)φ̈1(τ)
− φ̈1(τ) = 0

ξ1φ1(τ) + hσ2 sin(ωτ)φ1(τ) + ξ2x1(τ)φ1(τ) + ξ3x1(τ)φ1(τ)− ξ24φ2(τ)− hσ2 sin(ωτ)φ2(τ)
− ξ2x1(τ)φ2(τ)− ξ3x2(τ)φ2(τ)− ξ5 sin(ωτ)φ22(τ)− ξ6φ32(τ) + ξ7φ1(τ)ẋ2(τ)
− ξ7φ2(τ)ẋ2(τ) + ξ8φ1(τ)φ̇22(τ) + ξ9x1(τ)φ1(τ)φ̇22(τ)− ξ8φ2(τ)φ̇21(τ)
− ξ9x1(τ)φ2(τ)φ̇21(τ) + ξ10φ1(τ)φ̇21(τ)ξ11x1(τ)φ1(τ)φ̇21(τ)− ξ10φ2(τ)φ̇21(τ)
− ξ11x1(τ)φ2(τ)φ̇21(τ) + ξ12ẋ2(τ)φ̇22(τ) + ξ13ẋ2(τ)φ̇22(τ)− ξ14x2(τ)φ̈2(τ)− φ̈2(τ) = 0

(A.2)
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A.3. Second-order equations of the modified SAM

σ̃1 − σ̃2 sin(ωτ0)− w2α1 − ω0β1 − σ̃3γ1 sin(ωτ0) + σ̃4γ31 sin(ωτ0) + σ̃5Γ 21 sin(ωτ0)− c̃1
∂β1
∂τ0

− σ̃6
∂γ1
∂τ0
− σ8α1

∂γ1
∂τ0
− σ7

(∂γ1
∂τ0

)2
− σ̃6α1

(∂γ1
∂τ0

)2
− 2 ∂

2α1
∂τ0∂τ1

− ∂2α2
∂τ20
= 0

δ̃1 − δ̃2 sin(ωτ0) + δ̃2α1 − b̃2β1 − b̃3β1 − β1 + δ̃3γ1 sin(ωτ0)− δ̃4Γ 21 − δ̃5Γ 31 sin(ωτ0)− c̃1
∂β1
∂τ0

− δ̃7
∂β1
∂τ0
− δ̃8

∂β1
∂τ0
+ δ̃9

∂γ1
∂τ0
+ δ6α1

∂γ1
∂τ0
+ δ0

(∂γ1
∂τ0

)2
+ G̃α1

(∂γ1
∂τ0

)2
+
1
2
ÃG̃

(∂Γ1
∂τ0

)2

+ ÃG̃1
(∂Γ1
∂τ0

)2
+ G̃β1

(∂Γ1
∂τ0

)2
+ G̃1β1

(∂Γ1
∂τ0

)2
− 2 ∂

2β1
∂τ0∂τ1

− ∂2β2
∂τ20
= 0

F̃ sin(ωτ0) + ω25β1γ1 − ζ1γ21 sin(ωτ0) + ζ2γ31 − ω24γ2 − ω25β1Γ1 − ζ3
∂α1
∂τ0
− 2ζ4

∂α1
∂τ0

∂γ1
∂τ0

− 2 ∂
2γ1

∂τ0∂τ1
− ζ4α1

∂2γ1
∂τ20
− ∂2γ2

∂τ20
= 0

ξ̃1γ1 + h̃σ̃2γ1 sin(ωτ0) + ξ2α1γ1 + ξ2β1γ1 − h̃σ̃2Γ1 sin(ωτ0)− ξ2α1Γ1 − ξ3β1Γ1

− ξ5Γ 21 sin(ωτ0)− ξ̃6Γ 31 − ξ24Γ2 + ξ7γ1
∂β1
∂τ0
− ξ7Γ1

∂β1
∂τ0
+ ξ8γ1

∂γ1
∂τ0
+ ξ̃9α1γ1

∂γ1
∂τ0

− ξ8Γ1
∂γ1
∂τ0
− ξ̃9α1Γ1

∂γ1
∂τ0
+ ξ̃10γ1

(∂γ1
∂τ0

)2
+ ξ̃11α1γ1

(∂γ1
∂τ0

)2
− ξ̃10Γ1

(∂γ1
∂τ0

)2

− ξ̃11α1Γ1
(∂γ1
∂τ0

)2
+ ξ12

∂β1
∂τ0

∂Γ1
∂τ0
+ ξ13

∂β1
∂τ0

∂Γ1
∂τ0
− 2 ∂Γ1

∂τ0∂τ1
− ξ14β1

∂2Γ1
∂τ20
− ∂2Γ2

∂τ20
= 0

(A.3)
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The unsteady creep curve of rocks is antisymmetric to the dynamic surface subsidence curve
of coal mining. Accordingly, a four-parameter unsteady creep model of rock was established
using an analogous reasoning method from the perspective of phenomenology, and a simple
method for determining the model parameters was proposed. The test curves of four different
types of rocks were in good agreement with the theoretical curves of the model. In particular,
the accelerated creep test curves with nonlinear characteristics were consistent with the
theoretical curves of the model, verifying the rationality and accuracy of the model.

Keywords: rock mechanics, creep model, antisymmetric, unsteady creep, damage

1. Introduction

The creep behavior of rocks is a key factor affecting the safety and long-term stability of a
structure (Wei et al., 2019). When the external load is less than the long-term strength of the
rock, the creep that occurs in the rock is steady, which includes instantaneous strain, attenuation,
and constant velocity creep stages. This type of creep can be described using classic creep models
(the Burgers, Bingham, and Nishihara models) (Song et al., 2023). Theoretical and practical
engineering applications of these creep models have been well established. When the external
load is greater than the long-term strength of the rock, unsteady creep occurs in the rock, which
includes instantaneous strain, attenuation creep, constant-velocity creep, and accelerated creep
stages (Jin et al., 2024). The establishment of an unsteady creep model for rock is an important
and difficult task in rock mechanics (Taheri et al., 2020).
Existing creep models can be divided into the following categories: empirical creep model

(Zhang et al., 2013; Zivaljevic and Tomanovic, 2022), component combination creep model (Zhao
et al., 2019; Zhang et al., 2011) and improved component combination creep model based on
nonlinear rheology theory (Zhang and Wang, 2020; Yang et al., 2014), creep damage theory
(Yang et al., 2015; Song and Li, 2022) and fractional order theory (Zhou et al., 2011; Liu et al.,
2021). Empirical creep models establish mathematical expressions for strain and time through
curve fitting based on existing creep test data. The creep equations of such models are simple in
form, with high precision and few parameters. However, owing to the unclear physical meaning
of parameters and the short creep test time compared with the actual creep process of rock mass,
the creep characteristics of the rock reflected by this model are quite different from the actual
rock mass; therefore, it is only suitable for describing the creep process of specific rocks under
specific test conditions. However, it has rarely been applied to the study of creep characteristics in
rock engineering. The component-combination creep model combines elastic, plastic, and viscous
components through different forms of series and parallel connections to obtain a combination
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model that can describe rock elasticity, viscosity, viscoelasticity, and viscoplasticity. The physical
meaning of these model parameters is clear, and the creep equation can be derived easily. The
component-combination creep model is more widely applicable than the empirical creep model
because of its variable combination forms. However, because the model parameters of this type
of creep model are constant, this model can only describe the steady creep of rock and cannot
describe unsteady creep. Therefore, this model is not suitable for analyzing the actual creep
failure in rock mass engineering (Discenza et al., 2020).
The improved component-combination creep model reflects nonlinear characteristics of the

accelerated creep process of rocks by concatenating nonlinear damage bodies based on the
component-combination model or by replacing the nonlinear creep model parameters with the
component-combination creep model parameters, thereby establishing a mechanical model that
can describe the unsteady creep process of rocks. Compared with the empirical creep model and
component combination creep model, this type of model has been greatly improved in theory
and practice; however, it still has the following two shortcomings. (1) The creep equation is
too complicated. In the process of constructing the unsteady rock creep model, four different
equations are often used to describe the instantaneous strain stage, attenuated creep stage,
constant velocity creep stage, and accelerated creep stage in segments (such as using elastic ele-
ments to describe the instantaneous strain, Kelvin bodies to describe the attenuated creep stage,
viscous bodies to describe the constant-velocity creep stage, and time-dependent deteriorated
viscoplastic bodies to describe the accelerated creep stage). Then, according to the superposition
principle, these four equations are superimposed to establish a mechanical model that can de-
scribe the unsteady creep process of rocks. Although the physical meaning and function of each
part of the improved creep model established by this method are clear, and the constitutive and
creep equations are easy to deduce, the form of the final creep equation is too long and compli-
cated because of the large number of functions, which is not conducive to numerical simulation
analysis and practical engineering applications. In addition, the four equations are independent
of each other and there is no unified equation to describe the unsteady creep process in rocks.
(2) The creep model has several parameters. The improved creep model improves the accuracy
of the model by introducing undetermined parameters, but at the same time, introducing new
model parameters increases the difficulty of parameter determination. Moreover, owing to the
complexity of the improved creep model, the creep equation contains many undetermined pa-
rameters, usually more than 7 (Yan et al., 2020). Such many creep parameters are difficult to
determine accurately based on limited test data. Therefore, although the improved component
combination creep model can describe the unsteady creep process of an indoor rock test well,
owing to the limitation of the number of parameters, it is difficult to effectively analyze the creep
mechanical properties of actual engineering rock masses.
In summary, to facilitate finite element software programming and actual creep failure pro-

cess analysis of rock mass, it is urgent to establish a mechanical model of rock creep with fewer
parameters and a unified creep function, which should be able to describe instantaneous strain,
attenuated creep, constant velocity creep, and accelerated creep characteristics of rock simul-
taneously. In view of this, this study establishes a rock unsteady creep model with four model
parameters only by an analogy reasoning method from the perspective of phenomenology, and
provides a method to determine the model parameters, which provides a reference for the study
of rock creep characteristics.

2. Four-parameter unsteady creep model

Many on-site monitoring data and theoretical studies have shown that the subsidence process
of a certain point of the surface caused by coal mining is composed of three parts: the initial
subsidence stage, the rapid subsidence stage and the decay subsidence stage, and it is approxi-
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mately an “S” shaped curve with time, as shown in the red curve in Fig. 1. While the typical
unsteady creep curve of rock is approximately an inverse “S” curve, as shown by the blue curve
in Fig. 1. Therefore, the dynamic surface subsidence curve exhibits an antisymmetric relation-
ship with the unsteady creep curve. Therefore, the surface dynamic subsidence function is first
determined, and then the inverse function of the surface dynamic subsidence function is ob-
tained by considering ε(t) = t as the symmetry axis, which can yield a unified functional form
describing the unsteady creep process of rocks. According to the basic mathematical theory, the
functions represented by the red and blue curves are inverse functions of each other. Therefore,
if the surface dynamic subsidence function is determined and its inverse function is obtained,
the unsteady creep function of the rock can be established.

Fig. 1. Demonstration of the unsteady creep curve

The analysis indicates that the key to establishing a mechanical model that can reflect the
unsteady creep process of rocks is to determine an “S” type function that can describe the surface
dynamic subsidence law with time. Based on the classic Knothe time model (Hejmanowski, 2015),
an improved Knothe time model was established by proposing new model assumptions (Zhang
et al., 2020) that could accurately describe the surface dynamic subsidence process caused by
coal mining. The model function is expressed as follows

W (t) =W0[1− exp(−Ctn)] (2.1)

where W (t) is the surface dynamic subsidence, W0 is the final surface subsidence, C is the time
influence coefficient related to the mechanical properties of the overlying strata, t is time, and
n is the model order.
The surface dynamic subsidence curves for different model orders n are shown in Fig. 2.
From Fig. 2, under different n conditions, the surface dynamic subsidence curves are all

of “S” type, which is antisymmetric with the unsteady creep curves of rocks. Therefore, the
unsteady creep models of rocks can be established by determining the inverse function of (2.1).
In Eq. (2.1), time t is the independent variable andW (t) is the dependent variable; its inverse

function expression is obtained as follows

t =
[
− 1
C
ln
(
1− W (t)

W0

)] 1
n

(2.2)

In Eq. (2.2), W (t) is the independent variable and time t is the dependent variable. In the creep
function, the independent variable is time t and the dependent variable is strain ε. Therefore,
the function expression of the unsteady creep model of the rock can be obtained by analogous
reasoning as follows
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Fig. 2. Surface dynamic subsidence curves

ε =
[
− 1
C
ln
(
1− t

W0

)] 1
n

(2.3)

In Eq. (2.1), W0 is the final surface subsidence, which is the maximum value of the independent
variable W (t), then W0 in Eq. (2.3), and is the maximum value at time t, that is, the time
when the rock undergoes creep failure. Parameter C in Eq. (2.1) is the time influence coefficient
related to mechanical properties of the overlying strata. This parameter is related to the physical
and mechanical properties of the strata and time, and is expressed as viscosity in the rock creep
model. Simultaneously, because the creep characteristics of the rock are closely related to the
stress level σ, σ/η = 1/C can be set, and Eq. (2.3) can be further expressed as

ε =
[
−σ
η
ln
(
1− t

tf

)] 1
n (2.4)

where η is the viscosity coefficient of the rock and tf is the time when the rock undergoes creep
failure.
The creep model function established by Eq. (2.4) represents the variation in the creep strain

with time and does not include the instantaneous strain stage in the unsteady creep process of
rocks. Therefore, to reflect the entire creep process, it is necessary to add an instantaneous strain
that is only related to the stress level but independent of time based on Eq. (2.4), which can
be represented by an elastic element. Based on the above analysis, a four-parameter unsteady
creep mechanics model is established, as shown in Fig. 3.

Fig. 3. Four-parameter unsteady rock creep model

According to the stress-strain relationship of the series and parallel connections, the unsteady
creep equation of the rock is obtained as follows

ε =
σ

E
+
[
−σ
η
ln
(
1− t

tf

)] 1
n (2.5)

where E is the elastic modulus of the elastic element.
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We derived Eq. (2.5) and obtained the creep velocity and acceleration as follows

ε′ =
1
n

σ

η

1
tf − t

[
−σ
η
ln
(
1− t

tf

)] 1−n
n

ε′′ =
1

(tf − t)2
{(σ

η

)2 1
n

[1− n
n
− ln

(
1− t

tf

)][
−σ
η
ln
(
1− t

tf

)] 1−2n
n

} (2.6)

According to Eq. (2.6), the creep rate is always greater than zero, indicating that the creep
strain gradually increases with time, which is consistent with the actual situation. The critical
moment for rock creep acceleration to be 0 is {1 − exp[(1/n) − 1]}tf , and when the creep time
does not reach this critical value, the creep acceleration is always less than 0, indicating that
the rock creep rate gradually decreases during this stage. When the creep time is between this
critical value and the time when the rock undergoes creep failure, the creep acceleration is
always greater than 0, indicating that the rock rate gradually increases with time at this stage.
Therefore, the moment when the creep acceleration is 0 is not only the moment when the rock
creep rate is minimum, but also the starting point of the accelerated creep stage. The above
analysis indicates that the four parameter rock non-stationary creep model cannot strictly meet
the creep deformation laws of the entire rock process, especially the creep rate characteristics
during the constant velocity creep process. However, the constant velocity creep does not mean
that the creep rate remains strictly unchanged, but the amplitude of change is relatively small
(Wang et al., 2018). Therefore, the four parameter rock unsteady creep model is reasonable and
feasible for reflecting the complete creep process of rocks.

3. Model parameters determination

From Eq. (2.5), the creep equation contains only four model parameters E, η, tf , n, which greatly
reduces the number of parameters compared to other complex creep models and is beneficial
for practical engineering applications. The creep curves of the rocks at different stress levels are
shown in Fig. 4. At low stress levels, there was no accelerated creep stage in the creep curve;
however, an accelerated creep process occurred at medium and high stress levels. Moreover, the
creep failure time at a high stress was significantly shorter than that at a medium stress. Based
on the characteristics of rock creep curves under different stress states, as shown in Fig. 4, a
simple and feasible method for determining creep model parameters was proposed.

Determination of elastic modulus E

The instantaneous elastic strain εe is generated during rock loading and can be described
by an elastic element. Based on the elastic constitutive relationship, the elastic modulus E is
determined as

E =
σ

εe
(3.1)

Determination of tf

Without considering the influence of the rock occurrence environment, the creep failure time
of rocks is only a function of stress; therefore, tf = f(σ). As shown in Fig. 4, the creep failure
time decreases with an increase in the stress level. According to the Kachanov material creep
damage rate theory (Kachanov, 1992), the time at which the rock undergoes creep failure can
be determined using the following equation

dD

dt
= k

( σ

1−D
)υ

(3.2)

where dD/dt is the damage rate, D is the damage variable, k, υ are rock material constants.
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Fig. 4. Creep curves of rocks under different stress levels

Assuming that the damage variable is equal to one when the rock undergoes creep failure,
the expression for the rock failure time obtained from Eq. (3.2) is

tf =
1

C(1 + υ)συ
(3.3)

Through the unsteady creep test curve of rock under different stress levels, the material constants
k, υ can be determined, and then the functional relationship between rock creep failure time
and stress level can be obtained.

Determination of η, n

The corresponding time for the rock to enter the accelerated creep stage from the constant-
-velocity creep stage in Fig. 4 is ta, and the corresponding strain is εa. Because the creep
acceleration of rock is zero when the creep velocity reaches its minimum value

ta =
[
1− exp

( 1
n
− 1

)]
tf (3.4)

The expression for n obtained from Equation (3.4) is

n =
[
1 + ln

(
1− ta

tf

)]−1
(3.5)

When t = ta, ε = εa according to Eq. (2.4), there is

εa =
σ

E
+
[
−σ
η
ln
(
1− ta

tf

)] 1
n

(3.6)
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The expression for η obtained from Eq. (3.6) is

η = −(εa − εe)−nσ ln
(
1− ta

tf

)
(3.7)

In summary, all four parameters of the unsteady creep model of the rock were determined.
Meanwhile, the creep model parameters can also be obtained through curve fitting based on
rock creep experimental data.

4. Model validation

The rationality and accuracy of the four-parameter rock unsteady creep model established in this
study were verified by referring to the uniaxial compression creep test results for four different
types of rock. The creep model parameters of the four types of rock under different stress levels
were obtained by curve fitting of experimental data. A comparison between the theoretical curve
of the four-parameter rock unsteady creep model and the test results is shown in Figs. 5-8.

Table 1. Model parameters of different types of rocks

Rock
σ E ta εa n

η tf C υ
[MPa] [GPa] [h] [10−3] [GPa h] [h]

Schist (Sterpi 34.30 7.49 169.2 5.38 3.22 1.67 · 10−6 338.4 6.12
3.29

and Gioda, 2009) 39.40 7.91 98.5 5.72 2.60 2.59 · 10−4 214.3 ·10−9
Changshan salt rock 14.41 40.14 538.0 0.49 4.36 7.21 · 10−11 1030 9.56

44.32
(Cao et al., 2020) 14.72 33.38 215.5 0.58 3.83 1.26 · 10−13 401 ·10−57
Qiaohou salt rock 7.77 2.69 114.8 1.18 2.20 0.76 273 1.71

0.26
(Zhong & Ma, 1987) 11.3 1.71 86.4 1.70 1.75 0.14 248 ·10−3

52.82 28.40 8.5 2.27 5.42 1.23 · 10−14 15.30
1.69
·10−25 15.30

Sandy shale rock 55.37 28.69 4.6 2.32 5.11 1.21 · 10−13 8.34
(Zhong & Ma, 1987) 56.64 27.23 3.2 2.37 4.37 1.46 · 10−11 5.96

58.31 27.50 1.9 2.45 4.32 9.7 · 10−12 3.56

As can be seen from the comparison results in Figs. 5-8, the four-parameter rock unsteady
creep model can not only describe the instantaneous strain stage, attenuation creep stage, and
constant velocity creep stage of different types of rocks under different stress levels but also
reflects the accelerated creep stage with particularly obvious nonlinear characteristics, and its
rationality has been verified. The theoretical curve of the model is in good agreement with
the test results, indicating that the model can accurately predict the creep strain trends of
different types of rocks under different stress levels over time, effectively design support forms,
and determine the support construction time. In addition, Eq. (2.4) shows that the model can
describe the unsteady creep process of rocks in a simple and unified expression, overcoming
the shortcomings of complex creep equations and numerous model parameters in component
combination models, which are more conducive to engineering applications.
To further verify the accuracy of the four-parameter rock unsteady creep model, the relative

standard deviation between the test and theoretical creep values for the four types of rocks was
calculated without considering the error of the test data. The calculation formula is shown in
Eq. (4.1) (Zhao et al., 2020). The calculation results show that the relative standard deviations
between the test and theoretical values of schist under stress levels of 34.3MPa and 39.4MPa are
0.83% and 0.55%, respectively, which are basically negligible. The relative standard deviations
between the test values and theoretical values of Changshan salt rock under stress levels of
14.41MPa and 14.72MPa are 2.87% and 1.55%, respectively. The relative standard deviations
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Fig. 5. Comparison between test and theoretical curves for schist

Fig. 6. Comparison between the test and theoretical curves for the Changshan salt rock

between the test values and model theoretical values of Qiaohou salt rock under stress levels
of 14.41MPa and 14.72MPa are 4.83% and 4.94%, respectively. The error of Qiaohou salt rock
is slightly larger than that of Changshan salt rock, but it is still within the allowable range.
The relative standard deviations between the test and theoretical values of sandy shale at stress
levels of 52.82, 55.37, 56.64 and 58.31MPa are 1.15%, 1.05%, 0.80%, and 0.82%, respectively.
The relative standard deviations of sandy shale at the four stress levels were small. The above
calculations indicate that the relative standard deviation between the creep test values and the
theoretical values of the four types of rocks was less than 5%. Error analysis further confirmed
the accuracy of the four-parameter rock unsteady creep model

m =

√√√√ 1
N − 1

N∑

i=1

(εs − εl)2 f =
m

εf
(4.1)
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Fig. 7. Comparison between test and theoretical curves for Qiaohou salt rock

Fig. 8. Comparison between the test and theoretical curves for sandy shale rock

where m is the standard deviation, f is the relative standard deviation, and are the test and
theoretical values. εf is the strain on the rock during the creep failure. N is the number of
samples.

5. Model parameter analysis

The rock unstable creep model established in this paper only contains four model parameters,
which has the advantage of few parameters and high accuracy. This Section discusses the local
influence of the four model parameters on the rock unstable creep curve.
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5.1. The influence of E

Assuming σ = 60MPa, η = 2.0 · 10−12GPah, tf = 15 h, n = 4, according to Eq, (2.5), the
unsteady creep curves of the rocks corresponding to different elastic modulus E were obtained,
as shown in Fig. 9.

Fig. 9. Influence of E on the creep curve

Figure 9 shows that a change in E does not affect the shape of the model creep curve
and creep strain, but only affects the instantaneous elastic strain. With an increase in E, the
instantaneous strain at the same time gradually decreases. In addition, Fig. 9 shows that, under
the same E value increment, the reduction in instantaneous strain gradually decreases; that is,
according to the order from bottom to top, the model creep curve becomes increasingly sparse
from dense. This indicates that when the value of E is small, a change in its value significantly
influences the instantaneous elastic strain of the model. However, when the value of E was large,
a change in its value had little influence on the instantaneous elastic strain.

5.2. The influence of η

Assuming σ = 60MPa, E = 30GPa, tf = 15 h, n = 4, according to Eq. (2.5), the unsteady
creep curves of the rocks corresponding to different viscosity coefficients η were obtained, as
shown in Fig. 10.
Figure 10 shows that a change in η has little effect on the shape of the model creep curve;

however, with an increase in η, the creep stress variable at the same time gradually increases.
In addition, Fig. 10 shows that, under the same η value increment, the creep strain increment
simultaneously gradually decreases; that is, according to the order from bottom to top, the
model creep curve becomes increasingly dense from sparse. This indicates that when the value
of η is small, a change in its value significantly influences the creep strain of the model. However,
when the value of η was large, the change in its value had little influence on the creep strain.

5.3. The influence of tf

Assuming σ = 60MPa, E = 30GPa, η = 2.0 · 10−12GPa h, n = 4, according to Eq. (2.5),
the unsteady creep curves of the rocks corresponding to different tf were obtained, as shown in
Fig. 11.
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Fig. 10. Influence of η on the creep curve

Fig. 11. Influence of tf on the creep curve

Figure 11 shows that a change in tf has significantly effect on the shape of the model
creep curve. The smaller the value of tf , the steeper the creep curve, and the faster the rate
of increase in creep strain. In addition, tf represents the time when the rock undergoes creep
failure, therefore, the smaller tf , the shorter the time for the rock to undergo creep failure.

5.4. The influence of n

Assuming σ = 60MPa, η = 2.0 · 10−12GPah, E = 30GPa, tf = 15 h, according to Eq. (2.5),
the unsteady creep curves of rocks corresponding to different model orders n were obtained, as
shown in Fig. 12.
As shown in Fig. 12, n has a significant influence on the shape of the creep curve of the

model. As n increases, the creep strain simultaneously increases nonlinearly; that is, according
to the order from bottom to top, the creep curve becomes increasingly sparse. Simultaneously,
as the creep rate at the same time increased, the characteristics of accelerated creep became
increasingly obvious, and the starting point of accelerated creep appeared earlier.
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Fig. 12. Influence of n on the creep curve

6. Conclusions

Based on the antisymmetric relationship between the surface dynamic subsidence curve of coal
mining and the unsteady creep curve of rocks, a rock unsteady creep model with four model
parameters was established from the perspective of phenomenology using analogical reasoning.
A simple and feasible method for determining the model parameters is provided based on the
characteristics of the rock creep curve.
The rationality and accuracy of the four-parameter unsteady creep model were verified based

on the compression creep data of four different rocks at different stress levels. The model not
only describes the instantaneous strain stage, attenuation creep stage, and constant velocity
creep stage of rocks at different stress levels, but also reflects the accelerated creep stage with
particularly obvious nonlinear characteristics.
The unsteady creep strain of the rocks increases with an increases in the viscosity coefficient

and model order. Under the same increment in the viscosity coefficient, the creep strain increment
at the same time gradually decreases, whereas under the same increment in the model order,
the creep strain increment at the same time gradually increases.
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A new mining dynamic cable configuration device has been designed with adjustable cable
curvature, full-range guiding restriction, and an anti-dragging warning function to improve
the intelligence level and multi-scenario applicability. The digital model of the dynamic cable
configuration device is constructed, and a theoretical formula for interactions between its
structure parameters, assembly parameters, and the cabling work state is deduced. Strength
analysis and topology optimization reconstruction of the side plate of the dynamic cable
configuration device are carried out by using Ansys. The intelligent cable retractable device
has been successfully applied in engineering. These research results can provide a theoretical
basis for cooperative regulation and intelligent upgrading of both mining dynamic cable
configuration devices and intelligent cable retractable devices.

Keywords: mechanical engineering, dynamic cable configuration device, mathematic model,
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1. Introduction

Mining electric shovels are indispensable equipment for large-scale open-pit mines in stripping
operations (Topno et al., 2021; Wang et al., 2023). Their workload accounts for more than 50% of
the total workload. Due to the requirements of high-power and continuous excavation, electric
shovels often operate with high-voltage electricity (6000 V-10000 V) delivered by cables as a
real-time power source. The reliability of the cable power supply directly affects the efficiency of
excavation and mining operations (Zhao, 2023). Currently, electric shovels mainly use intelligent
cable retractable devices to wind and unwind high-voltage cables during stripping operations in
large-scale open-pit mines. Given the weight and bending radius of mining high-voltage cables,
as well as frequent operation of the cable winding equipment, a dynamic cable configuration
device is typically used to assist coordinated take-up and take-down by the reel (Han et al.,
2012; Amnuanpol, 2019).
The rationality, intelligence, and lightweight level of the structural design of the dynamic

cable configuration device are crucial for ensuring reliable cabling work as an important compo-
nent of an intelligent cable retractable device. However, there are several issues in the current
application process of mining dynamic cable configuration devices on the market. (1) The dy-
namic cable configuration device lacks accuracy in following the reel assembly, which leads to
cable accumulation or disorder (in Fig. 1a), resulting in uneven cable arrangement and heat
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buildup, which reduces the capacity and service life of the cables. (2) Unreasonable design pa-
rameters of the dynamic cable configuration device can cause wear, bending, or even breakage of
cables while also reducing precision in screw drive (in Fig. 1b) (Kevac et al., 2017). (3) There is
a lack of effective warning devices; therefore, the cables are susceptible to scraping and pressing
by rocks and coal in unstructured pavement environments found in open-pit mines. Addition-
ally, an excessive force from a large reel can lead to safety hazards such as cable breakage and
leakage (Sun et al., 2022). Therefore, it is essential to investigate how structural and assembly
parameters influence stability within the dynamic cable configuration devices to enhance their
applicability across various scenarios while prolonging their service life.

Fig. 1. Application statu: (a) cable accumulation or confusion, (b) local deformation of the screw

Wang (2022) used Ansys to analyze how different positions of guide wheels affect the strength
of the dynamic cable configuration device during sailing and towing conditions. The results
showed that the maximum force and deformation occurred when the guide wheels were in mid-
dle positions under both conditions, providing insights into strength analysis and verification for
similar types of dynamic cable configuration devices. Kevac et al. (2017) introduced dynamic
variables such as winding/unwinding radius and cable length, considering their impact on the
dynamic response of cable winding/unwinding systems, and defined a general form for math-
ematical models of cable winding/unwinding systems. In the same year, Kevac and Filipovic
(2017) conducted a comprehensive analysis and characterization of nonlinear and pulsating phe-
nomena associated with the radial multi-layer winding process on winches, extending its appli-
cability to studying rope winding processes in complex systems. These research studies establish
a fundamental framework for structural design and parameter optimization of dynamic cable
configuration devices under challenging mining conditions. Concurrently, topology optimization
based on the variable density approach, which utilizes strain energy as the objective function
and volume as the constraint function, has gradually emerged as a pivotal technique for auto-
mated design across diverse industries such as automotive, mechanical, and aerospace sectors
since its introduction by Bendsøe and Kikuchi (1988). Notably, this approach is extensively em-
ployed in lightweight design of structures, offering an effective means for weight reduction and
reconstruction design of cable winders (Zhang et al., 2007).
Therefore, to address the aforementioned issues, this study initially proposes the design of a

novel mining dynamic cable configuration device featuring adjustable cable curvature, full-range
guiding restriction, and an anti-dragging warning function, aimed to enhance the quality and
stability of cabling operations. Subsequently, a mathematical model is established to examine
the effects of cable arrangement structure and assembly parameters on the device performance,
thereby providing a reliable parameter influence law for the structural design and assembly
position determination of the device. Finally, based on strength analysis results of the device
side plate, the topology optimization module Ansys is employed to reconstruct the side plates



Design and optimization of dynamic cable configuration device... 493

in effort to reduce the influence of device quality on the stability of the screw and the improve
unit mass-bearing capacity under various working conditions.

2. Dynamic cable configuration device

The intelligent cable retractable device is positioned at the front of the intelligent cable re-
tractable vehicle, which consists of the frame assembly, reel assembly, power system, transmission
system, dynamic cable configuration device, etc. Power is transmitted to the reel and recipro-
cating screw-screw pair through the transmission device. This enables it to work in conjunction
with the chassis system to realize safe and stable operation for functions such as “active ca-
ble winding, passive cable discharging and in situ cable winding and discharging”, as shown in
Fig. 2. One end of the dynamic cable configuration device is placed on the guiding rod by means
of a guiding wheel set, and the other end is connected to the reciprocating screw through the
screw pair. It serves as a key device for the intelligent cable retractable device to realize an even
arrangement and stable unwinding of the cables.

Fig. 2. Intelligent cable retractable device

2.1. Dynamic cable configuration device structure

The dynamic cable configuration device consists of three parts: the guide device, special sup-
port device and warning device, as shown in Fig. 3. Among them, the guide device works through

Fig. 3. Dynamic cable configuration device

synergistic cooperation of each roller to provide full-range cable guidance; the special support
device has characteristics of strong loading-impact resistance, compatibility with multiple types
of cables, and good alignment characteristics, which can realize stable arrangement of cables in
the process of winding and releasing. By monitoring cable tension, the warning device can switch
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between three working states of the cabling work – warning and emergency shutdown – while
providing anti-dragging warnings to prevent cable bending or breaking due to overstretching.
Additionally, the dynamic cable configuration device is fixed on the reciprocating screw pair
for left-right translation and automatic reversing. The mechanical structure transmission mode
of the reciprocating screw-screw pair ensures uniform cable arrangement and improves cabling
work stability.
The dynamic cable configuration device possesses characteristics of anti-dragging warning

and adjustable cable bending radius. With the addition of a control system, it can achieve
intelligent monitoring and warning of the state of the dynamic cable configuration device, as
well as adaptive adjustment of the bending radius. This feature allows for excellent adaptability
to the intelligent cable retractable device, and is highly significant for construction of intelligent
mines.

2.2. Guide device

The guide device is divided into a front guide device and a rear guide device, which are
composed of lateral rollers and transverse rollers. The lateral and transverse rollers are in the
same plane. During the cable movement process, they can play a role in guiding and protecting
the full range of the cable. Each roller consists of a smooth roller and rolling bearings. By
cooperating with each roller, the friction coefficient can be reduced to minimize cable wear, as
shown in Fig. 4.

Fig. 4. Guide device: (a) front guide device, (b) rear guide device

By setting up a rotating arm structure, the rear guide device can adjust its angle according
to the maximum bending coefficient of different cable specifications, and then adjust the bending
radius of the input cable to adapt to different types of cables.

2.3. Special support device

The special support device comprises a front support roller assembly and a rear support
roller assembly, which can realize the uniform arrangement of cables during cable installation
operation. Moreover, the special support device exhibits robust loading-impact resistance and
compatibility with various cable types while ensuring precise alignment. Consequently, it can
accommodate diverse cable-supporting needs effectively. Withstanding up to 10 meters of the
cable (weighing 6.9 kg/m), its exceptional stability guarantees compliance with overall stiffness
and strength requirements, as depicted in Fig. 5.

2.4. Warning device

The warning device consists of the upper and lower stroke switch, rocker, and torsion spring.
Through cooperation of the torsion spring with the rocker, the upper and lower stroke switch can
be triggered, allowing for feedback on the state signal of the dynamic cable configuration device
to be sent back to the controller. This enables obtaining information about cable tautness state
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Fig. 5. Special support device

Fig. 6. Warning device

in order to regulate three working states of the cabling work, warning and emergency shutdown,
as shown in Fig. 6.

• Working state: the contact between the cable and the rocker triggers the action of the
lower stroke switch, and the dynamic cable configuration device runs normally;
• Warning state: the cable is lifted by resistance and separated from the rocker, but the
upper and lower stroke switch are not triggered. At this time, the cable is subjected to a
large tension, but not more than the maximum permissible tension, and the system gives
a warning;
• Emergency shutdown: the resistance of the cable continues to increase, and the cable lifts
to contact the upper rocker, triggering the upper stroke switch. At this point, the tension
of the cable is greater than the maximum permissible tension, and the system stops in
emergency to protect the cable from excessive tension damage.

3. Characteristics of parameter interaction

The structure parameters, assembly parameters, and performance indicators of the dynamic
cable configuration device are interconnected. Studying the interaction law of each parameter is
a prerequisite for optimizing and transforming the dynamic cable configuration device.

3.1. Design parameters of the dynamic cable configuration device

Figure 7 shows a schematic diagram of the movement principle of the dynamic cable con-
figuration device when the intelligent cable retractable device is used for a high-voltage cable
retracting and releasing work. In Fig. 7, α1 is the angle between the suspended cable and hori-
zontal direction, which can be set according to operating conditions; α2 is the angle between the
horizontal direction and connecting line (between the reel center and the lower roller center of
the special support device); α3 is the angle between the connecting line (between the center of
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the reel and lower roller center of the special support device) and tangent line (between the reel
and lower roller of the special support device); α4 is the angle between horizontal direction and
connecting line (between the lower roller center of the special support device and guide device
roller center); β1 is the angle between the cable of segment AB and segment BC; β2 is the angle
between the cable of segment AB and suspended cable; γ1 is the angle between the vertical
direction and resultant force on the lower roller of the guide device; γ2 is the angle between the
vertical direction and resultant force on the lower roller of the special support device.

Fig. 7. Working model of the intelligent cable retractable device

Based on the geometric relationship in Fig. 7, when the dynamic cable configuration device is
used to arrange a cable, an expression between the structure parameters, assembly parameters,
and position parameters of each segment of the cable can be obtained

α2 = arctan
a1
b1

α3 = arcsin
Ri − r√
a21 + b

2
1

α4 = arctan
a

b
α5 = α3 − α2

(3.1)

and

β1 = π − α1 + α4 β2 = π − α4 + α5 (3.2)

and

γ1 =
β1
2
−
(π
2
− α1

)
γ2 =

β2
2
−
(π
2
− α4

)
(3.3)

where a1 and b1 are the vertical and horizontal distances between the lower roller center of the
special support device and the center of the reel, a and b are the vertical and horizontal distances
between the lower roller center of the special support device and the lower roller center of the
guide device, Ri (i = 1, 2, 3, . . .) is the radius when winding i-layers of the cable on the reel,
R1 is equal to the reel radius, r is the radius of the roller of the dynamic cable configuration
device.
When the number of cable layers on the reel changes, the expression for Ri is as follows

Ri = R1 + (i− 1)d (3.4)

where d is the diameter of the high-voltage cable.
The cable of segments AB and BC are approximately arranged in a straight line, when a

pre-tightening force is applied by the intelligent cable retractable device. Therefore, the cable
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bending radius λ can be determined from the length and angle parameters of the cable in
segments AB and BC

lBC =
Ri − r
tanα3

lAB =
a

sinα4
lAC = l2AB + l

2
BC − 2lBC lAB cos β2

λ =
lAC
2 sin β2

(3.5)

where lAB and lBC are the lengths of the cable in segments AB and BC.
At the same time, the warning state of the warning device depends on the structure pa-

rameters a and b. When α4 = α1, the lower stroke switch is disconnected and the warning is
activated.
The structure parameters and assembly parameters of the dynamic cable configuration device

are designed as listed in Table 1.

Table 1. Structure parameters of the cable arrangement device

Parameter Value Parameter Value

a1 [mm] 193 α1 [◦] 60
b1 [mm] 1163.5 d [mm] 65
a [mm] 240.5 d1 [mm] 40
b [mm] 423 g [m/s2] 9.8
R1 [mm] 534 r [mm] 32.5

Substituting the parameter values from Table 1 into Eq. (3.1) to (3.5) onr can obtain.

Table 2. Position parameters of cable arrangement device

Parameters i = 1 i = 2 i = 3

α2 [◦] 9.42 9.42 9.42
α3 [◦] 25.16 28.71 32.37
α4 [◦] 29.62 29.62 29.62
β1 [◦] 149.62 149.62 149.62
β2 [◦] 166.13 169.67 173.33
γ1 [◦] 44.81 44.81 44.81
γ2 [◦] 22.68 24.45 26.28
λ [mm] 4972410 6404040 9441800

From Table 2, it can be observed that during the operation of the dynamic cable config-
uration device, α3, β2 and γ2 will vary with the number of cable layers arranged on the reel,
primarily affecting the working environment of the lower roller of the special support device.
Simultaneously, a bending radius 15 times greater than the diameter of the cable is required for
proper functioning. Based on the data in Table 2, increasing the number of cable layers proves
to be advantageous in enhancing the high-voltage cables working environment.

3.2. Mechanical characteristics of the dynamic cable configuration device

The force analysis of the guide device roller and the special support roller is shown in Fig. 7,
when the cable is arranged on the reel. The equilibrium equations of the two rollers are obtained

F1 = 2Fs cos
β1
2

F2 = 2Fs cos
β2
2

Fs =
Gs
tanα1

(3.6)
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and

F5 = G1 + F1 cos γ1 F6 = F1 sin γ1 F ′ =
√
F 25 + F

2
6 (3.7)

and

F3 = G2 + F2 cos γ2 F4 = F2 sin γ2 F =
√
F 23 + F

2
4 (3.8)

where F1 and F2 are the resultant forces acting on the guide device roller and the special support
roller, F4 and F3 are the vertical and horizontal components of the force F on the reciprocating
screw, F5 and F6 are the vertical and horizontal components of the force F ′ on the guiding rod,
m is mass of the dynamic cable configuration device, Fs is the tensile force on the cable, Gs is
the gravity force acting on the suspended cable, G2 = G1 = mg/2.
The contact length between the reciprocating screw and the screw pair is much smaller than

the length of the reciprocating screw, so the force on the reciprocating screw can be simplified to
the concentrated force. Additionally, since the length of the reciprocating screw is much larger
than its section diameter, we can neglect the effect of the shear force on bending deformation
(Tang et al., 2022). Based on the plane assumption that the cross-section perpendicular to the
axis remains perpendicular to the deflection curve after deformation, a force analytical model
for the reciprocating screw is established with the axis of the screw before deformation as the
x-axis, the vertical direction as the y-axis, and the longitudinal symmetry plane of the screw as
the xy plane, as shown in Fig. 8.

Fig. 8. Force analytical model for the reciprocating screw

Using the static equilibrium equation, the support constraints at the ends D and E of the
reciprocating screw are obtained

FD =
F (L− z)

L
FE =

Fz

L
(3.9)

where L is the length of the reciprocating screw, z is the x-axis coordinate value of the screw
pair, which varies within the effective length l of the reciprocating screw.
The bending moment equation for any point of the reciprocating screw is obtained in seg-

ments

M(x) =






F (L− z)
L

x for 0 ¬ x ¬ z
Fz

L
(L− x) for z ¬ x ¬ L

(3.10)

Due to small deformation of the reciprocating screw, a differential equation for the deflection
curve of the reciprocating screw is established (Gere and Timoshenko, 1984)

d2ω

dx2
=
M

EI
(3.11)
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where I = πd41/64 is the cross-section moment of inertia of the screw relative to the centroid
axis, d1 is the diameter of the reciprocating screw, ω is the displacement of the centroid of the
cross-section with coordinates x along the y-direction, which is the deflection, E is the elastic
modulus of the reciprocating screw, 210GPa.
The substitution of Eq. (3.10) into Eq. (3.11) yields

EIω(x) =





F (L− z)
6L

x3 + C1x+D1 for 0 ¬ x ¬ z

Fz

2
x2 − Fzx3

6L
+ C2x+D2 for z ¬ x ¬ L

(3.12)

According to the continuity condition, when x = z, the first derivative of the deflection with
respect to the deflection at the segmental point corresponds to equality. From the boundary
conditions, for x = 0 or x = L, ω = 0, we obtain

ω(x) =





Fx[2L2z + z(x2 + z2)− L(x2 + 3z2)]
6LEI

for 0 ¬ x ¬ z

Fz[2L2x+ x(x2 + z2)− L(z2 + 3x2)]
6LEI

for z ¬ x ¬ L
(3.13)

By using Eqs. (3.8) and (3.13), a sensitivity expression for screw deflection to the mass change
of the dynamic cable configuration device is obtained

S =
dω

dm

m

ω
= −

gm
(
mg
2 + F2 cos γ2

)

2
[(

mg
2 + F2 cos γ2

)2
+ (F2 sin γ2)2

] (3.14)

Based on the measured values (m = 30 kg and Gs = 690N), the data in Tables 1 and 2 are
substituted into Eq. (3.14) to obtain S = −0.48, which means that the mass of the dynamic
cable configuration device is reduced by 20%, and the maximum screw deflection is reduced by
9.6%.
At the same time, the number of retracted cable meters is directly proportional to the

tension Fs on the cable, when the intelligent cable retractable device retracts the cable in situ.
An increase of Fs will change the load-bearing state of the dynamic cable configuration device. In
order to comprehensively describe its state under different loads, we define the mass utilization
coefficient as the load borne by the unit mass. When this coefficient exceeds a certain limit value,
it indicates that the dynamic cable configuration device is in an overloaded working state. When
it is lower than a certain limit value (at this time α4 = α1), it indicates that the dynamic cable
configuration device is in a warning working state. Under conditions satisfying strength and
stiffness, a higher mass utilization coefficient implies greater utilization per unit mass, making
for a more economical and reasonable structure of the dynamic cable configuration device

P =
Ff
m

(3.15)

where P is the mass utilization coefficient, Ff is the load of the dynamic cable configuration
device. The expression for Ff is obtained

Ff =
√
(F1 cos γ1 + F2 cos γ2)2 + (F1 sin γ1 + F2 sin γ2)2 (3.16)

By substituting the values from Tables 1 and 2 into Eqs. (3.6), (3.15), and (3.16), it can be
concluded that the mass utilization coefficient of the dynamic cable configuration device is
16.58N/kg, when the intelligent cable retractable device operates in conjunction with the chassis.
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4. Strength analysis of side plates of the dynamic cable configuration device

High-voltage cables used in open-pit mines have a high mass per unit length. In order to ensure
that the dynamic cable configuration device has sufficient load-bearing capacity under design
loads and to guarantee safety and reliability of its structure. Ansys is utilized for static simulation
of the side plates of the dynamic cable configuration device based on the 3D model created by
Solidworks in this Section (Nie et al., 2011).
The side plates of the dynamic cable configuration device are made of Q235B steel with

a Young’s modulus of 206GPa, Poisson’s coefficient of 0.3, a yield strength of 250MPa and a
tensile strength of 460MPa. The thickness of the side plates is 5mm. The vertical upward load is
set at 2000N, and the vertical downward load is set at 700N. The specific distribution is shown
in Fig. 9.

Fig. 9. Schematic of side plates loading

The side plate of the dynamic cable configuration device was statically analyzed to obtain the
corresponding stress and strain cloud diagrams, as shown in Fig. 10. Among them, the weight
of the side plate is 5.268 kg, and the maximum stress is 30.824MPa, which is much smaller than
the permissible stress of the material and meets both strength and stiffness requirements.

Fig. 10. Stress analysis of the side plates: (a) stress, (b) strain

The safety coefficients are calculated according to

N =
[σ]
σ

(4.1)

where N is the safety coefficient, [σ] is the permissible stress, σ is the maximum working stress.
According to Eq. (4.1), N = 8.11, the side plates are designed to meet strength requirements.
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5. Topology optimization and reconstruction

The accuracy of the reciprocating screw is affected by its stiffness in cabling work. If the de-
formation is too large, it will affect the precision of the screw and the screw pair, resulting in
uneven wear, noise, vibration, and reduced lifespan. The lightweight design of the dynamic ca-
ble configuration device is an important method to improve both the precision of cabling work
and the mass utilization coefficient of the dynamic cable configuration device. This design also
enhances operational efficiency and reduces production costs. In this Section, the topological
reconstruction of the side plates for the dynamic cable configuration device is performed based
on Ansys.

5.1. Optimization program

Topological optimization can identify the optimal material distribution scheme within the
optimization space of a homogeneous material (Song et al., 2017). In this Section, the objective
of topology optimization is to minimize strain energy for the overall structure of the side plate,
while ensuring that the volume of the optimized side plate does not exceed 40% of its original
volume. The mathematical representation of topological optimization is as follows (Radhi et al.,
2021)

find: x = [X1,X2, . . . ,Xn]T

min : C(x) =
1
2
UTKU

s.t.
{ N∑

i=1

ViXi ¬ V ∗; F = KU; Xmin ¬ Xi ¬ 1 (i = 1, . . . , n)
}

(5.1)

where U, K and F are the displacement vector, global stiffness matrix and load vector, re-
spectively, for the n element domain. The first constraint is a volume constraint to be below a
certain value V ∗. The second constraint represent the equilibrium condition, from which U is
calculated. Here, a value Xmin of 0.001 was found to be suitable for our simulations.

5.2. Analysis of optimization results

The optimization analysis converges after 24 iterations, and the topology optimization results
are shown in Fig. 11.

Fig. 11. Topology optimization results
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The side plates have been reconstructed based on the topology optimization results, weighing
2.227 kg as depicted in Fig. 12a. By applying the same constraints and loading conditions as the
original model for static analysis, the maximum stress is measured at 31.624MPa with a safety
coefficient of 7.9, as shown in Fig. 12b.

Fig. 12. Reconstructed side plates: (a) side plate model, (b) stress diagram

After reconstruction, the stress on the side plate is much lower than the material yield
strength, and the design still has a significant redundancy. Therefore, in the second reconstruc-
tion, the thickness of the side plate is reduced to 3mm. The weight of the side plate after this
second reconstruction is 1.670 kg. By applying identical constraints and loading conditions as
in the original model for static analysis, we measured a maximum stress of 37.722MPa with a
safety coefficient of 6.62, as shown in Fig. 13.

Fig. 13. Stress diagram of the side plates after second reconstruction

5.3. Comparative analysis

As shown in Table 3 and 4, when the thickness of the side plate is taken as 5mm, the
weight of the side plate decreases by 57.7% to 2.227 kg, while the maximum stress is reduced
to 31.624MPa. Additionally, the mass of the dynamic cable configuration device decreases by
20.3% to 23.918 kg. When the thickness of the side plate is reduced to 3mm, its weight decreases
by 68.3% down to 1.670 kg and the maximum stress becomes 37.772MPa. Meanwhile, the mass
of the dynamic cable configuration device decreases by 24.0% to 22.804 kg.
To ensure the precision of cabling work and extend equipment service life while reducing

operational costs, the weight reduction achieved with a safety coefficient that meets requirements
makes the side plate weighing only 1.670kg better fit for lightweight design specifications. The
mass utilization coefficient for the dynamic cable configuration device reaches 21.83N/kg when
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Table 3. Comparative advantage

Deformation Equivalent (von Mises) stress

Origi-
nal
side
plate

Opti-
mized
side
plate
(5mm)

Opti-
mized
side
plate
(3mm)

Table 4. Data analysis

Structural element
Weight Maximum Safety
[kg] stress [MPa] coefficient

Original side plate 5.268 30.824 8.11
Optimized side plate (5mm) 2.227 31.624 7.9
Optimized side plate (3mm) 1.670 37.772 6.62

the intelligent cable retractable device works in conjunction with the chassis. This design concept
has already been adopted and successfully implemented in large-scale open-pit mine engineering
applications, such as showed in Fig. 14.
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Fig. 14. (a) Intelligent cable retractable vehicle, (b) dynamic cable configuration device

6. Conclusions

This study has developed a novel mining dynamic cable configuration device for mining enter-
prises, which was designed and optimized based on both the mathematical model of the device
and the topological optimization results obtained from Ansys. The engineered application of
this mining dynamic cable configuration device has been successfully implemented in a large
open-pit mine. During the research process, we have drawn the following conclusions.

• The dynamic cable configuration device is equipped with an adjustable cable bending de-
gree, full-range guiding limit and an anti-dragging warning function, effectively preventing
high-voltage cables from being ripped off or bent. This greatly enhances multi-scenario
application capability of the intelligent cable retractable vehicle.
• The mathematical expressions and interaction laws of parameters such as cable bending
radius and utilization coefficient of the dynamic cable configuration device are theoretically
derived, providing a theoretical basis for structural design of this device, determination of
assembly positions, and performance optimization.
• After optimization, the weight of the side plate of the dynamic cable configuration device
decreased by 68.3%, and the weight of the device decreased by 24.0%. The maximum
deflection of the reciprocating screw was reduced by 11.52%. Through actual engineering
applications, it has been observed that stability in discharging cables of the device has
been significantly enhanced.
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During cyclic loadings, metal alloys can undergo cyclic plasticity, for example, at notches.
The Chaboche kinematic hardening model provides a versatile and realistic description
of the material stress-strain behaviour under multiaxial cyclic loadings. In this work, the
global properties, extracted from stabilized cycles of strain-controlled tests and from a force-
-controlled test, are employed to calculate the parameters. Alternatively, the Bouc-Wen
model can provide a reliable representation of nonlinear hysteretic phenomena, and the clas-
sic nonlinear least squares approach is employed to tune its constants. The performances of
the two proposed techniques are compared, and a final discussion is provided.

Keywords: cyclic-plasticity, hysteretic behaviour, Chaboche kinematic hardening model,
Bouc-Wen model

1. Introduction

The presence of notches in mechanical components can enhance the plastic behaviour, in partic-
ular, under cyclic loadings, thus an accurate description of the constitutive behaviour of metal
alloys is crucial for structural analysis. For example, in (Bertini et al., 2017; Santus et al.,
2023b) the use of a cyclic plastic constitutive law was motivated by the fact that, assuming
purely elastic behaviour, the presence of a severe V-notch combined with a high fatigue load
ratio R (R = σmin/σmax), resulted in very high and not meaningful values of stress near the
notch. The Chaboche kinematic hardening (CKH) model (Chaboche, 1986) is a powerful and
recognized model to describe the cyclic plastic behaviour of metals. Given that it is a kinematic
model, it accounts for the Bauschinger effect, which generally occurs during the cyclic plastic
behaviour of materials. This latter statement, together with the necessity to consider the plastic
behaviour of the material near the notches, justifies the widespread use of this model in fatigue
analyses such as in (Karolczuk et al., 2019; Hosseini and Seifi, 2020; Santus et al., 2022). The
CKH model is also implemented in Ansys finite element (FE) software.
Since its first introduction, the Chaboche model has undergone several proposals of modifi-

cation. Chaboche himself (Chaboche, 1991) suggested a modification to improve the ratcheting
prediction, which was subsequently validated by other researchers (Shafiqul and Tasnim, 2000).
Some changes to the classical CKH model were also proposed by (Dafalias et al., 2008), where the
parameters of backstress components were assumed variable during cyclic-loading to improve
the ratcheting rate prediction. Despite all the modifications of the Chaboche hardening rule,
the computation of Chaboche parameters is a challenging task even considering the classical
formulation of this model. Typically, only stabilized cycles extracted from strain-controlled tests
(SCTs) on plain specimens can be used to calculate the parameters, but force-controlled tests
(FCT) can also be used as in (Koo and Lee, 2007; Mahmoudi et al., 2011). Different techniques
can be employed to obtain the Chaboche parameters such as genetic algorithms (Badnava et al.,
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2012; Dvoršek et al., 2023), particle-swarm optimization (Li et al., 2018) and gradient-based op-
timization algorithm (Chaparro et al., 2008). The latter algorithms typically demand substantial
computational resources.
Alternatively, the Bouc-Wen (B-W) model (Bouc, 1967; Wen, 1976) is widely employed to

describe the hysteretic behaviour of mechanical systems such as piezo-actuated devices (Cai et
al., 2023) or wire rope isolators (Neri and Holzbauer, 2023). Various optimization algorithms
can be again employed to obtain B-W parameters such as the Levenberg-Marquardt algorithm
(Ni et al., 1998), multi-objective optimization algorithms (Ortiz et al., 2013) or particle-swarm
optimization (Charalampakis and Dimou, 2010).
In this research, a novel and physics-based algorithm to calculate the CKH model parameters

was employed. The global properties of stabilized cycles of the SCTs, such as the gradient at
extreme points of the cycles (EPOC), the hysteresis area (HA), the stress range (SR), the average
stress (AS), the average plastic strain (APS) and the plastic strain range (PSR) were employed
to compute the parameters. To provide an accurate description of the transient during the FCT,
the experimental ratcheting rate was also employed during determination of the parameters.
The Bouc-Wen model was also used to replicate the cyclic-plastic behaviour considering the
nonlinear hysteretic nature of cyclic plastic phenomena. However, the search of the parameters
required a different strategy due to different nature of model equations.
Section 2 is dedicated to show the experimental data and, in Section 3, the utilized procedure

to calculate the CKH parameters is explained along with the corresponding obtained results. In
Section 4, the Bouc-Wen model is introduced and the corresponding results to model the cyclic
plastic behaviour are shown. Finally, in Section 5, a discussion with a comparison between the
two engaged algorithms is provided.

2. Materials

The alloy investigated in this research is 42CrMo4 quenched and tempered steel. All tests were
performed on plain specimens (i.e. without notches) and under uniaxial loading. The mean values
of the yield strength and of the ultimate strength, obtained by a standard tensile test, were equal
to SY = 500MPa and SU = 700MPa, respectively. Three SCTs and one FCT were employed to
calculate the CKH parameters. Two SCTs were performed at Rε = −1, which means that the
minimum imposed total axial strain and the maximum imposed total axial strain were opposite,
while one was performed at Rε 6= −1. The FCT was conducted at R = −0.66, and R indicates
the ratio between the minimum and the maximum imposed axial stress. The SCTs conducted at
Rε = −1 are shown in Fig. 1, Cycle I (CI) and Cycle II (CII) indicate the stabilized cycles and
εp represents the axial plastic strain. The useful quantities extracted from the stabilised cycles
are also shown in Fig. 1, and their corresponding numerical values are reported in Table 1.

Table 1. Global properties extracted from CI and CII

∆εp ∆σ A dσ/dεp
[–] [MPa] [mJ/mm3] [GPa]

CI 1.43% 1030 12.0 5.81
CII 0.50% 918 3.61 20.2

The useful quantities extracted from the FCT in order to apply the procedure are shown in
Fig. 2. The ratcheting rate in Fig. 2b presents an initial linear trend, which is used to calculate the
Chaboche parameters. It is important to remark that the CKH model is not able to reproduce a
variable (increasing) ratcheting rate, unless combining the CKH model with damage mechanics
models.
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Fig. 1. Strain-controlled tests performed at Rε = −1, the transient cycles are indicated in grey, while
the stabilized cycles are marked in red as (a) CI and (b) CII

Fig. 2. (a) Few cycles of the force-controlled test involved in the research with significant quantities
highlighted; (b) experimental maximum plastic strain per cycle of the force-controlled test employed in

this research

From Fig. 2a some useful quantities need to be defined as the plastic strain amplitude (PSA)
per cycle and the plastic strain rate per cycle, which are formalized as

∆εap,N =
εmaxp,N+1 + ε

max
p,N

2
− εminp,N ∆εrp,N = ε

max
p,N+1 − εmaxp,N (2.1)

These two quantities ∆εap,N and ∆ε
r
p,N are not generally constant. However, FE simulations by

involving the Chaboche model showed that, after the initial cycles, a constant ratcheting rate can
be obtained as described in (Kreethi et al., 2017; Zhang et al., 2020). Given these latter findings,
the two quantities of Eqs. (2.1) can be assumed constant in order to describe the ratcheting rate,
and they can be substituted with ∆εap and ∆ε

r
p in which there is no dependence on the number

of cycles N .

3. Computation of the CKH parameters

For a plain specimen loaded uniaxially, and employing the CKH model, the dependence between
the axial stress σ and the backstress components can be described by Eqs. (3.1). In these
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equations σL is the elastic limit (to be calculated), µ is a coefficient equal to 1 during positive
loading ramps, and to −1 during negative loading ramps and χ is the total backstress obtained
by the sum of backstress components

σ = µσL + χ χ =
n∑

i=1

χi dχi = Cidεp − γiχi|dεp| (3.1)

The third of Eqs. (3.1) describes a differential equation which governs the dynamics of the back-
stress components. Ci and γi are the CKH model parameters to be tuned. In this work, the
classical CKH model with three backstress components was calibrated, and the fourth back-
stress was eventually added to improve the prediction of stabilized cycles of the SCTs near the
elastic limit zones. The qualitative trends of the three backstress components, according to our
procedure and for an ideal plastic strain controlled test with Rεp = 0.1, are reported in Fig. 3.
The first backstress has the most rapid dynamics (Fig. 3a), while the second backstress has much
slower dynamics than that of the first one (Fig. 3b). Finally, the third backstress was assumed
with a linear trend as shown in Fig. 3c that is just obtained by imposing γ3 = 0. It is important
to highlight that the first backstress leads to a nonzero value of the HA of the stabilized cycle,
while the second backstress leads to an almost null value of the HA of the stabilized cycle, which
can be approximated as null in the following analysis. The maximum and the minimum values
of the first and second backstress components, as concerns the stabilized cycles, are opposite as
highlighted in Figs. 3b and 3c. On the contrary, a nonzero mean stress remains for the linear
backstress component, despite the loading cycling.

Fig. 3. Trends of the three backstress components for ideal plastic SCT at Rεp = 0.1: (a) first backstress
component (fast), (b) second backstress component (slow) and (c) third backstress component (stable)

The CKH parameters to be determined were C1, γ1, C2, γ2, C3, χ3,0 and σL, and the
procedure to calculate them was presented in (Santus et al., 2023a) and is briefly recalled here.
Using the average point of the stabilized cycles extracted from the SCTs, the parameters C3
and χ3,0 were determined by combining CI and Cycle III (CIII), which indicates the stabilized
cycle of the strain-controlled test (SCT) performed at Rε 6= −1. Equations (3.2) provide a 2× 2
linear system which relates the AS σm = (σmax+σmin)/2 and the APS εp,m = (εp,max+εp,min)/2
of the stabilized cycles, which are also the experimental inputs. When the experimental SCT
performed at Rε 6= −1 is almost fully relaxed, the obtained value of C3 is much lower than the
values of C1 and C2

χ3,0 + C3εp,m,I = σm,I χ3,0 + C3εp,m,II = σm,II (3.2)

Once the parameters C3 and χ3,0 were calculated, Eqs. (3.3)-(3.5) were employed to calculate
the other parameters, except for γ2, which was calculated using the FCT. The experimental
inputs of Eqs. (3.3)-(3.5) were all extracted from the stabilized cycles of the SCTs performed
at Rε = −1 (CI and CII). Assuming the inequality given by γ2∆εp ≪ 1, which is meaningful
considering the low value of γ2 and which was employed in all the following equations, Eqs. (3.3)
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can be obtained to model the gradient at the EPOC in the σ − εpl plane. In Eqs. (3.3), the
PSR ∆εp = (εp,max− εp,min) and the gradient at the EPOC, dσ/dεp calculated at σstabmax, are the
experimental inputs, and the nonlinear system can be solved to obtain the expressions for C1
and C2 depending on γ1

C1
(
1− tanh γ1∆εp,I

2

)
+ C2 = −C3 +

dσ

dεp

∣∣∣∣∣
σ=σstab,Imax

C1
(
1− tanh(γ1∆εp,II

2

)
+ C2 = −C3 +

dσ

dεp

∣∣∣∣∣
σ=σstab,IImax

(3.3)

The expressions to calculate the values of the elastic limit for CI and CII were obtained as
functions depending on γ1 only, as shown in Eqs. (3.4). In these latter equations, the PSR and
the SR ∆σ = (σmax − σmin) are, in turn, the experimental inputs. The expressions of σL,I
and σL,II obtained from Eqs. (3.4) should lead to the same value considering that the elastic
limit is obviously a unique material property. Given that this assumption is not satisfied, in
general, an averaged function was defined as σL = (σL,I + σL,II)/2

σL,I =
∆σI
2
− C1
γ1
tanh

γ1∆εp,I
2
− C2 + C3

2
∆εp,I

σL,II =
∆σII
2
− C1
γ1
tanh

γ1∆εp,II
2

− C2 + C3
2

∆εp,II

(3.4)

The last property to be considered during the determination of the parameters is the HA of
the stabilized cycle, which is described for CI and CII , by AmodI and AmodII , respectively. It is
important to highlight that Eqs. (3.2)-(3.5) were obtained in (Santus et al., 2023a) by supposing
plastic SCTs, but they were extended to total SCTs without any loss of generality

AmodI = 2σL∆εp,I + 2
(C1
γ1
∆εp.I − 2

C1
γ21
tanh

γ1∆εp,I
2

)

AmodII = 2σL∆εp,II + 2
(C1
γ1
∆εp.II − 2

C1
γ21
tanh

γ1∆εp,II
2

) (3.5)

Three error functions, all depending on γ1 only, were then defined:

• An error function to quantify the difference between the values obtained by the expression
of σL,I and those obtained by the expression of σL,II

Σ =
∣∣∣
σL,I − σL,II

σL

∣∣∣

• A relative error function about the HA of CI

ΛI =
AmodI −AI

AI

• A relative error function about the HA of CII

ΛII =
AmodII −AII

AII

The three introduced error functions were then included into a global error function, which is
presented in

ψ(γ1) = (1− α)Σ2 + α(Λ2I + Λ2II) (3.6)
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The weight parameter α can balance between the importance of considering the relative error
of the HA and the error about the cycle amplitude. The parameter α is considered in the range
[0, 1]. The searched value of γ1 was just found by minimizing the global error function presented
in Eq. (3.6). A qualitative trend of the global error function ψ(γ1), obtained with α = 0.5, is
shown in Fig. 4. Once the value of γ1 was obtained, the parameters C1, C2 and σL were then
easily numerically calculated by following the expression proposed in Eqs. (3.3)-(3.5). The last
parameter to be calculated was γ2 by involving the FCT. Considering the CKH model with only
two nonlinear backstress components, the relationship between the AS, the PSA per cycle and
the plastic strain rate per cycle for a FCT on a plain specimen is provided by

σm =
2∑

i=1

Ci
γi

sinh(γi∆εrp/2)
sinh(γi∆εap)

(3.7)

Fig. 4. An example of the trend of the global error function ψ(γ1) with α = 0.5

Considering that, generally, γi∆εrp ≪ 1 for each backstress component giving a small plastic
strain increment per cycle, Eq. (3.7) can be simplified into Eq. (3.8). This latter equation can
be easily inverted, and the value of γ2 can thus be obtained

σm =
2∑

i=1

Ci
sinh(γi∆εap)

(3.8)

When the third linear backstress is also considered, the maximum value of this backstress com-
ponent evolves cycle per cycle according to

χmax3,i+1 = χ
max
3,i + C3∆ε

r
p (3.9)

This latter equation highlights that the only achievable equilibrium, when the third linear back-
stress component is considered, occurs for ∆εrp = 0, i.e. for a plastic shakedown. According to
this latter statement, the quantities ∆εap,N and ∆ε

r
p,N cannot be considered constant. The rela-

tionships shown by Eqs. (3.2), which were used for SCTs, are also valid to describe the average
point of the stabilized cycle of a FCT as remarked in (Santus, Grossi et al., 2023). Therefore,
the relationship to describe the APS of the stabilized cycle can be obtained by inverting Eqs.
(3.2), thus obtaining

εp,m =
σm − χ3,0

C3
(3.10)

This equation highlights that the APS of the stabilized cycle of a FCT is relatively high for low
values of C3, thus it is reached after a quite big number of cycles. Therefore, the PSA per cycle
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and the plastic strain rate per cycle can be considered constant without any loss of accuracy,
and Eq. (3.8) can be finally employed to obtain the value of γ2. In Fig. 5, some of the obtained
results are reported, more specifically, in Fig. 5a, the blue line predicts the mean points of the
stabilized cycles as described in Eqs. (3.2), and in Fig. 5b, differences between the experimental
stabilized cycles CI and CII and the corresponding modelled cycles are shown.

Fig. 5. (a) Average points of the stabilized cycles of the SCTs, (b) small differences between
experimental and reproduced CI and CII cycles by using the proposed procedure with three backstress

components

The ratcheting rate was also modelled, and the obtained results are reported in Fig. 6. The
comparison between the experimental and the modelled ratcheting rates is reported in Fig. 6a.
Clearly, this latter comparison was carried out in the region where the ratcheting rate could be
considered constant according to Fig. 2. In Fig. 6b, a comparison between the experimental and
the modelled FCT is shown in the same ratcheting cycle range.

Fig. 6. (a) Differences between experimental and modelled ratcheting rates in the constant ratcheting
rate region and (b) differences among experimental and modelled fully reproduced cycles of the

force-controlled test in the same constant ratcheting region

The fourth backstress, with an imposed high value of γ4, thus quickly saturating, was added
to improve the prediction of the stabilized cycles of the SCTs near the elastic limit region. The
searched ratio between C4 and γ4 was aimed at minimizing the further error function described
by

ϕ
(C4
γ4

)
= |σA − σB|2 + |σC − σD|2 (3.11)



514 C. Santus et al.

A graphical and qualitative explanation of the error function described by this latter equation
is provided in Fig. 7a. The superimposition of the fourth backstress, with a high value of γ4,
modifies Eqs. (3.4). In fact, the elastic limit can be modelled as σ′L = σL − C4/γ4, where
σ′L is the updated (and lower) value of the elastic limit provided that σL is the value of the
elastic limit previously obtained with the CKH model with three backstress components. The
updated expression of the elastic limit can be then substituted into Eqs. (3.5) leading to a clear
decrease in the value of the modelled HA. Finally, the comparisons between the experimental
and simulated stabilized cycles, considering the fourth backstress component and for CI , CII
and CIII , are reported in Fig. 7b. The numerical values of the obtained CKH parameters are
shown in Table 2.

Fig. 7. (a) Inaccuracy of the simulated stabilized cycle, which can be corrected by introducing the
fourth backstress component, (b) differences among experimental and modelled CI , CII and CIII

considering the additional fourth backstress component

Table 2. Obtained parameters for the CKH model with four backstress components

σL C1 γ1 C2 γ2 C3 γ3 χ3,0 C4 γ4
[MPa [MPa] [–] [MPa] [–] [MPa] [–] [MPa] [MPa] [–]

240 69200 426 2840 4.63 2670 0 −4.86 38200 5000

4. Use of the Bouc-Wen model to describe the cyclic-plastic behaviour

The B-W model is widely used to describe the hysteretic behaviour of mechanical systems, and
its general form is described as

Y = Y2(z + Y1) Y1 = k1x+ k2 sgn (x)x2 + k3x3 Y2 = bcx

ż = ẋ
(
α+ δx− [γ + β sgn (ẋ) sgn (z)]zn

) (4.1)

In these equations, the variable x and its derivative with respect to time ẋ are the input variables,
while Y is the output variable. It is important to highlight, by considering the last expression
of Eqs. (4.1), that the time variable could be simplified, thus leading to a not time-dependent
expression. However, the time variable defines the sequence of the loading, i.e. the change of sign
of the input variable x, but the velocity of change of this variable does not affect the output of
the problem. As a consequence, in all performed searches of the Bouc-Wen model parameters
presented below, the time was never involved. In the last equation of Eqs. (4.1), the term δx
was added with respect to the original formulation of the model, as in (Neri and Holzabuer,
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2023). This added term aims to reproduce the possible asymmetry between the two EPOC.
In this research, the input variables were the axial plastic strain εp and its differential dεp,
while the output variable Y represented the axial stress. The parameters of the B-W model
were calculated by the Levenberg-Marquardt algorithm. This algorithm combines the steepest-
-descent and the Newton-Raphson methods, thus obtaining two different types of behaviour:
far from possible singularities, the algorithm tends to enhance Newton-Raphson to improve
the convergence rate, while, in order to improve its robustness, it tends to the steepest-descent
algorithm near eventual singularities to improve its robustness. This latter characteristic can then
balance between the aim of convergence and the robustness to the singularities. The Levenberg-
-Marquardt algorithm is fully implemented in the MATLAB software, which is widely employed
in optimization problems. The results of this algorithm are presented in Fig. 8. The parameters
were firstly calibrated by CI and validated by CII (Fig. 8a) and vice versa (Fig. 8b). The
parameters were also calculated for the FCT, as shown in Fig. 9. The obtained B-W parameters
are reported in Table 3.

Fig. 8. Differences among experimental and simulated CI and CII by involving the B-W model:
(a) CI employed to calculate the constants of the B-W model and CII utilized to validate the obtained
constants, (b) CII employed to calculate the constants of the B-W model and CI utilized to validate the

obtained constants. This latter approach introduces higher errors

Fig. 9. Comparison between the experimental and the predicted force-controlled test by using the
Bouc-Wen model
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Table 3. Calculated constants of the B-W model

Extracted α β γ
n

δ
c

k1 k2 k3
from [MPa] [MPa1−n] [MPa1−n] [MPa] [MPa] [MPa] [MPa]

CI 28.7 14.8 −13.7 0.860 −0.139 0 0.738 0 0
CII 40.6 37.7 −34.8 0.681 1.12 0 0 0 0
Force-
-controlled 15.5 0.068 0.036 1.290 −0.026 0 0.479 0 0
test

After critically considering the obtained values of the B-W parameters reported in Table 3, it
can be observed that this model collapses for all the investigated cases into equations (4.2), given
that from the optimization algorithm it was found out that k2 = k3 = c = 0, δ ≈ 0 and n ≈ 1.
A null value of k1 was identified only when the optimization was carried out on CII , while it
was considerably not null in the other cases. According to Eqs. (4.2), the output variable Y was
obtained by the sum of z and Y1, which resemble nonlinear and linear backstress components,
respectively. Therefore, under these circumstances, the B-W model collapsed into the CKH
model with two backstress components in which one was nonlinear and the other was linear. In
addition to this, the term γ + sgn(x) sgn (z), which is the equivalent of γ of in the CKH model,
varies during the loading due to the sign of x and sign of z, while γ in the CKH model remains
constant during the loadings

Y = z + Y1 Y1 = k1x Y2 = 1

dz = dx
(
α− [γ + β sgn (dx) sgn (z)]z

) (4.2)

5. Conclusions

In this research, the cyclic-plastic behaviour of plain specimens made of 42CrMo4 (Q+T) was
analyzed with the Chaboche kinematic hardening model and, for a comparative purpose, also
with the Bouc-Wen model. The main findings of this research are reported below:

• The employed novel procedure to identify the Chaboche kinematic hardening model pa-
rameters is based on the global properties, such as the gradient at the EPOC, the HA, the
AS, the SR, the PSR and the APS of the stabilized cycles obtained from the SCTs and on
the ratcheting rate obtained from the FCT.
• The parameters of the Chaboche kinematic hardening model with three backstress compo-
nents were tuned, and the fourth backstress was eventually added to improve the prediction
accuracy near the elastic limit regions. The procedure allowed one to obtain a good pre-
diction accuracy as highlighted in Fig. 5 for the Chaboche model with three backstress
components, in Fig. 6 for the ratcheting rate and in Fig. 7 for the Chaboche model with
four backstress components. In this latter figure, CIII was used as an independent validator
given that it was only employed to calculate the values of C3 and χ3,0. The utilized pro-
cedure makes use only of explicit formulas, and it avoids the use of complex optimization
algorithms.
• Given that cyclic plasticity introduces a hysteretic phenomenon, the Bouc-Wen model was
also engaged to reproduce the cyclic-plastic behaviour of the investigated steel. The Bouc-
-Wen parameters were tuned by CI and validated by CII and vice versa. For comparison,
the parameters were also calculated from the FCT. In Fig. 8, it is shown that the Bouc-
-Wen model can accurately reproduce the stabilized cycle from which the parameters were
obtained, but a lack of accuracy was observed when they were employed to reproduce
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the stabilized cycle of the SCT not accounted for calibration. More precisely, the model if
calibrated by CI and validated by CII , see Fig. 8a, provided a better prediction accuracy
than in, vice versa, Fig. 8b. This latter behaviour can be explained just considering that
the strain range of CI was wider than that of CII .
• By observing the obtained numerical results for the Bouc-Wen parameters reported in
Table 3, it can be noted that this model collapsed for the investigated data into some-
thing very similar to the Chaboche kinematic hardening model with nonlinear and lin-
ear backstress components. It is reasonable to obtain k2 = k3 = 0, given that these
two parameters can change the sign of concavity of the quantity Y during the ten-
sile loading phase or during the compressive loading phase, as shown in (Neri and
Holzbauer, 2023). This mentioned change of concavity makes no sense if contextualized
for cyclic-plastic phenomena where the concavity has a positive sign during the entire
compressive loading phase, and it has a negative sign during the entire tensile loading
phase. It is also reasonable to obtain a low value of δ, if compared to the obtained
value of α, given that generally there is not an evident asymmetry between the two
EPOC in the cyclic plastic behaviour. However, rather than the Chaboche, the Bouc-
-Wen model misses the equivalent of the term σL, which allows one to model the elastic
limit stress of the material.
• The Bouc-Wen model did not provide an accurate description of the ratcheting rate even if
the model parameters search were optimized in a force-controlled test, as shown in Fig. 9.
As explained in (Santus et al., 2023a), the relationship between the SR and the PSA per
cycle ∆εap in a force-controlled test is equal to the relationship between the SR and the
PSA for a stabilized cycle obtained from a SCT test (Eqs. (3.4)). During determination
of the Chaboche model parameters, according to our procedure, the SCTs are primarily
employed to calculate the parameters and then the FCT is employed to calculate just
the value of γ2 of the slightly nonlinear backstress component. Following this approach,
when calculating the value of γ2, the relationship between the SR and the PSA per cycle
is generally satisfied due to the previous tuning of the backstress with the most rapid
dynamics. Reconsidering the equivalent CKH model, if only a slightly nonlinear backstress
component is employed, Eq. (3.8) can be used to calculate the value of γ2, but Eqs. (3.4)
cannot be satisfied in general, since another nonlinear backstress component is required to
provide an accurate reproduction of the FCT.
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The problem of computation time in numerical calculations of aerodynamics has been studied
by many research centres. In this work, a feed forward artificial neural network (FF-ANN)
was used to determine the dependence of lift and drag coefficients on the angle of attack for
NACA four-digit families. A panel method was used to generate the data needed to train
the FF-ANNs. Optimisation using a genetic algorithm and a neural metamodel resulted
in a non-standard NACA aerofoil for which the optimal angle of attack was determined
with a maximum L/D ratio. The optimisation results were validated using the finite volume
method.
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model reduction

List of designations

α – angle of attack

Cl, Cd – lift and drag coefficient, respectively

K – lift-to-drag ratio, L/D ratio

m – maximum camber in tenths of chord

p – position of the maximum camber along chord in tenths of chord

R – regression

R2 – coefficient of determination

t – maximum airfoil thickness in tenths of chord

xU , xL, yU , yL – coordinates of point for upper (U) and lower (L) edge of airfoil

yt, yc – thickness and camber coordinates, respectively

θ – angle of inclination of tangent to chamber of airfoil at point

MaH – Mach number of undisturbed flow

1. State of the art

The use of artificial intelligence in engineering is becoming increasingly popular. The main
task of artificial intelligence research is to construct machines and computer programs capable
of performing selected functions of the mind and human senses, not amenable to numerical
algorithmization. Such problems are sometimes called AI-complete and include decision-making
in the absence of all data. This paper uses AI to predict behavior of a system for intermediate
values not present in the results of numerical simulations.
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The applications of Artificial Neural Networks (ANNs) is becoming increasingly popular,
especially in areas that require time-consuming numerical calculations. One such an area is
aerodynamic analysis. Costly wind tunnel tests or time-consuming CFD (computational fluid
dynamics) analyses are required to determine aerodynamic characteristics of aerofoils. In this
paper, the authors propose an alternative approach by replacing hard calculations (like CFD)
with ANNs. The objective of this work was to demonstrate that this approach could enable
rapid analysis of aerofoils and determine their aerodynamic characteristics without the need to
perform numerical analyses for each aerofoil in a selected family of NACA aerofoils.

The problem of computation time for numerical calculations of aerodynamics has been stud-
ied by many research centres all over the world, demonstrating its complexity and the need for
novel solutions. A variety of methods have been used to reduce the running time of algorithms.
For example, Proper Orthogonal Decomposition (POD) (Berkooz et al., 1992) is a method that
reduces complexity of numerical simulations, such as CFD. Typically, it is used in CFD analyses
(including turbulence analyses) to replace the Navier-Stokes equations with models that are sim-
pler to solve. This method has been used by Bakewell and Lumley (1967), among others. Various
methods based on machine learning tied to CFD are used to reduce computation time (San and
Maulik, 2018), usually combined with neural networks. However, an ANN requires a large volume
of training data and thus significant computational time. This problem was presented by Fukami
et al. (2021). Buterweck and Głuch (2014) used ANNs to analyse the effect of Mach number on
the prediction of turbine blade degradation. Prediction of aerodynamic characteristics using an
artificial neural network for a wind turbine was performed by Verma and Baloni (2021). Sekar et
al. (2010) presents an approach based on analysis of data produced with a CFD solver to predict
the incompressible laminar flow field around aerofoils. The approach was based on a combina-
tion of a deep convolutional neural network (CNN) and a deep multilayer perceptron (MLP).
Aramendia et al. (2019) used ANNs to predict the aerodynamic efficiency of Gurney flaps. A
CFD-based drag coefficient analysis was also carried out in (Viquerat and Hachem, 2020), where
a set of random geometries based on Bézier curves was prepared to train the neural network.
Pressure distributions were calculated for several representative cases. In addition, a lift and
drag coefficient was predicted based on CFD approximation calculations (Kharal and Saleem,
2012). Kharal and Saleem (2012) described an aerofoil using Bézier curves, developed their aero-
dynamic characteristics and then proceeded with FF-ANN training. The inverted ANNs were
then used to determine aerofoil geometry for a given drag coefficient. Similarly, inverted ANNs
were used in (Sun et al., 2015), where geometry of the aerofoil was described as shown in Fig. 1.
The pressure distribution on the aerofoil and then on the wing was determined by the proposed
ANN algorithm. Thirumalainambi and Bardina (2003) also analysed the optimal ANN structure
for predicting aerodynamic coefficients of an aircraft.

Fig. 1. Airfoil geometry (Sobieczky, 1999)

A frequently used method for optimising aerodynamics is genetic algorithms. Porta Ko et al.
(2023) describes the process of optimising kinked aerofoils using the NSGA-II (Non-dominated
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Sorting Genetic Algorithm). Optimisation to minimise the aerodynamic forces generated was
carried out in (Khan et al., 2022) where solar panels were studied.
The most common method used in computer fluid mechanics is the finite volume method

(FVM) used for CFD analyses, which takes place in conjunction with ANNs. One example of
less commonly used methods would be a combination of the vortex method and a neural network
(Sessarego et al., 2020).
The use of surrogate models is relatively infrequently used in practice due to errors arising

from the surrogate model approximations. The main purpose of the article is to demonstrate that
it is possible to prepare a surrogate model based on AI or, more precisely, SSN. The accuracy
of such a model should be sufficient and the optimization results should be no worse than the
available solutions.

2. NACA four-digit family

In this work, an artificial neural network was used to determine the dependence of lift and drag
coefficients on the angle of attack for NACA four-digit aerofoils. First, the data was generated
from an open database of aerodynamic diagrams to train the ANN. The data generation was
described by Drela (1989).
An asymmetric NACA four-digit aerofoil (NACA – National Advisory Committee for Aero-

nautics, NACAmpt) is defined by three parameters: m, p, t. Equations (2.1) and (2.2) were used
to describe the aerofoil geometry mathematically, based on the work [12]

xU = x− yt sin θ yU = yc + yt cos θ

xL = x+ yt sin θ yL = yc − yt cos θ
(2.1)

and

yt = ±
t

0.2
(a1
√
x− a2x− a3x2 + a4x3 − a5x4)

θ = arctan
dyc
dx

yc =





m

p2
(2px− x2) for 0 ¬ x ¬ p
m

(1− p)2 [(1 − 2p) + 2px− x
2] for p ¬ x ¬ 1

(2.2)

where: a1 = 0.2969, a2 = 0.1260, a3 = 0.3516, a4 = 0.2843, a5 = 0.1015 – coefficients defined by
NACA.
In the remainder of this work, only asymmetrical aerofoils were analysed. The database of

aerodynamic coefficients acting on the aerofoil was determined with reference to (Oliveira, 2021),
where after a simple parameterisation of the code, the lift Cl and drag Cd versus the angle of
attack α was calculated by Xfoil. Xfoil is a panel-based software that enables analysis of aerofoils
and wings operating at low Reynolds numbers.

3. Artificial neural network

This paper uses a feed-forward artificial neural network (FF-ANN). The input (training) pa-
rameters for the NACA aerofoil number were: m, p ∈ 〈2; 8〉, t ∈ 〈8; 24〉, as well as angles of
attack α within ±24◦. The output (training) data was determined using the Xfoil software; the
lift and drag coefficients corresponding to the cases in the input database. The Reynolds number
Re = 5.7 · 106 and Mach number MaH = 0.1439 were set as constant values. This corresponded
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to velocity of 49.39m/s for an average aerodynamic chord of length 1.738m. The database con-
taining the characteristics of 441 profiles was needed to train the artificial neural network. Due
to the lack of availability of such a large database of NACA four-digit profiles, it was decided to
use Xfoil to prepare it.
As a result of numerical analyses, it was decided to develop separate ANNs (trained in

parallel) for the prediction of lift and drag coefficients for selected angles of attack from the
range ±24◦ with an increment of ∆α = 2◦.
The MATLAB Neural Network Toolbox was used as the ANN environment. The ANNs were

trained using the SCG (Scaled Conjugate Gradient) backpropagation algorithm. The objective
of the training was to minimise the mean squared error (MSE) of the data fit. The ANN archi-
tecture was optimised, where the mean absolute error (MAE) was the objective function. An
optimisation of the ANN structure using a genetic algorithm was done for two and three hidden
layers. A feed-forward ANN (3-65-8-1) was chosen as the optimal ANN structure. A diagram of
the ANN used is shown in Fig. 2. The optimisation was run until MAE was no greater than 3%.
During the ANN optimisation, the size of the ANN was not increased beyond 500 neurons to
prevent “learning by heart”.

Fig. 2. Scheme of the used artificial neural network, where: w – weights, b – bias

Figure 3 shows the regression results for the ANNs used, trained for the zero angle of attack
and the predicted values of the drag coefficient Cd. A high regression coefficient of R = 0.9858
was obtained for all the data.
A separate ANN was used for each angle of attack. This reduced the duration of the learning

process and increased the accuracy of the ANN learning. The learning time for all optimised
ANNs was less than 130 seconds with an approximation error less than 1%. Figure 4 shows the
coefficient of lift Cl and drag Cd predicted by the trained ANNs, as a function of the angle of
attack for the NACA2412 aerofoil. The neural model achieved a high coefficient of determination
for both lift (0.9984) and drag coefficient prediction (0.9911), compared to the data generated
with Xfoil. It also presents the lift and drag coefficients obtained in experimental tests, based
on a NACA report (Abbott et al., 1945). For angles of attack from −10◦ to 16◦, the analysis
performed with Xfoil and ANN were consistent with experimental tests. For larger angles, the
differences were significant. This could be due to the choice of the Reynolds number in the
Xfoil software, as confirmed by the conclusions from (Günel et al., 2016) or a tendency towards
numerical errors for angles of attack: α > 8◦ (Saad et al., 2017). However, in order to determine
the aerofoil L/D ratio, the accuracy of the ANN was sufficient, as usually the maximum L/D
ratio corresponds to an angle of attack in the range from 2◦ to 8◦.
In order to test the adopted research concept, the lift coefficient as a function of angle of

attack was calculated for a non-standard NACA four-digit aerofoil in Xfoil. This aerofoil was
not present in the ANN teaching database. This aerofoil was NACA model (2.4)(3.6)12, where
m = 2.4, p = 3.6 and t = 12 are shown in Fig. 5, which was numerically analysed using the
panel method. Comparative results for the Xfoil and ANN are shown in Fig. 6.
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Fig. 3. Regression of used ANN

For the NACA (2.4)(3.6)12 aerofoil, the coefficient of determination (R2) of the lift coefficient
was 0.998. However, the ANN was not able to correctly predict the distribution of the drag
coefficient for larger angles of attack (above 16◦ and below −10◦). For angles of attack between
−10◦ and 16◦, the accuracy was higher, and the corresponding coefficient of determination was
0.9942, as shown in Fig. 7.

4. Optimization

In this work, an attempt at optimisation was made using the presented neural metamodel to
maximise the L/D ratio, K = Cl/Cx. Both the lift and drag coefficients were determined using
ANNs. The default genetic algorithm (GA) in Matlab was used for optimisation, the working
principle of which was based on (Conn et al., 1991). In the algorithm used, the decision variables
were parameters m, p and t, which described geometry of the aerofoil. Restrictive conditions
related to the span of the database that were used to teach the ANN were imposed, assuming
that m = 2-6, p = 2-6 and t = 12-24. The angle of attack α was a discrete variable within ±24◦
with an increment of 2◦. The algorithm with the objective function determined the aerofoil
L/D ratio K for all angles of attack α and returned its largest value, the corresponding angle
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Fig. 4. Predicted, computed and by Xfoil experimental lift (a) and drag (b) coefficients vs. the angle of
attack, and the coefficient of determination of lift (c) and drag (d) coefficients for NACA2412

of attack and the values of the decision variables defining the aerofoil geometries. The NACA
12(5.18)(4.18) aerofoil resulting from the optimisation is shown in Fig. 8.
According to the ANN, the maximum L/D ratio of the tested aerofoil corresponded to the

angle of attack α = 4◦, and after optimisation it was K = 194.4 for the ANN and K = 197.4
for Xfoil. This provided the difference of relative error of L/D ratio RE(K) = 1.53%. Figure 9
shows the relationship RE(K) = f(α). For angles of attack below α = −12◦, the calculations
diverged.
Thinner aerofoils achieved higher L/D ratios, so the algorithm naturally brought the aerofoil

thickness down to a lower limit t = 12. Due to simplifications made for the drag coefficient
confounded in the Xfoil software, a comparative analysis of the prediction results from the
ANN, the Xfoil programme and the Ansys Fluent software were applied.
For further numerical tests of the aerofoil after the optimisation process, a suitable geomet-

rical model of the aerofoil was developed, together with the computational domain in the Ansys
Workbench DesignModeler software (Fig. 10).
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Fig. 5. Example of geometry of a non-standard NACA aerofoil (2.4)(3.6)12

At the stage of developing the domain for digitisation, the relevant edges were assigned with
appropriate names representing the boundary conditions. The outer edges of the calculation
area were assigned with a pressure-far-field condition, while the edges representing the aerofoil
outline were assigned with a wall condition. The computational area was then digitised. The
developed computational domain was digitised using a structured grid (Fig. 10a). The grid was
appropriately compacted towards the aerofoil (Fig. 10b). The total number of grid elements was
306 000. The numerical grid thus developed was exported in .msh format to Ansys Fluent for
numerical simulations of the flow around the aerofoil.
Numerical flow simulations were performed for the Mach number MaH = 0.1439 and a

reference pressure of 101325 Pa, with Double Precision and Density-Based solver settings (the
“Implicit” method). Numerical simulations of the flow around the aerofoil were done over a range
of angles of attack α = ±24◦ with an increment of ∆α = 2◦. The determinant of convergence
of the calculations, and thus the termination of simulation for a given angle of attack, was the
obtained value – which was constant in the iteration function of the lift and drag coefficients
referenced to the value of the chord, 1.738m.
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Fig. 6. Predicted by SSN and computed by Xfoil (Xflr5) lift (a) and drag (b) coefficients vs. the angle of
attack, and the coefficient of determination of lift (c) and drag (d) coefficients for NACA (2.4)(3.6)12

The results of analyses comparing the aerodynamic characteristics of the optimised aerofoil
obtained with the ANN, Xfoil and Ansys Fluent are shown in Fig. 11.
Based on the obtained characteristics, it can be concluded that a satisfactory agreement was

achieved, especially in the linear range Cl = f(α). Over the range of critical angles of attack, the
lift coefficients obtained from the calculations performed in Ansys Fluent and Xfoil were very
close to each other, and partly differed from the values obtained based on the ANN prediction.
A similar situation occurred with large negative angles of attack −15◦ to −24◦. In the case of the
Cd = f(α) characteristics, the drag force coefficients obtained from the numerical analyses run
in the Ansys Fluent software were higher than the values obtained from the ANN prediction and
Xfoil calculations. This is because for each angle of attack, the Ansys Fluent software determined
the drag as the sum of the pressure drag and friction drag. In the case of SSN and Xfoil, the drag
calculations run with the assumption of constant freestream velocity and the steady flow which
resulted in increased inaccuracies at higher angles of attack. As with the previous profile, the
ANN prediction for the drag coefficient over the full range of angles of attack was inadequate.
However, for the angles of attack in the range from −10◦ to 14◦, it was already higher, and the
coefficient of determination was R2 = 0.9983, as shown in Fig. 12.
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Fig. 7. Predicted by SSN and computed by Xfoil drag coefficients vs. the angle of attack (a) and the
coefficient of determination of the drag coefficient (b) for small angles of attacks (−10 ¬ α ¬ 16◦) for

NACA (2.4)(3.6)12

Fig. 8. NACA 12(5.18)(4.18) aerofoil, a result of the optimisation algorithm

Fig. 9. Relative difference in the L/D ratio determined by ANN and Xfoil

Fig. 10. Discretized computational domain (a), discretized airfoil area (b)
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Fig. 11. Predicted by ANN and computed by Xfoil (Xflr5) lift (a) and drag (b) coefficients vs. the angle
of attack, and the coefficient of determination of lift (c) and drag (d) coefficients for

NACA (5.18)(4.18)12

A comparative analysis of the coefficient of determination of the lift and drag coefficients for
all algorithms used was also performed. This comparison is shown in Fig. 13 with α = ±10◦.
The ANNs were trained on the data produced in Xfoil, which was the computational kernel

of Xflr5, and therefore the predictions of the aerodynamic coefficients were consistent with the
results calculated by Xfoil (Figs. 13a and 13b), and were characterised by R2 = 0.9995 for Cl
and R2 = 0.9983 for Cd, respectively. In contrast, the coefficient of determination for the data
predicted by the ANN and calculated in Ansys Fluent were R2 = 0.9980 for Cl and R2 = 0.9657
for Cd (Figs. 13e and 13f), respectively.

According to the references reviewed (Hsiao et al., 2013; López-Briones et al., 2020; Dhileep
et al., 2020) the lift coefficient calculated with Xfoil and Ansys Fluent were in agreement. This
was confirmed by numerical tests, characterised by a coefficient of determination R2 = 0.9974
(Fig. 13c). On the other hand, the frictional drag component was omitted from the Xfoil software
and the aerodynamic drag coefficient was underestimated, with a coefficient of determination of
R2 = 0.9652 (Fig. 13d).
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Fig. 12. Predicted by SSN and computed by Xfoil and FLUENT drag coefficient vs. the angle of
attack (a) and coefficient of determination of the drag coefficient (b) for small angles of attacks

(−10 ¬ α ¬ 16◦) for NACA (5.18)(4.18)12

The analyses were complemented by a comparison of the L/D ratio determined using the
methods previously referred to (Fig. 14). The maximum L/D ratios determined by Xfoil and
by ANN were Kmax = 197 and Kmax = 195, respectively, for the angle of attack α = 4◦. In
contrast, due to inclusion of the frictional drag component in Ansys Fluent, the L/D ratio for
the angle of attack α = 4◦ was much lower, K = 78. The maximum L/D ratio corresponded
to the angle of attack α = 6◦ and was Kmax = 80. The predicted excellence of the aerofoil
calculated using Ansys Fluent decreased, as given in (Dhileep et al., 2020).

5. Conclusion

This work demonstrates that the feed-forward artificial neural networks (FF-ANN) used to
determine the lift and drag coefficients for a non-standard NACA four-digit aerofoil obtained
the change in the lift coefficient as a function of the angle of attack, at a selected interval,
with a coefficient of determination of R2 = 0.9846, while for the drag coefficient, the change
was a function of the angle of attack and R2 = 0.7634 for the entire range of angles of attack
tested. If the interval was narrowed to a range of −10◦ to +16◦, the coefficient increased to
R2 = 0.9983. The results obtained were compared to the experimental tests (Figs. 4a and 4b)
for verification. The coefficient of determination for the lift coefficient, for angles of attack
ranging from −10◦ to +16◦ was R2 = 0.9695, which can be considered a good result. According
to the knowledge from reference literature, the predicted aerofoil L/D ratio calculated using
finite volumes decreased, relative to the panel method, but the nature of the L/D ratio change
remained the same.
The disadvantages of the presented method are related to the disadvantages of metamodeling

and machine learning. There are always errors in the metamodel due to interpolation of functions.
In addition, when analyzing a different problem, or even the same problem but for a different
Reynolds number, it is necessary to re-generate training data and train the SSN. Generalizing
the algorithm for any Reynolds number would require a significant expansion of the database
of training cases. In addition, the growth of the database would likely reduce the accuracy of
prediction even for the Reynolds number found in the training case database. In further studies,
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Fig. 13. Cross validation of coefficient of determination for lift (1st column) and drag (2nd column)
coefficients (for α = ±10◦) for NACA (5.18)(4.18)12 calculated by ANN and Xfoil (a) and (b),

FLUENT and Xfoil (c) and (d), ANN and FLUENT (e) and (f)
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Fig. 14. Comparison of the L/D ratio determined with ANN, Xflr and Fluent

we intend to use finite volume methods (FVM) to obtain more accurate results by, among other
things, taking into account frictional resistance, which Xfoil does not.
The proposed algorithm can be used as a metamodel for optimisation. The FF-ANNs re-

duced the execution time of the algorithm by replacing the solution of computer fluid mechanics
equations (in the panel method), while retaining high accuracy for a properly selected range.
The optimised aerofoil will be used on the wing of an unmanned aerial platform designed

under Project SZAFIR – Competition No. 4/SZAFIR/2021.
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Here, we investigate the behavior of the energy of a tape spring as its thickness becomes
smaller and smaller. We consider the case of pure bending, i.e., we impose opposite rotations
at both ends of the device. First, tape springs are introduced and their peculiar mechanical
behavior is explained, and the details of the numerical model are carefully introduced. Then,
a parametric study of the device is conducted for increasing end rotations and decreasing
values of the thickness. Thus, we obtain parametric diagrams of reaction moments, energy
per unit thickness, and energy densities. Finally, energy estimates are obtained.

Keywords: tape spring energy density, bending, elastic hinge, asymptotic behavior

1. Introduction

Tape springs are thin structures with transverse curvature (shells) used in many fields of engi-
neering, for example in the aerospace engineering (CRTS reflector Seffen et al., (2000)). These
devices can be used as real deployment organs, thanks to their ability to form localized elastic
hinges. This effect is entirely due to presence of the initial transverse curvature. An example of
a daily use of these tapes is in carpenter’s meters.
In their simplest form they are longitudinally straight, but they can also be provided with a

non-zero initial longitudinal curvature. A fundamental characteristic common to all types of tape
springs is the ability to concentrate the curvature even if there are no mechanical hinges, i.e.,
they are capable to form elastic hinges. The geometrical characteristics of straight tape spring
devices are: length L, transverse radius of curvature R, angle subtended by the cross-section
curve α and thickness t. The characteristics of an isotropic material are Young’s modulus E
and Poisson’s ratio ν. The geometrical parameters are shown in Fig. 1. In general, the relation
between the geometrical parameters can be summarized as follows: t≪ a≪ L, so these devices
can be classified as shells.

Fig. 1. Geometrical parameters of a straight tape spring

Many studies have been conducted on these devices in the past, mainly on the mechanical
behavior under pure bending. In the work of Seffen and Pellegrino (1999), an introduction to the
mechanical behavior of tape springs subjected to pure bending and an investigation about the
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dynamic deployment of these devices is presented. In the article of Seffen et al. (2000), a study
about curved tape springs is presented, showing that they have much in common with straight
tape spring devices. A dissertation about the formation of elastic folds and an investigation of the
mechanical behavior during pure bending is proposed in Seffen’s PhD thesis (1997), where the
author presents an estimate of key parameters of the moment-rotation relationship. A work about
static and dynamic properties of three dimensional tape spring folds, using both experimental
and theoretical methods, is presented in Walker’s PhD thesis (2004). In the works of Guinot et
al. (2012), Picault et al. (2013, 2014) and Martin et al. (2020) different beam models of tape
springs are proposed in the case of pure bending, and in the one of Picault et al. (2016) there is
an extension to 3D motions. In Kumar et al. (2023), the authors derive a one-dimensional model
for tape springs that accounts for bending and twisting.
As shown in the literature, the moment-rotation relationship of tape spring devices under-

going pure bending is almost linear until a peak moment is reached, then it becomes highly
non-linear as the elastic hinge forms. Due to this high non-linearity, the numerical modeling of
these devices must be carefully addressed. A schematic example of the moment-rotation rela-
tionship is shown in Fig. 2.

Fig. 2. Qualitative moment-rotation relationship, and lateral views of the deformed centerline in the
post-critical regime (once the elastic hinge has taken place). For small rotations, the device deforms
smoothly and follows a linear trend in the moment-rotation plane. When rotation increases, the

behavior becomes highly non-linear and deeply different in the two cases of bending. This Figure is an
adaptation of Fig. 2.4 of Walker’s PhD thesis (2004)

It is observed that for small rotations the device deforms smoothly and follows a linear trend
in the moment-rotation plane. When rotation increases, the behavior becomes highly non-linear
and strongly dependent on the sign of rotation.
The purpose of this article is to highlight the behavior of tape springs as their thickness

become smaller and smaller. The main novelty of this paper is to propose very simple formulas
to obtain a good estimation of energy per unit thickness in the pre-critical and post-critical
regime, in the case of pure bending.

2. Numerical model

Hereafter, we shall always refer to a straight cylindrical shell as shown in Fig. 1.
The characteristics of the examined specimen are those specified in Walker’s PhD thesis

(2004). The mechanical and geometrical parameters of the sample are: length L = 267mm,
cross section radius R = 15.37mm, thickness t = 0.1225mm, angle subtended by the cross
section α = 1.719 rad, Young’s modulus 195300MPa, Poisson’s ratio 0.3.
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The modeling and analysis challenges have been addressed with the Abaqus software (Smith,
2014).
The tape was simulated as a portion of a cylindrical surface, first modeling the cross section

as a circumferential arc of radius R subtending an angle α.
In Interaction section two Reference Points located at the end cross sections were defined,

then all the end nodes were constrained to the Reference Point, as shown in Fig. 3. The con-
straints were applied to the Reference Points. With reference to Fig. 1, the degrees of freedom
constrained at the Reference Point at x3 = L are: translations in the three directions x1, x2
and x3, rotations around the x2 and x3 axes. Instead, at the Reference Point at x3 = 0, the
degrees of freedom constrained are: translations in the directions x1 and x2, rotations about x2
and x3 axes.
Rotations at the end cross sections are imposed: at the end x3 = 0, rotation φe1 and at

x3 = L, rotation φe1, as shown in Fig. 3.

Fig. 3. Schematic view of the sample implemented in Abaqus. In this figure, there are reference points,
RP-1 and RP-2 constrained, the segment from RP-1 and RP-2 represent constraints applied to the

nodes of the end cross sections and the load condition

The size of the mesh was set up to 2.0mm, for a total of about 1800 elements. S8R5 elements
were chosen, as in the works of Martin et al. (2020) and Picault et al. (2016), i.e., eight-node thin-
-shell elements with five degrees of freedom for each node with quadratic interpolation functions.
Static-Riks analysis was chosen, activating geometric non linearities and imposing the end

of analysis when φ = π/2. The settings of the step are: maximum number of increments 1000,
initial arc length increment 0.01, minimum arc length increment 1E-10, the maximum arc length
increment 1.2 and estimated total arc length 1.
The arc length method was originally developed by Riks (1972, 1979) and Wempner (1971).

This approach is the most used path following method in the solution of non-trivial equilibrium
paths. The Riks method solves simultaneously for both the load and displacements, and is
the ideal method for solving problems of the tape spring devices, characterized by snap-back
phenomena.
In Fig. 4, there is a view of the Abaqus model.

Fig. 4. Orthogonal projection of the Abaqus model on the x1-x3 plane, visualized mesh

3. Main results

3.1. M-φ diagram

With reference to the characteristics of the tape specified in Section 2, eight different analyses
were carried out, for opposite sense bending, varying thickness t of the device and keeping the
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other geometrical and material parameters unchanged. The reference thicknesses are shown in
Table 1.

Table 1. Thicknesses adopted in the analysis

Thickness t [mm]

0.1215 0.1225 0.1300 0.1350 0.1400 0.1450 0.1500 0.1550

The thickness t = 0.1215mm is the smallest thickness the convergence of analysis was
achieved with.
We made sure that analysis results did not depend on the mesh size. The same analysis

were carried out modifying the mesh, setting the mesh size to 1.0mm for a total of about 3600
elements: the final results were the same.
Figure 5 shows the trends of the positive reactive moment as a function of rotation φ (Fig. 3),

for the thickness values t shown in Table 1. Referring to the thickness t = 0.1225mm, the results
obtained here are in good agreement with those of Walker (2004), with an overestimation of the
peak moment of about 7%. Instead, the stationary moment was quite close to the reference one.

Fig. 5. M -φ diagram (M > 0)

In Fig. 6, the energy per unit thickness versus rotation φ is represented, in the case of opposite
sense bending, for the thickness values in Table 1.
From the M -φ diagram in Fig. 5, one can observe the typical trend described in previous

works, for example Seffen and Pellegrino (1999), for these devices undergoing pure bending:
the behavior is almost linear until the peak moment is reached, then the reactive moment M
decreases and reaches a stationary value.
From Fig. 6, it can be seen that the trend is initially quadratic, corresponding to the linear

behavior in the M -φ diagram, Fig. 5. In the post-critical regime, after formation of the elastic
hinge, it is linear in φ.
For equal sense bending, various analyses were carried out relating to the same thicknesses

used for positive bending. However, the convergence of the analysis in this case was much more
difficult to achieve. We report just the case t = 0.1225mm.
In Fig. 7, the energy per unit thickness versus the rotation φ in the case t = 0.1225mm, for

M < 0, is shown. Also, one can see that the energy trend is initially quadratic, then it is linear
in φ.
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Fig. 6. Ue/t-φ diagram (M > 0)

Fig. 7. Ue/t-φ diagram (M < 0)

To obtain the unloading path of the moment-rotation relationship, as in Fischer (1995), the
command and change restart analysis was used decreasing the end rotation from φ = π/2 to
φ = 0. The unloading paths found were the same as the loading ones.

For opposite and equal sense bending, the formation of the localized elastic hinge is due
to buckling phenomena. We define the pre-critical regime when the device deforms prior to
the elastic hinge has taken place, and post-critical regime when the device deforms after the
formation of the localized elastic hinge.

Thanks to the analysis adopted, Static-Riks analysis, it is possible to detect snap-back phe-
nomena that occur when, for opposite sense bending, the elastic hinge forms and there is a jump
in the energy between the two stable solution branches. As shown in Fig. 6, for t = 0.1550mm,
the analysis captures the branch with a decreasing value of φ, but physically there is the snap-
-back, dashed line, that implies a jump in the energy between the two branches. In the same way
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there is a jump, dashed line, in the reaction moment diagram M -φ, as shown in Fig. 5, from the
peak moment to the stationary one.
To estimate the transmission of potential energy distribution between the membrane and

the flexural energy densities, which occurs right after the opening, it is enough to calculate the
difference between the total energy before and after the formation of the localized elastic hinge.

3.2. Pre-critical regime

The pre-critical regime is before the formation of the localized elastic hinge.
As can be seen from the moment-rotation diagram for opposite sense bending, Fig. 5, for

small values of φ, the moment is almost linear and the cross section varies its shape smoothly
(”opening” of the cross section curve). Here, the energy has a quadratic trend, as represented
in Fig. 6.
For the opposite sense bending, it is postulated that for small values of thicknesses t the

energy per unit thickness can be represented by a formula of the following type

Ue
t
= Ctaφb (3.1)

In Eq. (3.1), C is some positive constant depending on the material and geometrical prop-
erties of the device, but not on the thickness.
To determine the exponents a and b, the energy per unit thickness is represented in a bi-

-logarithmic plane, in this way the exponents a and b are actually the slopes of the plotted curves,
and the average slope of the curves can be determined. In the pre-critical regime, a = 0 and
b = 2. The energy per unit thickness is independent of the thickness of the tape and quadratic
in the rotation φ. Therefore, it is membranal regime, and the energy in Eq. (3.1) becomes

Ue
t
= Ct0φ2 (3.2)

The diagrams of energy, normalized with respect to the thickness, are represented in Fig. 8.

Fig. 8. Ue/t-t diagrams in the pre-critical regime in a bi-logarithmic plane

To obtain the color maps of the energy densities of the shell model, the strain and the stress
measures were exported, for every node, from Abaqus. Then, by post processing, we obtained
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Fig. 9. Membrane energy density um/t, pre-critical regime (M > 0)

Fig. 10. Flexural energy density uf/t, pre-critical regime (M > 0)

Fig. 11. Membrane energy density um/t, pre-critical regime (M < 0).

Fig. 12. Flexural energy density uf/t, pre-critical regime (M < 0).

the energy densities by multiplying the membrane and bending strains by the energetically
conjugate strains and changes of curvatures. The membrane and the flexural energy densities are
represented in Figs. 9 to 12, for the opposite sense (φ = 0.1 rad) and equal sense (φ = −0.1 rad)
bending, referring to t = 0.1225mm. In these figures, s1 represents the longitudinal abscissa
of the shell, and s2 the transversal one. Both the abscissas belong to the middle surface. It is
observed that in the pre-critical regime the flexural energy density per unit thickness uf/t is
lower than the membrane energy density um/t, for both M > 0 and M < 0. Furthermore, the
maps highlight a concentration of energy in the central area of the tape, close to the area where
the elastic hinge will form.

3.3. Post-critical regime

During post-critical regime, i.e., in the case of well formed elastic hinge, the tape is char-
acterized by another behavior in which the energy per unit thickness scales linearly with φ,
Fig. 6.
For the opposite sense bending, it is postulated that for small values of thicknesses t the

energy per unit thickness can be represented by a formula similar to the one used for the pre-
-critical regime

Ue
t
= Ctcφ (3.3)
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Analogously, at the pre-critical regime, we got c = 1.8. Therefore, in the post-critical regime
the normalized energy scales as t1.8 and linearly in the rotation φ

Ue
t
= Ct1.8φ (3.4)

This means that in the post-critical regime there is a mixture of membranal and flexural
energy, although the main component is flexural. The diagrams of the energy, normalized with
respect to the thickness, are represented in Fig. 13.

Fig. 13. Ue/t-t diagrams in the post-critical regime in a bi-logarithmic plane

The membrane and flexural energy densities are represented in Figs. 14 to 17 for the opposite
sense (φ = 1 rad) and equal sense (φ = −1 rad) bending, referring to t = 0.1225mm. In these
figures, s1 represents the longitudinal abscissa of the shell, and s2 the transversal one. In the post-
-critical regime for M > 0, it is observed that the membrane energy density per unit thickness
um/t is approximately zero over the entire tape, with the exception of two areas near the hinge,
where there is the transition from the almost constant curvature zone (hinge) and the transition
zone. The energy uf/t represents the largest contribution to the total energy density, and it is
most concentrated in the hinge area where it is approximately constant.

Also in the case M < 0, the major contribution to the total energy density is given by uf/t,
however there are peaks near the hinge area.

In Figs. 18a and 18b, the trends of variations of longitudinal and transversal curvature are
represented for φ = 1 rad in the case M > 0.

From Fig. 18a, it can be seen that in the hinge area the longitudinal curvature is close to
the initial transversal one, then the curvature increases very rapidly and after the maximum
reached at s1 ≈ 158mm becomes very close to zero, and is almost zero from s1 ≈ 190mm. From
Fig. 18b, it can be seen that most of the cross section has a constant curvature, while at the
edges there is a residual curvature.

In the case M < 0, it is observed that the longitudinal curvature has a similar trend to
the case M > 0. Also the trend of transverse curvature in the hinge area is similar to the case
M > 0, with a concentration of curvature at the edges of the device.
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Fig. 14. Membrane energy density um/t, post-critical regime (M > 0)

Fig. 15. Flexural energy density uf/t, post-critical regime (M > 0)

Fig. 16. Membrane energy density um/t, post-critical regime (M < 0)

Fig. 17. Flexural energy density uf/t, post-critical regime (M < 0)

Fig. 18. On the left side, variation of the longitudinal curvature in the center of the tape (on a half of
the tape length), on the right side, variation of transverse curvature in the hinge zone. In red dashed
line, variation of the transversal curvature from the end configuration, perfectly flat, to the initial one.
s1 and s2 are shell abscissas belonging to the middle surface. Figures (a) and (b) refer to post-critical

regime (M > 0)
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4. Conclusions

In this paper, a numerical analysis of a tape spring device is carried out. First, tape springs are
introduced with a brief description of the particular mechanical behavior under pure bending.
Then, the description of the numerical model is presented: mesh, type of mesh elements and the
type of analysis conducted. Finally, the main results obtained are: moment-rotation diagrams
for opposite sense bending (Fig. 5), energy diagrams per unit thickness for opposite sense and
equal sense bending (Figs. 6 and 7), estimates of the energy per unit thickness Eq. (3.2) and Eq.
(3.4), obtained from different analyses by varying the thickness of the device, and the color maps
of the energies (Figs. 9-12 and 14-17). The moment-rotation diagrams obtained are typical of
these devices, characterized by an almost linear trend for small rotations until a peak moment is
reached. Then the reactive moment decreases and remains almost constant for further increments
of rotation.
As regards the pre-critical regime, it was found that the energy expressed by Eq. (3.2) is

typical of a membranal regime, i.e., the device deforms without activating the flexural regime.
For the post-critical regime, after formation of the localized elastic hinge, the energy ex-

pressed by Eq. (3.4) suggests the coexistence of the membrane and flexural regime, even if the
major energy contribution is flexural.
Possible future developments could be: energy estimates for equal sense bending, development

of beam models that are in agreement with these estimates for both opposite sense and equal
sense bending.
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The paper proposes a new multiaxiality coefficient that can characterize fatigue tests for
various combinations of bending and torsion. This coefficient can be defined depending on
the criterion used. The factor is 1 for cyclic bending and 2 for pure torsion. Based on
the fatigue tests of the RG7 bronze, analysis of calculation dispersion of the fatigue life
was carried out concerning test results obtained through an experiment. This analysis was
performed separately for individual tested combinations and for selected multiaxial fatigue
criteria. The selected criteria are Huber-Mises, Gough-Pollard, maximum normal stress,
maximum shear stress, and maximum normal and shear stress in the plane defined by
shear stresses. The average values of the obtained durability were compared to the newly
defined multiaxial coefficient distinguishing different combinations of bending and torsion.
Fractographic analysis was also performed for selected samples for all four combinations of
fatigue tests. It was found that the failure planes and design critical planes do not coincide.

Keywords: biaxial loading, life-time, bending and torsion, cyclic loading

More important nomenclatures

Aσ,mσ – coefficients in fatigue characteristic for bending
Aτ ,mτ – coefficients in fatigue characteristics for torsion
cal, exp – calculated and experimental
E – elastic modulus
Nf – number of cycles to failure
r, rBF – loading ratio and biaxial factor
∆τ – range of shear stresses
σa – amplitude of normal stress from bending
σu, σy – ultimate and yield stress
τa – amplitude of shear stress from torsion

1. Introduction

In the literature, we find numerous works on fatigue tests of cyclic bending with torsion of
samples with a solid cross-section, i.e., in which stress and strain gradients for both bending and
torsion are important. Less frequently, these are fatigue tests with cyclic tension-compression
with torsion. In this case, thin-walled hollow samples are often used. In the case of torsion of
thin-walled hollow samples, it does not give an additional effect of a stress gradient or strain.
Then, the distribution of stresses and strains can be assumed to be homogeneous. These tests
are described as cyclic bending or tension-compression τa = 0, cyclic torsion σa = 0, and a
combination of cyclic bending and torsion τa = kτ/σσa, where kτ/σ is the ratio of shear to
normal stresses. However, this does not describe the possible combinations uniformly. For this
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purpose, a loading ratio has been proposed, which is defined in various ways. In the paper
(Slamečka et al., 2016), it was defined as

r =

√
3τa

σa +
√
3τa

(1.1)

But in the works (Slámečka et al., 2010, 2013), it was defined as

r =
τa

σa + τa
(1.2)

It can be seen that in the first case, the correction factor before the shear stress amplitude τa
is
√
3, which is related to the Huber-Mises hypothesis, and in the second case, it is 1, which is

related to the Galileo hypothesis. However, the defined loading ratio always ranges from 0 for
cyclic bending (extension-compression) to 1 for cyclic torsion.
Another approach is also conceivable. Expressions can be written according to Tresca’s hy-

pothesis as

r =
2τa

σa + 2τa
(1.3)

or the Gough-Pollard (Gough et al., 1951) criterion, which is the most commonly used criterion
for a proportional combination of cyclic bending and torsion in the form

r =
1

σa +
σa−1
τa−1

τa

σa−1
τa−1

τq (1.4)

However, we always get a result in the interval (0, 1), and the final equation can be written as
general equation

rLR =
kτa

σa + kτa
(1.5)

where k can be defined as
√
3 – Eq. (1.1), 1 – Eq. (1.2), 2 – Eq. (1.3), and σa−1/τa−1 – Eq.

(1.4) which is the fatigue strength ratio (Papuga et al., 2021; Wächter et al., 2022). If we are
dealing with a brittle material, the value of this factor is 1.25, and if we are dealing with an
extra ductile material, the value of this factor is > 1.75. However, it can be noticed that the
proposed parameter has no physical significance, according to formulas (1.1)-(1.5), although it
is very convenient to describe fatigue tests.
A slightly different approach can be found in (Susmel and Lazzarin, 2002) and later used,

for example, in (Gan et al., 2021), where a coefficient was introduced to modified fatigue char-
acteristics, which, according to the authors, takes into account both multiaxiality and non-
proportionality in the form

ρ =
σmax
2∆τ

(1.6)

In this case, coefficient (1.6) becomes 0 for torsion and 1 for the axial load. This is opposite to
coefficient rLR (1.5). A completely different approach can be found in (Wang et al., 2023) based
on (Wang et al., 2001). These papers propose a principal stress coefficient defined as

γ =
σ2 − σ3
σ1 − σ3

(1.7)

The value of this coefficient determined on the basis of the principal stresses range from 0 to 1.
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However, the fatigue life itself is determined using selected multiaxial fatigue criteria. Here, an
appropriate criterion should (for example, presented in works (Kardas et al., 2008; Karolczuk et
al., 2015; Carpinteri et al., 2018; Łagoda and Macha, 1994; Niesłony et al., 2014) be used to reduce
a complex state of stress to an equivalent uniaxial one. Then, the fatigue life is determined based
on the specified equivalent amplitude and fatigue characteristics for the uniaxial state of stress.
Then, the computational durability is compared with the experimental one. Most often, both
calculated and experimental lifetime are presented in a logarithmic system. The diagonal reflects
perfect agreement of the calculation results with the experiment. The logarithmic system of axes
corresponds to fatigue characteristics written as the logarithm of fatigue life. This approach can
be found in many works. The first such an approach is most likely found in (Łagoda and Macha,
1994). It seems, however, that it would be possible to determine the average values of fatigue
life dispersion for individual load combinations. Then, such a distribution can be compared with
the dispersion for the uniaxial state of stress for particular combinations defined by Eq. (1.5)
depending on the criterion used.
This work aims to propose such a biaxiality coefficient using the presented loading factor,

which will be adequate to the selected applied criterion, taking into account the complex state of
stress and especially various combinations of proportional bending and torsion. The verification
of the proposal will be presented based on fatigue tests of bronze RG7 (Małecka and Łagoda,
2023a; Małecka et al., 2023) performed by the authors of this paper. In addition, the work
explains in detail the results, which may be used by other authors, of fatigue tests for this
material, which have yet to be done before.

2. Biaxiality coefficient

The introduction presents proposals for different definitions of the loading ratio depending on
a combination of bending and torsion. In the case of bending or tension-compression, we are
dealing with a uniaxial state of stress. However, the matter could be more evident in the case of
shear stresses. In this case, the shear stress can be applied by a torque for solid samples (Fig. 1a)
or thin-walled hollow samples (Fig. 1b) to eliminate the stress and strain gradient effect. In both
cases, we can talk about torsion about one axis. Shear stress can also be caused by technical
shear, as shown in Fig. 1c. In this case, the axial force causes shear stress. Pure shear, on the
other hand, is defined as simultaneous compression in one direction and tension in the other
with the same force values as shown in Fig. 1d. Such fatigue tests have been presented, among
others, on cross samples. The results of such tests for the 10HNAP material have been presented,
among others, in work (Łagoda et al., 2020). In this case, biaxial cyclic and random fatigue tests
with a correlation coefficient of −1 result in pure shear fatigue. Therefore, switching from forces
to stresses.
Figure 2a shows uniaxial fatigue tests, and Fig. 2c presents a pure shear stress state caused

by a biaxial state of stress, where

σx = −σy (2.1)

and in Fig. 2b, where we have an intermediate situation, i.e

σx = kx/yσy (2.2)

where −1 < kx/y < 0. The loading factor known in the literature, presented in the general
form by formula (1.5), apart from the fact that it distinguishes various combinations of normal
and tangential loads with values from 0 to 1, has no other meaning. Since the uniaxial state is
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Fig. 1. Different ways to obtain shear stresses: (a) solid bar torsion, (b) tube torsion, (c) technical shear,
(d) pure shear

Fig. 2. Stress distribution for: (a) tension, (b) tension with shear, (c) pure shear

associated with the value 1, and the biaxial state with 2, it seems more logical to reformulate
general formula (1.5) presented in this work with a new biaxial factor in the form

rBF = 1 +
kτa

σa + kτa
(2.3)

The value of this parameter rBF reaches the minimum value for tension-compression (bending
in the plane) equal to 1 (uniaxial load) and for maximum cyclic shear (two-sided torsion) equal
to 2 (biaxial state). This means that pure bending reaches 1, and pure torsion values 2. However,
the combination of bending and torsion is an intermediate value. The closer this value is to 2, it
means that there is a more significant share of torsion. The k coefficient in Eq. (2.3) can be defined
here depending on the criterion proposed by the researcher adopted for further calculations.

3. Experimental research and analysis

The fatigue tests concern the RG7 bronze alloy, also known as CuSn7Zn4Pb6. Its basic static
properties are E = 92.14GPa, σu = 270MPa, σy = 120MPa. The basic chemical composition
is Cu: 81%-86%, Sn: 5.2%-8%, Zn: 2%-5%, Pb: 5%-8% (Slamečka et al., 2016; Susmel and
Lazzarin, 2002). Tables 1-5 present the results of cyclical experiments in simple load conditions
– tension-compression (Table 1), bending in a plane, and torsion on both sides (Table 2), and two
combinations of proportional bending and torsion (Table 3). In the case of bending or torsion,
nominal stress values are given, i.e., those that result from the given bending or torsion moment
and the appropriate elastic section modulus for bending and torsion, respectively.
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Table 1. Experimental results of RG7 copper alloy under axial tension-compression conditions

εa [‰] σa [MPa] Nexp [cycles]

3.0 192 5954
2.5 167 22556
2.2 162 73986
2.0 156 42000
1.8 136 137849
1.5 140 357851
1.3 – > 2000000

Table 2. Experimental results of RG7 copper alloy in the conditions of in-plane cyclic

Bending Torsion
σan [MPa] Nexp [cycles] σan [MPa] Nexp [cycles]

254 25850 163 17271
254 37723 158 35902
244 27766 158 3215
244 40511 153 171275
233 58327 153 93219
233 85021 143 19122
218 75647 143 70400
218 58069 143 86055
203 229748 135 289812
203 106173 135 785924
188 888016 127 650800
188 596720 127 481710
172 1592848 125 2499155
172 1135442 125 742896
152 1361954 117 3021316
152 571257 117 1349697
142 2011739 115 3215695
142 5827190 102 ¿10000000
131 > 10000000

Based on cyclical tests of the analyzed material, fatigue characteristics were determined
according to the Basquin model, the double-logarithmic model, and the formulas according to
(ASTM Standard 2003) – for in-plane bending and combinations of bending and torsion and
two-sided torsion, respectively

logNf = Aσ −mσ log σa logNf = Aτ −mτ log τa (3.1)

The coefficients obtained according to equations (3.1) are summarized in Table 4.
The verification will be presented for several selected multiaxial fatigue criteria:

— Huber-Mises hypothesis

σa eq =
√
σ2a + 3τ2a (3.2)

— Gough-Pollard hypothesis (Gough et al., 1951)

σa eq =

√
σ2a +

(σa−1
τa−1

)2
τ2a (3.3)
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Table 3. Experimental results of RG7 copper alloy for the combination of cyclic bending and
torsion

τan = 0.5σan τan = σan
σan [MPa] τan [MPa] Nexp [cycles] σan [MPa] τan [MPa] Nexp [cycles]

177 88 42488 125 125 45085
177 88 59187 125 125 28808
166 83 89283 118 118 110665
166 83 88376 118 118 79988
144 72 136893 112 112 88149
144 72 136991 112 112 104546
133 67 776838 105 105 400352
133 67 424789 105 105 334607
122 61 919070 98 98 522700
122 61 1393731 98 98 896867
112 56 929541 91 91 435266
112 56 5691131 91 91 508131
102 51 > 5400000 84 84 > 10000000
101 50 5851778
94 47 6058621

Table 4. Coefficients according to the Basquin model according to formulas (3.1) for particular
combinations of bending and torsion (Susmel and Lazzarin, 2002; Wächter et al., 2022)

Bending Torsion τa = 0.5σa τa = σa
Aσ mσ Aτ mτ Aσ mσ Aσ mσ

26.26 9.09 38.34 15.38 24.47 8.85 26.85 10.64

Hypothesis (3.2) and (3.3) have a similar formula, and in a particular case, when σa−1/τa−1=
√
3,

they are the same:
— maximum normal stress

σa eq = σan,max (3.4)

— maximum shear stress

σa eq = 2τans,max (3.5)

— maximum shear stress and normal stress in the critical plane defined by the maximum shear
stress

σa eq =
(
2− σa−1

τa−1

)
σan,max +

σa−1
τa−1

τans,max (3.6)

Here, it should be noted that hypotheses (3.4)-(3.6), unlike (3.2) and (3.3), are linear criteria
due to components of the stress state, and such criteria can also be dedicated to random or non-
proportional loads (Mamiya et al., 2011). Normal and shear stress for a combination of normal
(from bending) and shear (from torsion) stresses at an angle α can be determined according to
the formulas

σan(α) = cos(2α)σa + sin(2α)τa τans(α) = −
1
2
sin(2α)σa + cos(2α)τa (3.7)

Critical planes for criteria (3.4)-(3.6) were determined for individual combinations of bending
and torsion in accordance with formulas (3.7). The critical planes are defined by the angle α for
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which the value of the amplitude, according to expressions (3.7), reaches its maximum value.
The values of these angles are listed in Table 5, depending on the type of load. Table 5 also
shows the positions of critical fatigue planes and experimental positions of the critical planes,
which are presented in Figs. 3-6, and shows that the experimental failure planes coincide with
the direction determined by the maximum normal stress.

Table 5. Setting the location of the critical planes and the macro-split plane of destruction [◦]

Bending τa = 0.5σa τa = σa Torsion

σan,maxα 0 22.50 31.45 45
τans,maxα 45 67.50 76.45 90
Experiment 1.43 20.15 33.30 44.60

In connection with the proposed introduction of the biaxiality factor rBF , it is possible to
analyze how this coefficient translates into fracture fractography. Figures 3-6 shows photos of
fracture surfaces for durability in the medium durability range, i.e. for durability of about 100 000
cycles. For in-plane bending (Fig. 3), i.e. with the biaxial fatigue factor rBF = 1, the development
of fatigue cracks can be seen from the two most distant points from the bending plane. In the
case of two-sided torsion, i.e. when the biaxial fatigue factor reaches the value rBF = 2, the
fatigue crack (Fig. 4) may initiate on the entire external surface. In the intermediate case, i.e., a
combination of bending and torsion, the proposed factor is within (1, 2). Its exact value depends
on the adopted methodology for determining this coefficient. In this case (Fig. 5), fatigue cracks
begin to develop where the maximum normal stress occurs. The additional shear stress from
torsion amplifies the fatigue cracking effect. A detailed analysis of fatigue cracks leads to the
following conclusions. In the case of in-plane bending (Fig. 3), it is effortless to distinguish the
fatigue zone and the residual zone, which are characteristic for fatigue fractures.

Fig. 3. Cyclic bending in a plane

However, a greater share of the fatigue zone concerning the residual zone is observed. At the
fracture, a significant near-focal area is visible, along the edge of which a fatigue focus is visible
in the form of characteristic fatigue lines, the distribution of which is not uniform. The surface
of the fatigue zone at a low magnification seems smooth, which may indicate that the sample
was subjected to a load with a low stress amplitude. In the case of cyclic torsion (Fig. 4), near-
-focus faults can be observed, which are already visible with the unaided eye. Parallel fatigue
lines are observed in relation to the faults, and the morphology of the fracture surface indicates
cleavage cracking along the grain sliding planes, as evidenced by the very finely developed surface
topography. The branching of the faults, which a load change may have caused, is also clearly
visible. For both bending and torsion combinations (Figs. 5-6), the fractures are characterized
by a similar microrelief of the fatigue area topography throughout the area. Minor irregularities
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Fig. 4. Double-sided torsion

Fig. 5. Combination of cyclic bending with torsion τa = 0.5σa

Fig. 6. Combination of cyclic bending with torsion τa = σa

running deep into the fracture surface in the residual zone are noticeable. On the surface of both
fractures, it is easy to locate the crack initiation site (fatigue focus visible in the fatigue zone),
and it is also easy to identify mutually demarcating zones separating the fatigue zone band from
the residual zone band. The surface of the residual zone is an area of a secondary scrap created
by friction of the material during bending with torsion. The revealed properties of the scrap
form the basis for considerations about the mechanism of initiation and development of fatigue
cracks. From the analysis of the obtained images of fracture surfaces, it can be concluded that
for each of the analyzed cases, the fatigue zone was formed in a long-term process of fatigue
change growth as a result of crack propagation and spreading, and the residual zone was formed
as a result of rapid destruction of the already weakened element.
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4. Fatigue life according to multiaxial fatigue criteria

Table 6 lists the calculated multiaxial factors. These factors were derived depending on the
multiaxiality criterion applied to the combination of proportional bending and torsion. The
analysis of these coefficients shows that each time, in the case of cyclic bending, the multiaxiality
factor is 1, and for cyclic torsion, it is 2. In the case of a combination of bending and torsion,
this coefficient is between 1 and 2. In the case of criterion (3.6), the multiaxial coefficient can be
defined in two ways. Both criteria (3.3) and (3.5) can be used here. A detailed analysis showed
that for the combination of bending and torsion τa = 0.5σ + a, this coefficient varies for the
analyzed models within (1.33 and 1.50, and for the combination τa = σa within 1.50 and 1.63).
Lower values are for criterion (3.5) – the criterion of maximum shear stresses, and greater for
criterion (3.2) – Huber-Mises hypothesis.

Table 6. Multiaxial factors depending on the criterion and combination of bending and torsion

Criterion Bending τa = 0.5σa τ + a = σa Torsion

(3.2) 1 1.46 1.63 2
(3.3), (3.6) 1 1.43 1.60 2
(3.4) 1 1.33 1.50 2

(3.5), (3.6) 1 1.50 1.67 2

Then, analysis of the relationship between the obtained computational durability and those
obtained as a result of the experiment was performed. Depending on the adopted criterion of
multiaxial fatigue (3.2)-(3.6), the equivalent amplitude of normal stress was determined for all
the obtained test results. This equivalent amplitude can be thought of as the stress amplitude
from bending. Therefore, on the basis of fatigue characteristics (3.1)1, the amplitude of cycles
can be determined, where the design life is Ncal −Nf , based on the transformed characteristics
in the form

Ncal = 10
Aσ−mσ logσaeq (4.1)

For each of the analyzed characteristics, depending on the adopted criterion, the ratio of compu-
tational to experimental durability was determined for all experimental results. A linear approach
can be found in the literature (Mamiya et al., 2011) or a logarithmic one (Ma et al., 2001)

d =
Ncal

Nexp
d = log

Nexp

Ncal
(4.2)

This paper used a linear relationship to analyze the dispersion given by formula (4.2). Then, the
spreads mean values d and median dm were determined. Table 7 shows the average values and
median of fatigue life dispersion using selected multiaxial fatigue criteria (3.2)-(3.6). A scatter
value of 1 means that the calculations perfectly agree with the experimental results. In the case
of bending, the average error is close to 1. For the arithmetic mean value, it is slightly more
(1.25), and for the median, it is less than 0.884. It follows that neither the mean nor the median
value is a parameter that describes the mean value well in this case. Based on other studies,
a parameter that would describe this phenomenon should be sought in the future. It may be
a prime parameter combining these two average values. Coefficients close to 1 were obtained
for torsion for criteria (3.3) and (3.6). This is because these criteria were derived from tests for
cyclic bending and cyclic torsion.
For individual criteria, the results of calculating the mean values and the median are also

presented in Figs. 7-12. In these figures, full points indicate average values. In these graphs, the
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Table 7. Average/median life dispersion depending on the criterion used and the combination
of bending and torsion

Criterion Bending τa = 0.5σa τ + a = σa Torsion

(3.2) 1.25/0.884 1.062/1.381 0.678/0.612 0.233/0.183
(3.3) 1.25/0.884 3.101/2.576 2.151/1.941 0.976/0.766
(3.4) 1.25/0.884 3.821/3.175 4.054/4.200 34.383/21.018
(3.5) 1.25/0.884 0.902/0.752 0.246/0.222 0.063/0.050
(3.6) 1.25/0.884 3.105/2.579 1.122/1.013 0.974/0.766

scatter band of 95% confidence, taking into account the 95% confidence interval for the mean
value based on the standard error of the mean, is additionally marked by blank points. The
horizontal line in each figure indicates compliance with the average value for cyclic bending.
The analysis of the dispersion obtained in appropriate bands, depending on the criterion used
and the multiaxiality coefficient, shows that none of the analyzed multiaxial fatigue criteria
was consistent for all tested combinations of proportional cyclic bending with torsion in the
95% confidential interval band. It does not matter whether the arithmetic mean value or the
median was taken as the mean value. In any case Gough-Pollard Criterion (3.3) and Maximum
Normal Stresses (3.4) did not give satisfactory results. In the case of a small shear stress division,
Huber-Mises criterion (3.2) and shear stress criterion (3.5) were effective. However, in the case
of a large share of shear stresses, the criterion of shear and normal stresses determined by the
maximum normal stress turned out to be effective (3.6). Therefore, it is proposed to use a hybrid
criterion: shear stresses and shear and normal stresses determined by the maximum normal stress
dependent on the multiaxiality factor in the form

σaeq =






2τans,max for 1 ¬ rBF <
3
2(

2− σa−1
τa−1

)
σan,max +

σa−1
τa−1

τans,max for
3
2
¬ rBF ¬ 2

(4.3)

Fig. 7. Dispersion of the computational and experimental durability ratio for Huber-Mises criterion
(3.2) with a probability coefficient of 95% depending on the multiaxiality factor: (a) mean value,

(b) median value



Use of the biaxial coefficient in determining life... 557

Fig. 8. Scatters of the computational and experimental durability ratio for Gough-Pollard criterion (3.3)
with a probability coefficient of 95% depending on the multiaxiality factor: (a) mean value,

(b) median value

Fig. 9. Dispersion of the computational and experimental life ratio for criterion of maximum normal
stresses (3.4) with a probability factor of 95% depending on the multiaxiality factor: (a) mean value,

(b) median value

Analyzing the calculations in which critical planes were used, it turns out that the concepts
of a critical plane and a crack plane are different. These concepts are not the same and mean
completely other things. The values do not have to be the same either.

From the analysis of Table 7 and Figs, 7-12, it can be seen that in the case of mean values
defined as average and median, the average value is always higher than that of the median value,
except for one case. Additionally, it should be noted that the same situation applies to cyclic
bending. Cyclic bending is the reference point in defining the multiaxial fatigue criterion. This
value should be 1 for perfect compliance.
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Fig. 10. Dispersion of the ratio of design and experimental life for criterion of maximum shear stresses
(3.5) with a probability factor of 95% depending on the multiaxiality factor: (a) mean value,

(b) median value

Fig. 11. Dispersion of the ratio of the design and experimental life for the criterion of maximum shear
and normal stresses in the critical plane determined by maximum shear stresses (3.6) with a probability

factor of 95% depending on the multiaxiality factor according to Tresca: (a) mean value,
(b) median value

5. Conclusions

Based on the presented research results, the proposed models and presented analysis, it was
found that:

• The new multiaxiality factor rBF proposed in the paper, which can characterize fatigue
tests for various combinations of bending and torsion, well characterizes multiaxiality.
• The proposed multiaxiality coefficient rBF is a generalization of various coefficients found
in the literature and can be selected depending on the criterion used.
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Fig. 12. Dispersion of the ratio of the design and experimental life for the criterion (maximum shear and
normal stresses in the critical plane determined by maximum shear stresses (3.6) with a probability
factor of 95% depending on the polyaxiality coefficient according to Gough-Pollard: (a) mean value,

(b) median value

• The multiaxiality factor rBF is 1 for cyclic bending and 2 for pure torsion. In the case of
a combination of bending and torsion, the value of this factor is in the range (1, 2).
• The analysis of the dispersion obtained in appropriate bands, depending on the criterion
used and the multiaxiality factor, shows that none of the analyzed multiaxial fatigue
criteria was consistent for all tested combinations of proportional cyclic bending with
torsion in the 95% confidental interval band. It does not matter whether the arithmetic
mean value or the median was taken as the mean value.
• In no case the Gough-Pollard criterion and the maximum normal stresses gave satisfactory
results.
• In the case of a small branch of shear stresses, the Huber-Mises criterion and the shear
stresses proved effective.
• In the case of a large share of shear stresses, the criterion of shear and normal stresses
determined by the maximum normal stress turned out to be effective.
• It was proposed to use a hybrid criterion: shear and shear and normal stresses determined
by the maximum normal stress dependent on the multiaxiality factor rBF .
• The fractographic analysis of selected samples for all four combinations of fatigue tests
showed that the occurrence of a fatigue center conditions the formation of the fatigue
zone, the source of which is the concentration of stresses or an inhomogeneous structure
of the material.
• The experimental failure planes are not coincident with the critical planes that are used
first to determine the equivalent stresses and, consequently, the design life.
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luda J., 2016, A Fractographic study of bending/torsion fatigue failure in metallic materials with
protective surface layers, Advances in Materials Science and Engineering, ID8952657

18. Susmel L, Lazzarin P., 2002, A bi-parametric Wohler curve for high cycle multiaxial fatigue
assessment, Fatigue and Fracture Engineering Materials and Structures, 25, 63-78
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Predicting the trajectory of a spinning ping pong ball can improve the effectiveness of a
ping pong robot in daily training. In this study, the Vicon system was used to capture
three-dimensional coordinates of the spinning ping pong ball during flight. Then, a long
short-term memory (LSTM) neural network algorithm was improved by combining an adap-
tive particle swarm optimization (APSO) algorithm and the attention mechanism, and the
APSO-LSTM-attention method was obtained for predicting the trajectory of the spinning
ping pong ball. It was found through experiments that the APSO-LSTM-attention method
had average displacement errors of 6.01mm, 11.26mm, and 8.97mm in the X , Y and Z
axes, respectively, and the final point displacement errors were 15.64mm, 17.93mm, and
11.26mm, respectively, indicating that the method outperformed methods such as recurrent
neural networks. The time required to predict the complete trajectory by the APSO-LSTM-
-attention method was also short, only 0.0186 s. The results demonstrate reliability of the
proposed method in predicting the trajectory of the spinning ping pong ball and its potential
application in practical scenarios.

Keywords: three-dimensional coordinates, ping pong ball, trajectory prediction

1. Introduction

Ping pong, the national game of China, is popular with the public. China has won many medals
in various international competitions. For athletes, burying their heads in training can often
lead to a bottleneck in technique. How to breakthrough their skills is quite concerned by ath-
letes. With the development of intelligent algorithms and artificial intelligence, ping pong ball
robots have become a new tool for daily training players (Gomez-Gonzalez et al., 2019). In the
field of ping pong, predicting the trajectory of a ball can help athletes practice better, which
effectively reduces manpower costs and improves training efficiency. In other fields, the predic-
tion of missile trajectories in military operations (Mir, 2018), aircraft trajectories (Huang et al.,
2021), trajectories of human body motion during transport driving (Bertugli et al., 2021), driv-
ing trajectories (Amirloo et al., 2022), and trajectories of athletes during sports (Hauri et al.,
2021) can greatly improve research efficiency. With the advancement of intelligent algorithms,
research on trajectory prediction has become increasingly widespread worldwide. Kalatian and
Farooq (2022) developed a new multi-input network based on long short-term memory (LSTM)
and fully connected dense layers for predicting future pedestrian trajectories. The experimental
results showed small prediction errors with this method. Xi et al. (2021) designed a prediction
model for a target maneuvering trajectory, introducing the Levenberg-Marquardt and improved
particle swarm optimization (IPSO) algorithms mixed with k-means for optimizing parame-
ters of the radial basis function. Simulation experiments demonstrated high accuracy of this
model. Mirmohammad et al. (2021) investigated trajectory prediction of soccer balls on a soccer
field, proposed a method based on the K-nearest neighbor regression and autoregressive model,
and proved high accuracy of the method through simulation and practical testing. Chen et al.
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(2021) developed an end-to-end fully convolutional coding and decoding attention model based
on convolutional LSTM, which was found to have excellent performance in predicting future
trajectories of pedestrians through experiments on five crowded video sequences. Song et al.
(2022) proposed a bidirectional gated recurrent unit with an attention mechanism for predic-
tion of tropical cyclone trajectories. Experimental results on the best path data of Northwest
Pacific tropical cyclones from 1988 to 2017 demonstrated excellent performance of this model
in predicting future trajectories. Chen et al. (2020) introduced a method that utilized a genetic
algorithm to optimize the number of neurons and weights in a backpropagation neural network
(BPNN) for ship trajectory prediction. The experimental findings indicated that this approach
significantly enhanced the accuracy of predictions. Song et al. (2022) proposed a radar track pre-
diction method based on the BPNN, compared its result with the Kalman filter track, and found
that this method was highly accurate to forecast tracks. Rajini Selvaraj and Gurusamy (2023)
integrated an independent recursive neural network, Harris Hawk optimization algorithm, and
one-dimensional convolutional neural network autoencoder to forecast tropical cyclone trajec-
tories. Comparison with the existing methods revealed that the method had higher prediction
accuracy and efficiency. The trajectory prediction of spinning ping pong balls is the research
focus of this paper. By collecting three-dimensional coordinates, a method based on an LSTM
neural network was developed, and its performance was analyzed through experiments. This
paper provides some theoretical support for promoting the development of intelligent robots,
which is conducive to promoting the performance of table tennis robots and their application in
practical sports training.

2. Collection of three-dimensional coordinates for a ping pong ball

This paper used a Vicon motion capture system with functions of motion capture and position
tracking to measure the trajectory of ping pong balls (Rodrigues et al., 2019; Goldfarb et al.,
2021). In a space formed by six cameras, data was captured by attaching reflective markers on
ping pong balls, and the Vicon system was utilized to collect and calculate the three-dimensional
coordinate data of the reflective markers in real time. The collected data was processed using
the accompanying Tracker software to obtain information such as the velocity of the ping pong
ball. The Vicon system consisted of the following components.
(1) Vicon cameras: These cameras had a resolution of 2432 × 3048 pixels and a maximum
capture frequency of 420 Hz. The capture range was 12m.

(2) PoE switch: It was used to connect with the host personal computer for data analysis.
(3) Host personal computer: The Tracker software was installed in the host personal computer
for data capture, processing, and visualization.

(4) Calibration bar: It has applied to calibrate the Vicon cameras and establish the origin of
the coordinate system.

(5) Other accessories: Cables to connect the cameras with the switch, reflective markers for
capturing coordinates, and so on.

In the experiment, the environment for collecting the three-dimensional coordinates of the
ping pong ball is illustrated in Fig. 1.
During the experiment, the researchers threw the ping pong ball, and the three-dimensional

coordinates of the spinning flight of the ping pong ball were collected in real-time using the Vicon
system. As the ping pong ball was a sphere with three symmetrical axes, six reflective markers
were symmetrically attached to the ping pong ball along its symmetrical axes as reference points.
The data was collected at a frequency of 180 Hz. The ping pong ball was thrown 500 times.
Each trajectory started from the release and ended when it hit the ground. To further expand
the dataset, the collected coordinates of each trajectory were translated and rotated, resulting
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Fig. 1. Three-dimensional coordinate collection environment for a ping pong ball

in a total of 1500 trajectory data. The original three-dimensional coordinates of the ping pong
ball are denoted by L(x, y, z). After translating each coordinate by L(x, y, z) units, the new
coordinates are obtained as follows

L′(x′, y′, z′) =




1 0 0 x0
0 1 0 y0
0 0 1 z0
0 0 0 1







x
y
z
1


 (2.1)

Assuming that each coordinate rotates by θ◦ around the Z axis, the following coordinates are
obtained

L′(x′, y′, z′) =




cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1







x
y
z
1


 (2.2)

Some of the ping pong ball trajectory data is shown in Fig. 2 and Table 1.

Fig. 2. Ping pong ball rotational flight trajectory data
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Table 1. Example of ping pong ball trajectory data

Number
Three-dimensional
coordinates [mm]

1 (233.56, 137.88, 354.02)
2 (345.77, 131.25, 341.22)
3 (455.26, 127.36, 322.15)
4 (556.25, 121.26, 311.25)
5 (667.62, 115.33, 296.37)
6 (764.25, 111.25, 256.36)
7 (864.22, 107.36, 241.85)
8 (958.67, 103.22, 222.87)
9 (1065.25, 99.52, 195.74)
10 (1174.52, 97.28, 161.07)

3. Long short-term memory-based trajectory prediction method

3.1. LSTM algorithm

The trajectory of a spinning ping pong ball during flight is a sequence with temporal prop-
erties. LSTM has demonstrated excellent performance in predicting time series (Kumar and
Gomathi, 2022), and it has been extensively used in various domains such as weather forecast-
ing and stock prediction (Gruet et al., 2018). Therefore, in this study, LSTM is chosen to forecast
the trajectory of the spinning ping pong ball during flight.
LSTM predicts data through three gates. First, let σ be the sigmoid activation function.

Let W and b be the weight and bias of each gate. In the LSTM, the forgetting gate is used to
determine how much information in the unit state value ct−1 from the previous moment needs to
be forgotten. The input includes input information xt from the current moment and output ht−1

from the previous moment. The output is

ft = σ[Wf (h
t−1, xt) + bf ] (3.1)

The input gate is used to determine how much information can be input to the cell state.
It includes two parts. The first part is to calculate how much information needs to be updated.
The output is

it = σ[Wi(ht−1, xt) + bi] (3.2)

The other part is to calculate a new unit state candidate value ct. The calculation formula is

ct = tanh[Wc(ht−1, xt) + bc] (3.3)

where tanh stands for the tangent function. Finally, the unit state value ct is updated as

ct = ftct−1 + itct (3.4)

The output calculates how much information can be output first. The corresponding formula is

ot = σ[Wo(ht−1, xt) + bo] (3.5)

Then, the tanh function is combined to control the ct value between −1 and 1. The final output
of the LSTM is obtained after multiplication

ht = ot tanh ct (3.6)
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The learning process of LSTM is as follows:

• By performing forward calculations on the three gates, the output values of each neuron
are obtained.
• The error between the output of each LSTM unit and the actual value is calculated, and
all errors are summed up to obtain the total error.
• The weights are continuously updated through backward propagation of the error.
• It is checked whether the total error meets the accuracy requirement. If not, it returns to
step one and repeats the calculation until the total error satisfies the accuracy requirement.

3.2. Attention mechanism

To further improve the effectiveness of LSTM on trajectory prediction, the attention mech-
anism (Zheng et al., 2018) is added to better learn the input three-dimension coordinates of the
ping-pong ball. The computational procedure of the attention layer is as follows:
— the attention probability distribution value at the t-th time is calculated using ht, the output
of the LSTM

et = v tanh(wht + b) (3.7)

— the normalized weight coefficient at is calculated

at =
exp(et)∑t
j=1 ej

(3.8)

— the output of attention at the t-th is calculated

st =
i∑

t=1

atht (3.9)

After passing the attention layer, the predictive trajectory value of the ping pong ball output at
the t-th time is

yt = σ(Wost + bo) (3.10)

3.3. Parameter optimization methods

In LSTM, some parameters are usually determined based on empirical knowledge and require
extensive experimentation for validation. This can significantly increase the training time of the
algorithm. Therefore, this study employs an adaptive particle swarm optimization algorithm
(APSO) to optimize the following parameters of LSTM:

• Learning rate: A value that is too small increases the learning time of the network, while
a too large value may cause oscillations around the optimal value.
• Number of iterations: A value that is too small may prevent the network from achieving
the best performance, while a value that is too large increases the training time.
• Number of hidden layer nodes: A value that is too small may result in underfitting, while
a value that is too large may lead to overfitting.

The PSO algorithm is a method based on the foraging behavior of birds (Amiri et al., 2023).
It is known for its few parameters and high precision, and finds extensive applications in multi-
objective optimization, industrial system control, and other fields (Bidyanath et al., 2023).
Assuming a particle population X = (x1, x2, . . . , xn) in a D-dimensional space, with initial

positions X = (Xi1,Xi2, . . . ,XiD) and initial velocities V = (Vi1, Vi2, . . . , ViD), individual and
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global best positions are denoted by PiD and PgD, respectively. The PSO algorithm updates the
positions and velocities of particles to find the optimal solution. The formulas are as follows

V k+1
id = wV k

id + c1r1(P
k
id −Xk

id) + c2r2(P
k
gd −Xk

gd)

Xk+1
id = Xk

id + V
k+1
id

(3.11)

where w stands for the inertia weight, c1 and c2 are learning factors, r1 and r2 are random
numbers in [0, 1], and k denotes the number of iterations.
The value of w will affect the optimization performance of the PSO algorithm. The APSO

algorithm makes adaptive improvement on it

w =





wmin −

(wmax − wmin)(f − fmin)
favg − fmin

f ¬ favg

wmax f > favg

(3.12)

where wmin and wmax represent the maximum and minimum values of w, f is the current particle
fitness value, favg and fmin are the average and minimum values of the current particle fitness.
Finally, the flow of the proposed APSO-LSTM-attention method for the ping pong ball

trajectory prediction is depicted in Fig. 3.

Fig. 3. The APSO-LSTM-attention trajectory prediction method

As shown in Fig. 3, the parameters of the LSTM are first optimized using the APSO al-
gorithm. The optimized parameters are then input to the LSTM to learn from the three-
dimensional coordinates of the ping pong ball. Next, the output of the LSTM serves as the
input for the attention layer. By integrating the output of the attention layer, the final predic-
tion results for the ping pong ball trajectory are obtained.

4. Results

4.1. Experimental setup

The experiment was conducted in aWindows 10 operating system with an Intel(R) Core(TM)
i7-8550U processor and 8 GB of memory. The Python language was used, and the network model
was built on the Kears framework based on TensorFlow. In the APSO-LSTM-attention model,
the population size for the APSO algorithm was set to 50, the number of iterations was 500, and
c1 = c2 = 1.5. The optimal values of the LSTM parameters obtained by the APSO algorithm
were as follows: learning rate 0.001, number of iterations 200, number of nodes in the hidden
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layer 64. The three-dimensional coordinates of the i-th ping pong ball trajectory at time t were
denoted by pit(xt, yt, zt). A complete trajectory was represented by (p1, p2, . . . , pk, . . . , pT ). To
predict the three-dimensional coordinates of the ping pong ball at time k + 1, the trajectory
from time 1 to k was used. Then, the trajectory from time 2 to k + 1 was used to predict the
coordinates at time k + 2. This process was repeated until the entire trajectory was predicted.
A total of 1500 trajectories were used in the experiment. The ratio of the training set, the
validation set and to and test set was 5:3:2. The data was predicted 100 times for each entry.
The final result was obtained by taking the average.
Let p′t(x

′

t, y
′

t, z
′

t) denote the predicted three-dimensional coordinates of the ping pong ball
at time t, and pt(xt, yt, zt) represents the actual values. Similarly, pf (xf , yf , zf ) represents the
predicted three-dimensional coordinates of the endpoint of a trajectory, and p′f (x

′

f , y
′

f , z
′

f ) rep-
resents the actual values. The evaluation of trajectory prediction effectiveness was based on the
following two indicators:

(1) Average displacement error (ADE), which refers to the error between the predicted result
of the three-dimensional coordinates of the ping pong ball and the actual values

ADE =
1
N

k∑

t=1

√
(x′t − xt)2 + (y′t − yt)2 + (z′t − zt)2 (4.1)

(2) Final point displacement error (FDE), which refers to the error between the predicted
results of the three-dimensional coordinates of the endpoint of every trajectory and the
actual values

FDE =
1
N

k∑

t=1

√
(x′f − xf )2 + (y′f − yf )2 + (z′f − zf )2 (4.2)

4.2. Result analysis

Taking the x-axis coordinate prediction of a trajectory with 20 sample points as an example,
the prediction performance of the following methods were compared:

• recurrent neural network (RNN) (Inoue et al., 2018),
• LSTM,
• LSTM-attention,
• APSO-LSTM-attention.

Table 2 presents the percentage error of different methods on the X-axis.
From Table 2, it can be observed that both RNN and LSTM algorithms exhibited relatively

large prediction errors on the X-axis, with maximum percentage errors around 3%. In contrast,
the LSTM-attention algorithm demonstrated percentage errors below 3% on the X-axis. This
confirmed the effectiveness of the attention mechanism. Furthermore, the proposed method
achieved a maximum percentage error of only 1.20% and a minimum of 0.03%, showcasing the
reliability of optimizing LSTM parameters with the APSO algorithm and its ability to achieve
superior results in trajectory prediction.
Taking the 20 sampling points in Table 3 as an example, the results of the proposed method

for predicting the three-dimensional coordinates of ping pong ball trajectories are shown in
Table 3.
From Table 3, it can be observed that the APSO-LSTM-attention method yielded small

errors when compared to the actual values. Among the predictions for the 20 sampling points,
the maximum error was found in predicting theX-axis coordinate of sample point 8, with a value
of 10.29mm. The errors for all other sampling points were below 10mm, which demonstrated
the reliability of this method in trajectory prediction.
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Table 2. Percentage error of different methods

Actual RNN LSTM LSTM-attention APSO-LSTM-
value algorithm algorithm algorithm -attention method

1 565.38 1.15% 3.08% 1.75% 0.61%
2 662.90 2.85% 3.00% 0.69% 1.13%
3 692.35 3.58% 0.88% 1.84% 0.32%
4 757.02 1.15% 3.54% 1.55% 0.21%
5 810.51 1.11% −3.18% 0.24% 1.20%
6 826.31 0.57% 1.61% 1.86% 0.86%
7 949.32 −0.16% 1.67% 2.05% 0.43%
8 978.51 3.40% 1.98% 1.98% 1.05%
9 1037.46 3.01% 2.14% 1.97% 0.40%
10 1096.57 2.74% 2.49% 1.25% 0.31%
11 1133.80 1.92% 0.22% 1.38% 0.73%
12 1168.62 −3.38% 1.95% −0.37% 0.70%
13 1182.20 1.55% 0.81% 0.08% 0.49%
14 1235.44 2.99% 1.42% 0.66% 0.18%
15 1311.63 1.12% −2.08% 1.35% 0.46%
16 1439.78 −1.24% 1.67% −1.13% 0.20%
17 1489.86 2.36% 0.90% 0.92% 0.15%
18 1521.97 0.73% 0.76% 1.25% 0.63%
19 1591.20 1.06% 1.55% 0.11% 0.12%
20 1625.60 1.76% 0.48% 0.70% 0.03%

Fig. 4. Comparison of ADE

The comparison results of the ADE among different methods on the test set are presented
in Fig. 4.
Firstly, in terms of the prediction in the X-axis, the RNN, LSTM, and LSTM-attention

algorithms had ADE values above 10mm, while the proposed method achieved an ADE of
6.01mm, reducing the errors by 16.35mm, 12.96mm, and 6.2mm, respectively, compared to
the RNN, LSTM, and LSTM-attention algorithms. All methods exhibited high ADE values on
the Y -axis. Among them, the RNN algorithm had an ADE of 29.87mm, while the proposed
method showed an ADE of 11.26mm, significantly lower than the other methods. Finally, in
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Table 3. The prediction results of the APSO-LSTM-attention method for three-dimensional
coordinates

Actual value Prediction result Error

1 (565.38, 120.33, 321.56) (568.85, 122.36, 323.55) (3.47, 2.03, 1.99)
2 (662.90, 116.34, 305.12) (670.38, 114.25, 303.56) (7.48,−2.09,−1.56)
3 (692.35, 112.36, 300.12) (694.58, 114.25, 298.25) (2.23, 1.89,−1.87)
4 (757.02, 108.26, 297.36) (758.64, 105.36, 295.62) (1.62,−2.90,−1.74)
5 (810.51, 106.25, 294.33) (820.24, 104.22, 291.36) (9.73,−2.03,−2.94)
6 (826.31, 97.36, 284.26) (833.39, 100.03, 281.33) (7.08, 2.67,−2.93)
7 (949.32, 95.36, 281.32) (953.40, 91.26, 278.65) (4.07,−4.10,−2.67)
8 (978.51, 93.26, 278.25) (988.81, 91.26, 275.33) (10.29,−2.00,−3.79)
9 (1037.46, 89.97, 275.12) (1041.58, 87.21, 271.33) (4.12,−2.76,−3.79)
10 (1096.57, 86.25, 271.36) (1100.00, 84.33, 268.24) (3.43,−1.92,−3.12)
11 (1133.80, 83.26, 268.45) (1142.03, 80.26, 264.33) (8.24,−3.00,−4.12)
12 (1168.62, 81.22, 264.26) (1176.79, 78.66, 261.36) (8.17,−2.56,−2.90)
13 (1182.20, 78.64, 261.25) (1187.98, 75.33, 258.34) (5.78,−3.31,−5.91)
14 (1235.44, 76.12, 257.26) (1237.67, 74.21, 255.35) (2.23,−1.91,−1.91)
15 (1311.63, 74.22, 254.36) (1317.68, 71.26, 251.33) (6.05,−2.96,−3.03)
16 (1439.78, 71.15, 251.13) (1442.68, 68.26, 253.27) (2.90,−2.89, 2.14)
17 (1489.86, 68.21, 248.61) (1492.07, 66.33, 245.28) (2.21,−1.88,−3.33)
18 (1521.97, 65.12, 245.36) (1531.56, 61.26, 247.36) (9.59,−3.86,−2.00)
19 (1591.20, 61.42, 241.33) (1593.18, 59.33, 238.64) (1.98,−2.09,−2.69)
20 (1625.60, 57.64, 237.52) (1626.06, 56.97, 235.61) (0.46,−0.67, 1.91)

the comparison in the Z-axis, the proposed method had an ADE of 8.97mm, reducing the
errors by 16.67mm, 12.36mm, and 4.7mm, respectively, compared to the RNN, LSTM, and
LSTM-attention algorithms.
Next, a comparison of the FDE among the different methods is presented in Fig. 5.

Fig. 5. Comparison of FDE

From Figure 5, it can be seen that the APSO-LSTM-attention method exhibited smaller
FDE compared to the RNN, LSTM, and LSTM-attention algorithms. This indicated that the
proposed method provided more accurate predictions of the three-dimensional coordinates of
the endpoint trajectory of the ping pong ball. This high accuracy is crucial for meeting the
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precision requirements in practical applications, such as in human-robot ping pong matches,
where accurate prediction of the three-dimensional coordinates is essential for higher training
efficiency.
Finally, the prediction time between the different methods was compared. The time required

for each method to predict a complete trajectory is presented in Fig. 6.

Fig. 6. Comparison of prediction time

From Fig. 6, it can be observed that the prediction time for all the methods was less than 1 s.
Comparatively, the RNN algorithm required the longest prediction time, with 0.0655 , while the
proposed method had the shortest prediction time of 0.186 s, which was 71.6% less than the RNN
algorithm, 60.92% less than the LSTM algorithm, and 20.51% less than the LSTM-attention
algorithm. These findings demonstrate that the proposed method does not only exhibit good
prediction accuracy but also provides real-time performance.

5. Conclusion

In this study, a trajectory prediction method, the APSO-LSTM-attention algorithm, was de-
signed based on the three-dimensional coordinates of a ping pong ball during rotational flight.
The results demonstrated that compared to methods like the RNN and LSTM algorithms, the
APSO-LSTM-attention algorithm achieved smaller prediction errors with ADEs of 6.01mm,
11.26mm, and 8.97mm in the X, Y and Z axes, respectively. The FDEs were also smaller, and
the time required to predict a complete trajectory was only 0.0186 s, indicating good accuracy
and efficiency. These findings support the further application of the proposed method in practical
scenarios.
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Investigating the propagation of the seepage path of confined water in the floor is an impor-
tant means to determine the conditions of water inrush from the mine floor for deep mines
with high water pressure. In order to better understand the mechanisms of water inrush due
to the hidden fault floor above a confined water body, an integrated study including analyt-
ical analysis, and similarity simulation experiments were conducted. The study focuses on
the distribution of mining induced stress in the floor, the propagation of hidden faults, and
the evolution process of water inrush channels during longwall coal seam extraction.

Keywords: floor concealed fault, water inrush mechanism, mining-water pressure action,
crack propagation, seepage path

1. Introduction

Mine water inrush has always been a prominent problem that threatens safety of coal production.
In recent years, most coal mines in northern China are gradually entering deep mining. The
distance between the main coal seam and the aquifer of the lower Ordovician limestone formation
is shrinking, and the threat of floor water inrush is becoming increasingly serious (Yin et al.,
2021; Zhang et al., 2023a; Cao et al., 2021). Among them, the Han-Xing mining area is one of
the typical mining areas with high water inflow in China (Pappalardo et al., 2020). The coal
seam is overlaying an Ordovician limestone karst layer with water pressure of over 7.0MPa, and
over 10 large-scale water inrush incidents occurred in the past 20 years, of which 9 occurred
in the mining face. Under the disturbance of deep mining and high water pressure, the mining
is facing serious water inrush threats. The presence of small hidden faults in the floor further
exacerbates the risk of water inrush (Zhao et al., 2018; Zhang et al., 2020a,b,c; Mezza et al.,
2022).
The water inrush caused by floor aquifers must have a water inrush path, and formation

mechanisms of the water inrush path are the key to control and remediate the water inrush
risk. The concealed fault is a natural path for the migration of confined water, which has a
profound impact on the stress state of floor and rock permeability, and will significantly increase
the original height of water migration (Aguilera et al., 2019; Bhuiyan et al., 2018; Zhang et al.,
2020a,b,c). Under specific mining geological conditions, the surrounding rock undergoes periodic
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caving with the movement of the working face. Due to the propagation of primary fractures in
hidden faults and low mechanical strength, the integrity of water barrier in the floor rock layer
is weakened to various degrees. The impact of mining and the propagation of mining fractures
in the floor region vary depending on the structural geological conditions (Guerin et al., 2021;
Lin et al., 2021). Li et al. (2023) established a solid fluid coupling mathematical model and
analyzed the relationship between fault elements and water inrush law by using finite element
simulation. Yin et al. (2022) developed a mechanical model for progressive uplift of faults and
derived an analytical formula for the critical mechanics of water inrush from faults, revealing
the spatiotemporal evolution of water inrush from the floor through physical simulation. Based
on theoretical analysis and numerical simulation, Ren et al. (2022) conducted an in-depth study
on the characteristics of mining induced floor fault activation and delayed water inrush, and
obtained the mechanism of induced fault activation and delayed water inrush under the influence
of mining.

Despite the increasing awareness and importance of mine water inrush, floor water inrush
accidents still occur from time to time. Based on the investigation and statistics of the causes of
multiple large-scale water inrush accidents, Wang et al. (2022) pointed out that the reason for
the difficulty in containing water inrush accidents in the floor is the concealment and difficulty
in detecting hidden small structures. Based on this, the traditional method of preventing and
controlling mine water in coal mining faces has been changed, and a regional approach tailored
to the mining area has been adopted. The location and scale of hidden structures are determined
by injecting a grout slurry and observe its leakage. The method of microseismic monitoring and
warning for mine water hazards is adopted by Xiong et al. (2023), which describes and predicts
the trajectory of water inrush by monitoring the microseismic signals generated during the
formation and dynamic development of potential water conducting cracks. The tri-level warning
model for mine water inrush established from this can help managing potential water inrush
areas, providing a new method for deep hidden structure exploration, dynamic monitoring, and
water inrush warning. For the study of the mechanism of coal seam floor damage and water
inrush, Tu et al. (2022) proposed the concept of “relative water resistance layer of the floor”,
pointing out that water inrush from the coal seam floor is not only related to thickness of
the water resistance layer, but also to water pressure. By analyzing a large amount of on-site
measured data, Zhang et al. (2020a,b,c) considered the joint control effect of mining stresses
and water pressure in the floor rock mass, and proposed the in-situ tensile fracture theory. In
view of the spatial relationship between the water conducting fault and the floor plastic slip
zone, the shortest distance between the water conducting fault and the floor plastic slip zone is
regarded as the critical path of the fault water inrush, and a simplified fracture mechanics model
of the floor fault water inrush is established by Zhao et al. (2020). Based on the theory of linear
elasticity stress propagation in a semi infinite body, the confined water pressure is regarded as
an additional stress, and the distribution law of mining induced stress in the floor is obtained by
Zhang et al. (2022a,b,c), which is used as the basis for judging the risk of water inrush. Based
on the stress calculation results of the floor, the Mohr-Coulomb criterion with tensile failure
was used to calculate the depth of the floor plate failure, and the effects of water pressure and
thickness of the waterproof floor plate on the calculation results were explored by Mineo and
Pappalardo (2019).

The present research focuses on the activation of hidden faults and the mechanism of water
inrush under the combined action of mining and water pressure. The propagation direction of
the seepage path of pressurized water after mining is crucial for determining the scope of key
regional governance objectives (Zhang et al., 2022a,bc; Zhang et al., 2023a,b). The water inrush
from the coal seam floor is caused by mining disturbances that cause stress field changes, leading
to the initiation and propagation of cracks in the floor. Under the impact of high pressure water
from the bottom to top, the seepage path gradually evolves into a high-speed water inrush path.
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The distribution characteristics of stress field, crack propagation, and seepage behavior of the
floor will also vary depending on whether the floor contains hidden structures and the types of
hidden structures. Therefore, it is still necessary to further analyze the linkage process between
the uplift and migration of mining induced confined water and the development of water path
under the combined conditions. This paper adopts an integrated approach combining theoretical
analysis, physical simulation, and numerical simulations under the conditions of the existence of
hidden faults in the floor. The water inrush mode of hidden faults in the floor is the key research
object of this study, and the process of water inrush caused by mining through hidden faults is
analyzed to study the mechanism of floor water inrush in deep mining.

2. Simulation experiment on the expansion and activation of hidden faults

2.1. Determination of similarity ratio

The expansion of hidden faults refers to the process of relative opening displacement of
the rock layers of the fault under the combined action of external stress and floor support
pressure, with the direction of relative displacement determined by the maximum stress direction.
Essentially, it is the shear and expansion movement that occurs in the sidewalls of the fault failure
zone under the action of mining pressure, causing the material position inside the fault to change
from the initial non hydraulic state to a hydraulic state.
The two key factors that can affect water inrush from the floor while maintaining the same

hydrological conditions are the mining stress and faults (including size and spatial location).
They reduce the effective thickness of the floor waterproof layer. As shown in Fig. 1, water inrush
from hidden faults in the coal seam floor is the main form of water inrush from faults. Therefore,
the hidden faults in the floor are taken as the main analysis object. When the inclination angle
of the hidden faults is α, as the coal seam is mined, if the support pressure on the floor is greater
than the maximum deformation strength value, plastic deformation will occur in the rock mass
within a certain range of the working face floor, leading to the phenomenon of floor protrusion.
The depth of the impact of mining stress on the failure of the bottom plate is L.

Fig. 1. Structural model of water inrush from floor faults

It is necessary to conduct relevant physical similarity simulation tests to address the above
issues. Figure 2 shows the plane stress similarity simulation test independently developed and
designed. The bracket has height of 1.5m, width of 2m, and thickness of 0.2m. During the
testing process, strain information was collected through the DH3821 static strain analyzer, and
stress information was obtained based on the LY-350 soil pressure sensor.



576 B. Zhang et al.

Fig. 2. Schematic diagram of the testing device: (a) test bracket, (b) strain analyzer, (c) pressure cell

The similarity simulation test is based on mining technical conditions, combined with geo-
metric dimensions of the support and based on similarity theory, to determine the simulation
similarity ratio:
— geometric similarity ratio

C1 =
x′

x′′
=
y′

y′′
= 100 (2.1)

— unit weight similarity ratio

Cγ =
γ′

γ′′
= 1.5 (2.2)

— time similarity ratio

Cτ =
√
C1 = 14.1 (2.3)

— strength similarity ratio

Cp = Ce = CγC1 (2.4)

2.2. Design of the compensated stress measuring point layout

Taking into account the size of the support and the objective impact of boundary coal pillars
on the test results, a 20 cm boundary coal pillar is left on both sides of the model. The working
face is pushed from left to right, with total length of 150 cm. The model design simulation adopts
a long wall full height mining method, and the simulated working face completes mining every
30min, with parallel operations.
As shown in Fig. 3, due to the height limitation of the test bench, when studying the

movement law of the overlying strata in deep mining through experiments, it is not possible
to simulate all rock layers. Only a portion of the overlying strata in the mining space can be
simulated, and the weight of the remaining overlying strata and the topsoil layer needs to be
simplified as a uniformly distributed load applied to the upper boundary of the model. Removing
the thickness of the floor, as the actual height of the model laid is 1.09m, removing the thickness
of the floor, calculated in a similarity ratio of 1:100, is equivalent to simulating a 690m high
overburden layer. For a working face with an average mining depth of 1000m, the remaining
310m of overlying rock and quaternary clay are simplified as surface loads applied to the top of
the model. The vertical stress that the model needs to compensate for can be calculated using
the following expression

σ′′ =
C ′

Cp
=
γH

Cp
(2.5)



Mechanisms of mining induced inrush of pressurized water... 577

Fig. 3. Similar simulation structural model

2.3. Measuring point layout

As shown in Fig. 4, a total of 10 stress sensors are used in the similar material model to
monitor the stress characteristics of the roof and floor in the coal seam during excavation. Among

Fig. 4. Schematic diagram of measurement point layout location: (a) of stress gauge layout position,
(b) layout of strain gauge

them, the first group has five strain gauges which are uniformly arranged in the medium grained
sandstone of the 15th layer of the coal seam roof. The second group consists of five strain gauges
which are uniformly arranged in the 19th layer of siltstone. In addition, there are a total of 66
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displacement monitoring points for similar material models, and they are arranged in 4 areas.
Among them, the distance between the horizontal and vertical displacement monitoring points
in the roof is 20 cm. The distance between the horizontal and vertical displacement monitoring
points in the left floor of the fault is 15 cm. The vertical distance interval between the monitoring
points on the right side of the fault floor is 10 cm. The distance between the displacement
monitoring points near the hidden fault and the fault, as well as the horizontal and vertical
distances between the two monitoring points are 5 cm.

2.4. Similar material model laying

By combining hydrogeological conditions with experimental methods, a similar material
model simulates a 69m thick roof, a 2m thick coal seam, and a 38m thick floor. According
to the model parameters and similarity ratio given in Table 1, sand, calcium carbonate, gyp-
sum, and water are used to make the test materials. After the materials are mixed and stirred
evenly, they are laid layer by layer. After each layer of rock is laid, mica powder needs to be
spread to simulate the layer of the rock, and the laying is carried out step by step until the
entire model laying work is completed.

Table 1. Stratification and ratio of rock layers

Thickness Accumulated Propor- Coal material usage [kg]
No. Lithology of stratum thickness tion

sand
calcium

gypsum water
[cm] [cm] ratio carbonate

1 Sandstone 3 3 7:8:2 19.4 1.7 0.4 2.2
2 Siltstone 10 13 7:5:5 67.2 4.8 4.8 7.7
3 Sandstone 5 18 7:8:2 33.6 3.8 1.0 3.8
4 Mudstone 6 24 9:6:4 37.8 3.2 2.2 4.3
5 Sandstone 10 34 7:7:3 69.1 1.2 6.5 7.7
6 Siltstone 8 42 7:5:5 27.6 1.5 1.5 3.1
7 Sandstone 2 44 7:8:2 12.6 1.4 0.4 1.4
8 Siltstone 2 46 7:5:5 13.4 1.0 1.0 1.5
9 Sandstone 6 52 7:7:3 41.5 3.2 1.3 4.6
10 Mudstone 2 54 9:6:4 13.0 0.9 0.6 1.4
11 Sandstone 2 56 7:8:2 13.8 1.2 0.3 1.5
12 Siltstone 4 60 7:5:5 27.5 1.5 1.5 3.1
13 Sandstone 2 62 7:8:2 13.0 1.2 0.3 1.4
14 Siltstone 1 63 7:5:5 6.9 0.4 0.4 0.8
15 Sandstone 5 68 7:7:3 33.6 3.4 1.4 3.8
16 Mudstone 1 69 9:6:4 6.5 0.4 0.3 0.7
17 Coal 2 71 8:6:4 9.5 0.6 0.4 1.1
18 Mudstone 3 74 9:6:4 18.9 1.6 1.1 2.2
19 Siltstone 5 79 8:6:4 33.6 2.9 1.9 3.8
20 Sandstone 12 91 7:7:3 80.6 8.1 3.5 9.2
21 Mudstone 2 93 9:6:4 13.0 0.9 0.6 1.4
22 Siltstone 1 94 7:5:5 6.7 0.5 0.5 0.8
23 Sandstone 15 109 7:8:2 100.8 11.5 2.9 11.5

As shown in Fig. 5, the laying steps of a similar material simulation model are:

(1) In the early stage, the required quality of each material is calculated in advance based on
the size and proportion of the test frame for on-site weighing, the grade of sand and high-
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-strength gypsum is determined, and the required frame for the test is checked to ensure
its normal use and compliance with performance requirements.

(2) Weigh the material according to the calculated ratio, and when weighing the material, it
is necessary to weigh the excess mass. In actual experiments, there may be a decrease in
the total amount of the material due to operational reasons (such as material sticking to
the mixer, scattering during transportation, etc.), so it is necessary to weigh according to
the excess mass.

(3) According to the experimental needs, the template for simulating faults should be placed
in advance. Stress sensors should be placed in the rock layers designed for the model, and
placed according to the predesigned positions. The stress gauge labels at each position
should be recorded to facilitate data processing in the future without confusion.

(4) Weigh each material according to the precalculated material quality and lay it from the
bottom to top according to the layer size. During the laying process, sufficient compaction
is required to ensure that there will be no significant settlement during the later static
process, thereby ensuring the accuracy of the test results.

(5) Spread mica powder between each rock layer (simulating the layered rock layer). After
the overall laying is completed, only external loads are applied based on the precalculated
loads to simulate the overlying rock that cannot be reflected in the upper part. Place the
model for 3 days and maintain it in a room temperature curing state.

Fig. 5. Laying process of a similar material model

3. Analysis of test results

3.1. Analysis of the characteristics of layer deformation

Considering the impact of boundary effects on coal seam mining, the initial mining position
is set at a distance of 20 cm from the support boundary. Each excavation distance is 5 cm,
the excavation height is 2 cm, and the excavation interval is 30 minutes. In addition, the local
and global deformation characteristics of similar material models at intervals of 10 minutes are
recorded.
During the entire testing process, a total of 32 excavations were conducted, with total exca-

vation length of 160 cm. As the mining progress increases, the impact of mining stress generated
by this disturbance on the roof gradually increases. After the appearance of the initial pressure
characteristics, the width and height of fault cracks undergo varying degrees of evolution. A
total of 13 push mining cases that met the periodic weighing characteristics were statistically
analyzed throughout the entire experiment process. Among them, when the initial pressure is
applied at 25 cm during mining, cracks appear on the direct roof, and fracture occurs when the
collapse step is reached, with a fracture step of about 25m (Fig. 6).
As shown in Fig. 7, the curve evolution characteristics illustrate the lateral displacement

characteristics of the observation points set on both sides of the fault crack after each compres-
sion. When the value in the figure is positive, it indicates that the fault is expanding outward
and the failure mode is tensile failure. When the value in the figure is negative, it indicates that
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Fig. 6. Initial pressure on the working face

the fault is contracting inward and the failure mode is compression failure. During the testing
process, the fault cracks showed overall compression failure, and compression deformation in the
middle of the fault was the largest. The X distribution characteristics of deformation on both
sides of the fault indicate that the middle part of the fault is in a compression and contraction
state, while the two ends of the fault are in an expansion state. After the third pressure appli-
cation during the experiment, there was no lateral displacement at the bottom of the fault until
it continued to grow after the sixth pressure application, indicating that the crack propagation
was a process from closure to opening.

Fig. 7. Characteristics of lateral displacement changes on both sides of faults

When the working face advances 50 cm, the indirect roof collapses. When the working face
is advanced to 60 cm, the crack extends to the top plate at 52 cm. When the working face was
advanced to 95 cm, the crack had expanded to 67 cm. When the working face is advanced to
140 cm, the crack extends to 109 cm and runs through a similar material model (Fig. 8).

3.2. Analysis of stress evolution characteristics

Sensors 1 and 10 are symmetrically distributed in the direct roof, and are located behind
the cutting hole and in front of the stop mining line. As shown in Fig. 9, by comparing and
analyzing the distribution characteristics of support stress in the direct roof of the coal wall
side, it is found that during the advancing process of the working face, the support stress has
always been in an upward state and can be divided into two stages: a slow increase and a rapid
increase. It indicates that during the mining process, the overlying rock at the opening has been
constantly moving and deformed. During the process of advancing to a distance of 95 cm from
the opening off cut, the supporting stress rises slowly. After the working face is advanced to
95 cm, the support stress begins to rapidly increase. When the working face is 60 cm away from
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Fig. 8. Deformation characteristics of similar material models: (a) indirect roof collapse, (b) roof crack
length is 52 cm, (c) roof crack length is 67 cm, (d) roof crack length is 96 cm, (e) final structure of

the model

Fig. 9. Stress distribution characteristics of the direct top support

the stopping line, the growth rate of bearing stress decreases. When the working face is 20 cm
away from the stopping line, the support stress rapidly decreases. In the process of deep mining,
the impact range of mining is relatively large, and within 20m from the coal wall of the working
face, there is a stress rise zone. Moreover, the movement and deformation of the overlying strata
at the opening are more severe than at the stopping line.
In the pushing mining process of the working face, the bearing stress in the immediate roof

and floor in front of the coal wall experienced a process of rising first and then falling. Due to
the large range of advanced influence, the support stress in the top and bottom plates in front
of the working face gradually increases, with the maximum value of the top plate support stress
being about 5 kPa and the maximum value of the bottom plate support stress being about 8 kPa.
After the working face is pushed and mined, the support stress will rapidly decrease. When the
distance between the mining line and the goaf is about 30 cm 40 cm, the increment of support
stress tends to stabilize, and the final stress values are inconsistent with the position in the goaf.
In addition, the stress in the bottom plate gradually changes from a positive value to a negative
value, indicating that the bottom plate has undergone a process from compression to expansion
(Fig. 10).
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Fig. 10. Distribution characteristics of support stress in the goaf

The maximum decrease in stress increment at the center of the mining area indicates that
the place with the maximum deformation caused by the direct roof movement is located near
the center of the mining area. The increment of basic top stress shows a trend of first decreasing
and then increasing during the process of pushing and mining 35 cm to 40 cm in the working
face, indicating that the separation layer between the direct top and the upper rock layer is
gradually compacted and closed, so a part of the weight of the upper rock layer is borne by the
direct top. After the completion of the working face push mining, the stress increment value of
the direct roof in the goaf is basically zero, indicating that the movement and deformation of
the direct roof rock in the goaf have become stable. The stress of the floor shows a trend of
a rapid increase first and then a slow decrease. The stress of the bottom plate increases with
a decrease of the distance from the working face pushing and mining line, and undergoes an
evolution process of compression before expansion.

Fig. 11. Characteristics of stress distribution in the fault

The impact of early mining on the stress at the fault is very small, so the stress on both
sides of the fault changes slowly, and the overall trend shows a slow increase followed by a rapid
decrease. Before the working face is advanced to a distance of 25 cm above the fault, the stress
at the fault is basically positive, and then the fault stress rapidly decreases and transforms into
a negative value. When the working face is pushed to a distance of 25 cm from the fault, the
left side of the fault is pulled and the right side is compressed, and the fault has a tendency to
rupture to the upper left. When the working face is pushed to be within 25 cm from the fault,



Mechanisms of mining induced inrush of pressurized water... 583

the left side of the fault is under pressure and the right side is under tension, with a tendency
to rupture above the right (Fig. 11).

4. Conclusion

• Under the influence of mining, the edge of macroscopic hidden faults is mainly charac-
terized by oblique shear failure accompanied by overall splitting tensile failure. The shear
cracks derived from edge cracks and oblique cracks develop in opposite directions, and the
development direction is the shortest path direction required for crack penetration.
• The rock mass near the hidden fault has undergone an evolutionary process of “develop-
ment of the original separation layer, compaction and sealing of the original separation
layer, expansion of the new separation layer, and compaction and sealing of the new sep-
aration layer”. When the working face advances to a height near three times the fault
height, the impact of mining stress on the development of the fault sharply increases.
• When a distance from the working face is greater than 10 times the height of the fault, the
vertical stress of the surrounding rock near the macroscopic hidden fault is basically not
affected by the mining stress. When the distance from the working face is less than 5 times
the height of the fault, the vertical stress of the surrounding rock near the macroscopic
hidden fault is gradually affected by the mining stress.
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The paper presents an attempt to assess the microstructure and mechanical properties by
means of the magnetic Barkhausen noise (MBN) method. The experimental program was
supplemented by metallographic examinations and hardness tests. It has been concluded
that the MBN method can be used for non-destructive characterization of both single and
two-phase steels used in the automotive industry. It was also found that the microstructure
of steel can be distinguished using the shape of BN envelope and two magnetic parameters:
Ubpp1 and Ug1. On the other hand, the hardness and ultimate tensile strength are described
successfully by the Ug1/Ubpp1 parameter.
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1. Introduction

Magnetic Barkhausen Noise (MBN) analysis (Jiles, 1998) is regarded as a non-destructive tech-
nique of considerable significance in microstructural characterization of ferromagnetic materials.
Contemporary industrial requirements enforce research work for effective determination and bet-
ter assurance of the desired microstructure of steels. In practice, the microstructure is determined
by selected metallographic techniques and hardness tests where certain regions of representative
specimens can be taken into account. Since application of these methods is time consuming and
quite expensive, there is an interest to develop cheap non-destructive techniques capable of rapid
inspection of the material state. Performing BN measurements instead of metallographic and
hardness tests may reduce the cost of quality control while maintaining its standards.
Among many options, the MBN method can be applied to detect and determine a volume

of the sigma phase in duplex stainless steels (Huallpa et al., 2016). Since the sigma phase
adversely affects mechanical properties and corrosion resistance of the material, it is necessary
to determine its contribution. It has been shown, that a volume of the sigma phase increases as
the time of annealing increases (Huallpa et al., 2016). Simultaneously, the BN signal decreases
until it equalizes the background level after 24 hours of heat treatment (Huallpa et al., 2016).
Singh et al. (2020) showed, that the MBN gets an effective opportunity to distinguish between

such thermal treatments as annealing, normalization and quenching. Three variants of heat
treatment were carried out. The annealing, normalizing and quenching processes were carried
out alternatively at 900◦C, 850◦C and 800◦C. The highest level of the BN signal was obtained
for the material annealed at 900◦C, and then, successively for the material annealed at 850◦C
and 800◦C. Lower values of BN signal were measured on specimens after normalization. The
same tendency of the BN signald variation due to temperature change was observed. The lowest
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values of BN were obtained for specimens after quenching, however, an opposite trend was noted,
i.e. the highest BN was observed for the specimen thermally treated at 800◦C, and the lowest
one for 900◦C. However, Honkanen et al. (2021) stated that based only on the BN amplitude,
the ferritic-pearlitic and martensitic microstructure could not be distinguished.
The bainite fraction in 22MnB5 grade steel with 0.23%C was also tested by means of the

MBN method (Zhu et al., 2020). Specimens of different bainite and martensite contributions
were produced and, subsequently, the peak of MBN and rms value were analysed. A decrease in
the BN was observed for the bainite volume lower than 30%. Above this volume, an increase of
MBN was noted. The residual internal stresses in the martensite phase were the main reasons
of the BN decrease.

According to (Błażewski and Mikoszewski, 1981), an increase of BN due to the bainite
fraction increase can be attributed to a lower resistance of the domain walls during the mag-
netisation cycle in comparison to the small lath structure of martensite with high dislocation
density (Kaplan et al., 2007).

A content of the martensitic phase in X70 dual-phase steel after various heat treatments of
different inter-critical annealing temperature was tested in (Nebair et al., 2022). It was found
that BN decreases if the inter-critical temperature increases. This is due to an increase of the
martensite fraction and the number of obstacles as well (Nebair et al., 2022).

In (Tavares et al., 2019) temper embrittlements contributions were detected in the super-
martensitic stainless SMSS steel (13%Cr-5%Ni-2%Mo) by MBN. This material belongs to the
class of new stainless steels developed in the 1990’s. It is commonly used for production of
seamless pipes and forged parts for oil and gas installations on land. Conventional martensitic
stainless steels become brittle when tempered in the temperature range of 400◦C-600◦C, as can
be verified by impact Charpy tests at room temperature (Pickering, 1976).

Nowadays, the MBN is used as a standard to evaluate the tempering process of steel (Ivanova,
2022). It was found that the time of noise registration could serve as a suitable parameter
for analysis of the microstructure. It can be determined on the basis of the zero point of the
magnetization sine wave and maximum value of the magnetic noise envelope (Ivanova, 2022).
The study found linear relationships between the time of magnetic noise occurrence and the
hardness of structures obtained after tempering. The same nature of the relationship was found
between the hardness of heat treated structures and the rms signal of BN (Ivanova, 2022).

In (Neslušan et al., 2023), the Barkhausen emission was used to distinguish steels of different
yield strengths: 355MPa, 500MPa, 700MPa, 960MPa and 1100MPa. It was observed that
for specimens investigated non-destructively along the sheet rolling direction, firstly, the BN
signal increased up to about 500MPa, subsequently, it was approximately constant up to about
1000MPa, and finally decreased. On the contrary, in the case of specimens investigated by
means of MBN method in the transverse direction, the BN increased up to 1000MPa, and then
decreased (Neslušan et al., 2023).

Astudillo et al. (2022) used the BN to detect presence of martensite induced by defor-
mation. A progressive increase of the rms value of the MBN with an increase of martensite
volume was verified (Astudillo et al., 2022). The results showed that the MBN might detect
microstructural changes that occurred during the evaluation of initiation and evolution of the
austenite–martensite phase transformation (Astudillo et al., 2022). The presented literature ex-
amples indicate that the MBN can be useful for identification of the steel microstructure.
Based on this short survey of the BN studies, one can conclude that the method is suitable

in many materials science issues. What is lacking, however, is a synthetic description of the
microstructure evaluated by means of MBN for a wide range of structural steel grades, commonly
used in major industrial branches. Moreover, the available literature data shows that there are
no clear answers to rhe question, which parameters determined from the BN envelope allow one
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to precisely identify the type of microstructures. This research is an attempt to get closer to
answering this question.

2. Experimental procedure

Six structural steels were taken from different automotive or military components (Mars 300
– protective armour fragment – Specimen No. 1), 40NiCrMo7 – ball pin – Specimen No. 2),
S700MC – boom toa of a special truck – Specimen No. 3, S355 steel – car trailer – Specimen
No. 4, C55 – ball joint housing – Specimen No. 5, and C15 – car stick – Specimen No. 6).
Chemical compositions of the tested steels are presented in Table 1.

Table 1. Chemical compositions of the tested steel grades

No. Steel grade C S P Si Mn Ni Cr Mo V S Al Ti

1 Mars 300 0.49 0.001 0.005 1.01 0.60 1.70 0.30 0.40 – – – –
2 40NiCrMo7 0.38 0.020 0.010 0.26 0.62 1.35 0.82 0.23 – – – –
3 S700MC 0.11 0.013 0.012 0.30 1.87 – – 0.31 0.10 0.003 0.012 0.21
4 C55 0.56 0.034 0.021 0.23 0.72 0.24 0.38 0.02 – – – –
5 S355 0.09 0.012 0.023 0.47 1.63 – – 0.40 0.20 0.004 0.013 0.19
6 C15 0.13 0.014 0.022 0.18 0.45 – – – – – – –

Non-destructive Barkhausen tests as well as metallographic and hardness tests were per-
formed on them. Subsequently, a mutual relationship between magnetic properties and the
microstructure type of structural steel were found. The surfaces of the elements on which the
tests were carried out were polished with a sandpaper with grains of 320 and 1200.

Fig. 1. Barkhausen noise defectoscope: (a) general view, (b) head, (c) diagram of the head (1 – tested
specimen, 2 – U -shaped core, 3 – magnetising coil, 4 – core of the measuring coil, 5 – measuring

winding, 6 – control winding) (Makowska and Kowalewski, 2020)

Magnetic tests were carried out using the Barkhausen noise defectoscope, Fig. 1. Three
measurements were carried out in one area of each specimen. Barkhausen noise envelopes with
the highest amplitude are shown. The sensor was set in accordance with the rolling direction of
the materials in question. The measuring head consisted of a U -shaped core of electromagnets
wrapped in a wound excitation coil. The pick-up coil was built into the sensor that possessed
a rounded shape which made it easier to fit the probe to concave and convex surfaces. The
control coil was also built into the head. The voltage of the control coil reached its maximum
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value when the probe was optimally positioned on the specimen. The voltage signal induced in
the coil was proportional to the rate of change of the magnetic flux in the electromagnet core
(Makowska and Kowalewski, 2020). The size of the magnetic flux depends on its surface and
the magnetic properties of both the core and object tested (Makowska and Kowalewski, 2020).
The detailed structure of the sensor is presented on Fig. 1c. A triangular waveform was applied.
In the pick-up coil, a voltage signal U0 was induced. In order to estimate the BN intensity, the
fast-variable component of U0 was measured for the frequency f = (0−500) Hz. Analysis of this
component provided required data on the material structure of the specimen.
The envelopes of BN were calculated as rms value of Ub according to

Ub =

√√√√√
1
τ

τ∫

0

U2tb1(t) dt (2.1)

where Ub [V] is the root mean square of the coil output voltage; Utb1 [V] is the fast-variable
component defining a voltage separated by means of the high-pass filter from induced voltage
in the pick-up coil, and τ [s] is the integration time.
In the next step, the amplitude of BN (Ubpp) was used as a parameter defining the voltage

difference between the maximum peak value of the MBN (Ub) and the background noise (Utb).
The MBN amplitude is able to identify the BN level that depends on microstructural features of
the material matrix like the grain boundaries, precipitations or dislocations for example. Also a
voltage generator Ug was determined for each Ubpp value. It gives information on the magnetic
field strength that is needed to overcome pinning obstacles by the domain walls (Makowska and
Kowalewski, 2020).
Also, an integral of the half-period voltage signal of MBN was calculated

Int(Ub) =

+Ugmax∫

−Ugmax

Usb dUg (2.2)

where

Usb =
√
U2b − U2tb (2.3)

and Usb [V] – root mean square of the Barkhausen emission voltage after correction due to
background noise, Ub [V] – root mean square of the coil output voltage, Utb [V] – root mean
square of background voltage, Ug [V] – generator voltage.
The full width of the half maximum FWHM was also determined. It can be related to the

magnetic hardness (Jiles, 1998). In the case of two maxima on the envelope, the amplitude
and integral were determined for the following parameters: Ubpp1 , Ubpp2 , Int(Ub)1, Int(Ub)2,
FWHM1 and FWHM2. Also, the new Ug1/Ubpp1 parameter was calculated.
The microstructure of the tested materials was analysed using the Olympus PMG3 light

microscope equipped in Zen2Core software. Quantitative analysis of the microstructure was
performed using the linear method. The longest chord, also called the Ferret diameter, was
proposed as the grain size parameter dav [µm]. The following notations were adopted in this work:
dav (M) – average grain size of martensite, dav (S) – average grain size of high-tempered martensite
(sorbite), dav (B) – average grain size of bainite, dav (F ) – average grain size of ferrite, dav (P ) –
average grain size of pearlite, dav (C) – average grain size of cementite, VF – volume fraction
of ferrite, VP – volume fraction of pearlite, VC – volume fraction of cementite. A relationship
between the grain size and amplitude of Barkhausen noise was found.
The Vickers hardness (HV3) was measured by means of the universal Duramin-500 Struers

hardness tester. Five measurements were carried out for each specimen. The Vickers hardness
values were converted into the Brinell hardness (Błażewski and Mikoszewski, 1981) in order to
assess the ultimate tensile stress, Table 2.
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Table 2. Hardness results of the steel grades tested

Steel grade [HV3] Mars 300 40NiCrMo7 S700MC C55 S355 C15

Measurement 1 708 306 252 208 165 158
Measurement 2 696 297 258 216 163 156
Measurement 3 705 301 250 212 162 155
Measurement 4 704 308 262 210 168 159
Measurement 5 701 296 260 214 166 157
Average hardness 703 302 256 212 165 157
Standard deviation ±4.07 ±4.76 ±4.63 ±2.83 ±2.14 ±1.41

3. Results

The envelopes of BN are presented in Fig. 2, whereas the parameters coming from BN envelopes
are shown in Figs. 3-6. Microstructures of the tested materials are presented in Fig. 7.

Fig. 2. Barkhausen noise envelopes for different steel grades
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Fig. 3. The first peak Ubpp1 and the second peak Ubpp2 of rms Barkhausen envelopes for different
steel grades

Fig. 4. Integrals of the half-period voltage signal of MBN (Int(Ub)1 and Int(Ub)2)

Fig. 5. Width of the first and second peaks determined from the rms envelope of the Barkhausen noise
of the tested steel grades (FWHM1 and FWHM2)

Table 2 presents the HV3 hardness results of steel grades, whereas Table 3 shows parameters
determined based on the metallographic and mechanical tests: dav – grain size diameter and
Rm – ultimate tensile stress. It was observed, that the values of mechanical parameters increase
with the reduction of the amplitude and integral value determined from the envelope of BN.
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Fig. 6. Graphical representation of Ug1 and Ug1/Ubpp1 parameters for different steel grades

Table 3. Microstructural and mechanical properties of the steel grades tested

Steel grade Mars 300 40NiCrMo7 S700MC C55 S355 C15

Hardness [HV3] 703 302 256 212 165 157
Ultimate tensile

2396∗ 994 785 700 528 532
stress Rm [MPa]

dav [µm] 15.5 10.4
ferrite(F ) 2.23 pearlite(F ) 16.06 ferrite(F ) 3.88 22.2
bainite(H) 1.77 ferrite(F ) 15.75 pearlite(F ) 1.12

∗ Fras et al. (2018)

As it is shown in Fig. 2, the MBN envelopes are characterized by a varied shape and variable
number of peaks. In terms of the mechanical parameters, the Mars 300 has the highest hardness
and tensile strength. On the BN envelope, one can indicate a single maximum reflecting the
martensitic microstructure (M). The MBN amplitude of this steel has the lowest value due to
the high dislocation density in martensite needles, which is typical for this structure (Honkanen
et al., 2021). In (Honkanen et al., 2021) it was proved by means of the transmission microscope
in the Lorentz mode that the domain walls anchor and bend on dislocations.
Specimen No. 2 has also a high-tempered martensite structure named also as sorbite (S). It

contains small cementite particles in the fine grained ferritic matrix. Since the distribution of
cementite in the ferritic matrix is practically homogeneous, only a single maximum is observed
here. The dense distributed cementite particles can be treated as significant obstacles for move-
ments of the domain walls and, as a consequence, this specimen is characterized by the Ubpp
parameter equal to 0.23V. In (Tavares et al., 2019), the anchorage of domain walls in sorbite
steel on carbide precipitates was clearly illustrated. These precipitates were the major obstacles
for movement of the domain walls in the microstructure with high-tempered martensite.
The S700MC steel (Specimen No. 3) represented a ferritic-bainitic microstructure. In that

case, the MBN envelope had two maxima. The peaks are mainly attributed to nucleation and
growth of new domains at various specimen defects and grain boundaries as well as the domain
walls annihilation process. It has to be emphasized that the number of peaks depends on the
number of phases in the material. The first peak obtained for a lower positive Ug was associated
with the presence of ferrite in the microstructure, while the second one, for a higher Ug, was
attributed to bainite.
Since the number of dislocations in ferrite grains is relatively low (Honkanen et al., 2019), the

domain walls can move more freely and with a higher speed. As a consequence, their anchoring
takes place mainly at the boundaries of ferrite grains. Such feature is reflected in magnetic
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Fig. 7. Microstructures of different steel grades: (a) Mars 300 with the martensitic microstructure,
dqv M) = 15.5µm, 703 HV3, (b) 40NiCrMo4 with the sorbite microstructure (high-tempered
martensite), dav (S) = 10.4µm, 302 HV3, (c) S700MC with the ferritic-bainitic microstructure,
dav (F ) = 2.23µm, dav (B) = 1.77µm, 256 HV3, (d) C55 with the pearlitic-ferritic microstructure,
dav (F ) = 15.75µm, dav (P ) = 16.06µm, VF = 31.2%, VP = 68.8%, 212 HV3, (e) S355 with the

ferritic-pearlitic microstructure, VF = 87.9%, VP = 12.1%, dav (F ) = 3.88µm, 165 HV3, (f) C15 with the
ferritic microstructure and secondary cementite precipitates, dav (F ) = 22.2µm, dav (C) = 0.9 · 10−3 µm,

VF = 90.2%, VC = 9.8%, 157 HV3

investigations by a higher maximum than that in the case of Specimen No. 2. By contrast, the
peak related to bainite is lower than that from sorbite (high-tempered martensite) in Specimen
No. 2 and similar to the peak related to martensite in Specimen No. 1. The domain walls in
bainite move more freely and their speed is greater due to the ferritic matrix of bainite, in which,
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on the other hand, there are carbides that increase the number of Barkhausen jumps (anchor
and disanchor domain walls).
Envelopes determined for Specimens 4 and 5 represent the pearlitic-ferritic and ferritic-

-pearlitic microstructure, respectively. These specimens differ in the phase volume and grain size.
Honkanen et al. (2021) studied how domain walls moved in ferrite and pearlite. A movement of
the domain walls in steels containing such phases begins in ferrite due to a not sufficient number
of pinning sites in its grains. However, there are some hindering elements for domain walls
movements in the form of ferrite-ferrite grain boundaries. The generator voltage responsible
for the domain walls movement across the ferrite-ferrite grain boundaries is not sufficient to
unlock the anchored domain walls at the ferrite-perlite grain boundaries. Only an increase in
strength of the magnetic field causes a displacement of the domain walls located perpendicularly
to the alternately arranged ferrite and cementite plates. It has been observed that the domain
walls anchor or disanchor on the cementite plates during their movement (Honkanen et al.,
2021).
Specimen 6 has a lower amplitude than Specimen 5. According to (Gür, 2017), the presence

of spheroidite in the ferrite matrix should increase the BN level due to pearlite areas in the
ferrite matrix. However, the grain size serves as the main factor affecting the BN level. Based on
the relation Ubpp ∼ d∼0.43, it was found by Ng et al. (2003) that the BN amplitude decreases as
the grain size increases. This is due to a less number of grain boundaries acting as the pinning
sites. Ranjan et al. (1987) found for technical nickel, that the amount of grain boundaries could
be treated as the dominant microstructural parameter affecting the magnetic properties. They
discovered that the Barkhausen signal decreased with a grain size increase. Such results were
confirmed by tests carried out on a low carbon steel (Anglada-Rivera et al., 2001). Cumulative
diagrams of grain size variation as a function of the BN level Ubpp1 for metastable and stable
phases are shown in Figs. 8-9. The metastable phases that represent non-diffusive/semi-diffusion
products create dislocation clusters and, moreover, serve as a source of stress concentration
during rapid cooling. The just mentioned factors, besides grain boundaries and precipitations,
have an additional impact on the level of the BN signal. Figure 8a shows that if the level
of the BN signal decreases, then the grain size-increases. A similar effect can be observed in
Fig. 8b for cooled steels with phases being products of diffusion transformations, according
to the Fe-C system. In the case of the ferritic-bainitic S700MC steel, the value for bainitic
(metastable) phase was substituted for Ubpp1 . The results of stereological analysis are given in
Table 2.

Fig. 8. Grain size as a function of the BN signal level Ubpp1 for steels with phases being products of:
(a) non-diffusion and semi-diffusion transformations, (b) diffusion transformations, according to the

Fe-C system
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It was observed that the background level of Barkhausen noise also changes depending on
the microstructure of steel. It was noted that the background level of Barkhausen noise is lower
when more pinning sites hindering movement of the domain walls in the tested material occur.
It was also found that high values of the Ug1/Ubpp1 parameter indicates a very high hardness

and tensile strength. In contrary to that result, a lower values of Ug1/Ubpp1 parameters indicate
lower values of the hardness and tensile strength, see Fig. 6. Changes in the parameter Ug1 are
not so clear, Fig. 6. However, similarly to the parameter Ug1/Ubpp1 , the highest Ug1 values were
observed for the highest hardness and tensile strength and, oppositely, the lowest Ug1 values
were obtained for the lowest hardness and tensile strength.
The results obtained from tests carried out on Specimens No. 1-6 meet the technical re-

quirements for selected automotive and military structural elements. The microstructure and
hardness values are in agreement with those recommended by the standards “T-ITS/5/13-CBM
Technical condition. Steering rods, wishbones, torque rods and stabilizer rods as well as connec-
tors of the suspension system of motor vehicles. Safety requirements and tests” (in Polish) and
“T-ITS/63/13-CBM Technical condition. Ball joints of the steering and suspension systems of
motor vehicles. Safety requirements and tests” (in Polish).
The parameters selected from Figs. 3, 5 and 6 created the basis for determination of a new

parameter called the Modified Barkhausen Signal (MBS). It is characterized by the equation:
MBS = (Ug1/Ubpp1) + Ug2 − FWHM2.
It was observed that the material hardness varied linearly as a function of the MBS pa-

rameter, see Fig. 9. This relationship became the basis for a model development enabling de-
termination of mechanical properties, microstructure and grain size of the material. Since the
hardness can also be treated as a measure of a microstructure that enables distinction between
microstructures tested, it is possible to simultaneously assess either microstructure or mechanical
properties using the MBS parameter.

Fig. 9. Relationship between the hardness and MBS parameter

Moreover, if the value of the MBS parameter is greater than 1.3, the grain size of the material
is determined using the Ubpp1 parameter based on the relationship presented in Fig. 8a, whereas
if the value of the MBS parameter is less than 1.3, the grain size can be evaluated based on the
relationship presented in Fig. 8b, see Fig. 10.

4. Conclusion remarks

In this paper, a non-destructive method is proposed as an optional method for identification
of the microstructure and mechanical properties of steel, based on BN measurements. The rms
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Fig. 10. Barkhausen noise procedure for predicting mechanical properties, microstructure and grain size
of structural steels

amplitude of BN enables one to identify the number of phases in the material in question. The
MBN double peak reveals two magnetic features and two phases in the specimen. A level of
the BN signal depends on the microstructure and material grain size. Evaluation of the material
microstructure can be done on the basis of the shape of MBN envelope as well as two parameters
determined from the envelope: Ubpp1 and Ug1. Based on the results for Specimen No. 6 repre-
senting ferritic structure with cementite precipitations, one can conclude that both parameters
better describe the matrix of the material. This due to the fact that in ferrite, a displacement
of the domain walls takes place between the adjacent grain boundaries. The parameter Ubpp1
depends not only on the grain boundaries, but also on precipitations and dislocations. As a
consequence, it expresses the microstructural features in the material matrix, whereas the pa-
rameter Ug1 refers to strength of the magnetic field that is needed to overcome pinning obstacles
by domain walls. The Ug1 parameter can be applied to identify coexisting phases with the ferritic
structure, i.e.: bainite, cementite or perlite.
The tests carried out can be treated as preliminary studies, and there is no doubt that

the further research should be extended to a wider group of steels with an even more diverse
structure and grain size. It was also observed that the increase of grain size reduced the level of
Barkhausen noise for steels with structures that were products of both diffusion/semi-diffusion
and diffusion transformation. Attention is also paid to the Ug1/Ubpp1 parameter whose variation
describes changes in the hardness and tensile strength.
A simple Barkhausen noise model is proposed using new magnetic parameters. It enables

simultaneous assessment of mechanical properties, microstructure and grain size of the steel
tested.
One can indicate BN as a method with a wide application potential in material investigations,

especially after their production processes realised.
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Mechanical periodic structures exhibit unusual dynamic behavior thanks to the periodicity
of their structures, which can be attributed to their cellular arrangement. The source of
this periodicity may result from periodic variations of material properties within their cells
and/or variations in the cell geometry. The authors present the results of their studies on
the optimization of physical parameters of a three-dimensional axisymetrical periodic beam
in order to obtain the desired vibroacoustic properties. The aim of the optimization process
of the unit cell shape was to obtain band gaps of a given width and position in the frequency
spectrum.

Keywords: periodic beam, shape optimization, genetic algorithm

1. Introduction

Taking into account geometric features of material systems (regardless of the scale at which
these structures are built), they can be divided into two separate groups: aperiodic and periodic
structures (PS). In the first case, the structures consist of elements forming disordered systems,
i.e. without regularity and multiple repetitions of shapes in space. In the second case, the struc-
tures consist of basic objects (unit cells) which are repeated at precisely defined intervals in
space. Although the subject of systems characterized by periodicity of their structures is ex-
tremely wide, structures of this type are invariably associated with the phenomenon of waves
and vibrations. This is due to the fact that PS have mechanical properties which are counter-
-intuitive, especially with regard to vibroacoustic phenomena (Lee et al., 2010). In a similar
way to periodic metamaterials, PS exhibit the same unusual dynamic behavior thanks to the
periodicity of their structures (Brillouin, 1953). The source of this periodicity may be periodic
changes in the material properties within the cells (density or elastic modulus) and/or changes in
the cell geometry (cross-section or the presence of certain geometric features) (Yu et al., 2018).
The periodicity of is manifested by the presence of the so-called bandgaps which indicate the
frequency areas within which the energy cannot be transmitted through these structures (Liu et
al., 2011). Although the phenomenon of interaction of with waves is one of the most developed
branches of modern physics, this issue is still very popular among researchers, and the range of
possible issues to be analyzed is still wide. With the dynamic development and dissemination
of numerical methods (especially in the field of modeling methods) and the increase in access
to devices with high computing power, a renewed interest can be observed. Thanks to the fi-
nite element method, the possibilities of analyzing and designing have significantly increased.
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Mechanical metamaterials and mechanical PS have recently become increasingly popular in this
field. The difference between them results from scale (actually the ratio: the size of the unit cell
to the size of the element), and not from topological differences. It should be noted that, unlike
metamaterials, whose unit cells are generally many orders of magnitude smaller than the consid-
ered sample of such materials, cell sizes in PS are often comparable to the overall structure. The
analysis of the contemporary scientific literature shows that research on metamaterials (micro-
or nano-scale structures) predominates, which may be associated with technological constraints
on the manufacture of such structures (it is easier to get the required minimum number of ele-
mentary cells to obtain specific dynamic properties of structures) and thus potentially greater
opportunities for practical applications. Therefore, research (especially experimental) on PS is
difficult. On the other hand, reducing the size of the elementary cell directly affects the dynamic
properties of periodic systems. The smaller the elementary cell, the more responsive it is to
waves and vibrations at higher frequencies. For this reason, there are relatively few projects
investigating PS, especially in the context of optimising their shape and topology. The literature
lacks comprehensive research aimed at developing and implementing procedures for designing in
order to obtain the assumed dynamic properties, including: damping acoustic or elastic waves in
specific frequency regimes and/or selected vibration modes. In terms of the design of vibration
isolators, there is a lot of research on designs of PS with additional moving elements acting
as anti-resonators. The aim of the present study is to look in a different direction at potential
practical applications of passive vibroacoustic isolation or filtration of propagating vibroacoustic
signals in given frequency bands. It should be noted that the precise design must exist to obtain
the desired insulating or filtering properties. This process usually involves some modeling and
optimization procedures which lead to predetermined widths as well as positions of individual
gaps in the frequency bands. Shape and topology optimization calculations (Halkjær et al., 2006)
is a type of computer analysis that is often performed to identify optimal shapes of structures
to achieve specific static or dynamic characteristics (e.g. assumed strength with minimum mass
or filtered different types of propagation of vibroacoustic signals). Historically, the method of
topology optimization in materials design was first used by Sigmund (1994) using the reverse
homogenization method. In the following years, many works continued the research in this area
(Xia and Breitkopf, 2015). Over the years, attempts have been made to model the dynamics
of metamaterials analitically, using methods such as the plane expansion method (PEM) (Yang
etal, 2004) or the transfer matrix method (TMM) (Yu et al., 2006), as well as numerically,
thanks to the use of sophisticated computational tools based on the classical finite element
method (FEM) (Żak et al., 2017; Hsu, 2011) or its variants, as well as experimentally (Xiao et
al., 2013). It should be noted that analytical studies were usually limited to one-dimensional
(1D) or two-dimensional (2D) structures with simple geometries and boundary conditions. In
contrast, FEM seems to overcome these limitations and emerges as a tool capable of solving
problems of complex three-dimensional (3D) geometries, arbitrary boundary conditions, as well
as material properties.

From the point of view of modern materials science, a constant challenge is to create such
artificial structures, whose properties (in particular, dynamic responses) resulting from their
periodicity can not only be predictable but, above all, programmed in a purposeful and fully
controlled manner. Additionally, it should be mentioned that both the fabrication and testing
of such elements in three dimensions are still at a relatively early stage. Therefore, it seems
necessary to modify the classic and to develop new methods of optimising the shape and topology
of PS, which can not just manage the level of complexity and non-linearity of the models, but
can also take into account the issues of manufacturing and experimental verification of such
structures. The main idea of the presented research was to develop a novel approach to the
design of passive vibration isolators or mechanical vibration filters (without anti-resonators) with
optimised dynamic characteristics. It was assumed that a precisely designed shape of a periodic
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beam, affecting its dynamic properties, would enable vibration filtering not only in terms of the
selected frequency range but above all in terms of the types of vibration to be filtered. Depending
on the engineering problem being solved related to vibration isolation, it would be possible to
design a vibration-damping filter in a selected frequency band for any combination of mechanical
vibration types (longitudinal, transverse, torsional). At the same time, the dimensions of PS
enable damping of vibrations at much lower frequencies than metamaterials, with no moving or
active elements.

2. Methodology

Analysing the current state of knowledge, it can be seen that the key issue that remains in-
sufficiently explored is the optimisation of topology and shape (Chen et al., 2010). Optimizing
the shape of the unit cell of a structure is a challenge because structural analysis of the three-
-dimensional elasticity problem is computationally intensive. Additionally, external boundary
conditions and loads can affect each component differently, making their performance heteroge-
neous (Tantikom et al., 2005). Algorithms in use today focusing on structural optimization can
generally be assigned to one of three basic groups: gradient algorithms, population algorithms
and artificial intelligence algorithms (Goldberg and Holland, 1988; Ji et al., 2023). These meth-
ods are aimed to achieve the assumed dynamic parameters of designed structural elements (such
as damping of mechanical vibrations in specific frequency regimes and/or for selected modes
of vibrations). Due to the complexity of numerical models of periodic systems, their non-linear
nature and the number and unknown connections of parameters that may affect the dynamic
properties of the structure, it seems that the process of designing elements with given dynamic
properties should be implemented through a multi-criteria optimization process.

Fig. 1. Periodic beam diagram

The results presented in this paper concern implementation of a genetic algorithm (GA)
to optimize the structural parameters (the shape of the unit cell of a tested structure) of a
selected axisimmetric isotropic beam representing a periodic mechanical structure. Optimization
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calculations were carried out in order to obtain frequency characteristics in which the position
and width of the forbidden bands were imposed from above, for each of the three basic types of
vibrations (longitudinal, rotational and flexural). Since the dynamic properties of are directly
related to the shape of the unit cell, the searched parameters (subject to the optimization
process) were the five radii of disks forming the shape of the unit cell, as shown in Fig. 1. The
target shape of the cell cross-section is created by a curve passing through subsequent points
using interpolating polynomials of the 5th degree. The procedure presented in the authors’ earlier
research was used here (Żak et al., 2019).
It was assumed that the periodic beam was divided into 20 identical cells of a continuously

varying radius in the range between Rmin = 10mm and Rmax = 50mm. The total length of the
beam was L = 300mm, therefore the length of a particular cell was l = 15mm. Additionally,
it was assumed that each cell was subdivided into 5 segments equal in length (3mm each).
Additionally, during the numerical calculation stage, it was necessary to take into account the
limitations resulting primarily from the assumption that at the experimental research stage, the
samples would be made using 3D printing from PLA material of the following material prop-
erties: Young’s modulus E = 2.35GPa, Poisson’s ratio µ = 0.36, mass density ρ = 1045 kg/m3

(Witkowski et al., 2021). It should be emphasised that additive manufacturing technologies are
characterised by features that should be taken into account both at the stage of developing
numerical models and in the optimisation process. For this reason, the length of the beam was
determined to be 300mm (the size of the 3D printer built plate). At this point, the attention
should be paid to an extremely important aspect of modelling PS, which is the choice of bound-
ary conditions. In the presented study, the authors assumed that both ends of the beam are
free, and the beam has finite length. These parameters were determined primarily in terms of
the possibility of manufacturing samples for verification tests. Indeed, the choice of aperiodic
boundary conditions with a small number of cells at the same time may affect the dynamic prop-
erties of PS (Ashcroft and Mermin, 2022). However, the results of the authors’ research (both
numerical and experimental) allow the conclusion that certain periodicity features for large PS
are already revealed with a smaller number of repeating cells (Żak et al., 2019).
Figure 2 shows the general scheme of the optimization algorithm used in the study. The

optimization process can be defined as an iterative mathematical procedure aimed at minimizing
the error between actual and predefined parameter values over a discrete range. In order to
characterize the optimal shape of the cell within the structure, it is first necessary to build
a numerical model of a periodic structure, which can undergo the optimization process. To
facilitate the optimisation process, a numerical model of the beam was applied using the spectral
finite element method in the time domain (TD-SFEM) combined with a GA. This numerical
model has been developed, tested and experimentally verified by the authors for an aluminum
beam in earlier studies, the results of which can be found in (Żak et al., 2019).
In the first step of optimization calculations, the algorithm was initialized by creating first-

-generation individuals. For this purpose, 768 sets of 5 numbers were generated with an accuracy
of four decimal places. These numbers represented the successive radii of disks that formed the
cross-sectional shape of the unit cell. The population size was dictated by the capabilities of
the computing equipment. The calculations were performed on a multi-processor High Power
Computer using Matlab software and parallel calculations on 768 processors. In the next step,
it was decided to carry out the chromosome generation process according to the value coding
scheme, in which the gene is represented by a sequence of values. The chromosome of each
individual consisted of 5 pairs of genes (10 genes in total). Each pair defined radii (R1-R5)
(Fig. 3). The first gene of the given pair determined an integer part of the decimal number
(which could take values from 1 to 4), whereas the second gene was its fractional part (accurate
to 4 decimal places – the number range from 0 to 9999). Coding the decimal number with
division into an integer and a decimal part allowed, first of all, to search for better solutions
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Fig. 2. Scheme of the optimization process using the evolutionary method and the TD-SFEM model

Fig. 3. Scheme for encoding the values of radii creating the shape of the unit cell

around the optimum while maintaining high variability in the first phase of searching for the
optimal solution.

The generated population of random solutions was introduced into the FEM numerical
model, which generated independent frequency characteristics for each considered type of vi-
bration.
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Due to the multi-criteria optimization problem, the basic challenge was to determine the
objective function used to evaluate the results of FEM calculations. The aim of the optimization
process was to obtain the shape of the unit cell of the periodic beam, which could ensure the
appearance of bandgap characteristics in a specific place for all selected types of vibrations.

Table 1. Considered cases of optimization goals

Case No. Flexural Longitudinal Torsional

1 forbiden1 allowed2 allowed
2 allowed forbiden allowed
3 allowed allowed forbiden
4 allowed forbiden forbiden
5 forbiden forbiden allowed
6 forbiden allowed forbiden
7 forbiden forbiden forbiden

1 unable to propagate waves in a given frequency range
2 able to propagate waves in a given frequency range

For mechanical vibration excitations generated in the bandgap range, the beam is a kind of
mechanical band-stop filter that does not allow the propagation of waves of selected frequencies.
Taking into account 3 basic types of beam vibrations, 7 cases of optimization goals were adopted,
the summary of which is presented in Table 1. Since changing one of the radii Ri affects all types
of vibrations simultaneously (including the position and width of the frequency bandgaps), the
optimization process cannot be carried out by assessing the fit of only one vibration characteristic
to the target without simultaneously checking the condition for the other types. Therefore, we
can write that the objective function is defined from three separate functions

G =






Glong = g1
(
flong(R1, R2, R3, R4, R5)

)

Gtors = g2
(
ftors(R1, R2, R3, R4, R5)

)

Gflex = g3
(
fflex (R1, R2, R3, R4, R5)

)
(2.1)

where f(long,tors,flex)(R1, R2, R3, R4, R5) is the frequency characteristic of a given type of structure
natural vibrations (long – longitudinal, tors – torsional, flex – flexular). The following constrains
were imposed

Rmin ¬ ri ¬ Rmax (i = 1, 2, ..., 5) and fL ¬ fi ¬ fU (i = 1, 2, 3) (2.2)

where ri represents the parameter value of the disc radius, and Rmin and Rmax represent the
lower and upper limit of disc radius, respectively. The value of ri of the initial generation
population is generated randomly. The fL and fU represent the lower and upper limit of the
bandgap. At the same time, it was assumed that all three types of vibrations have an equal impact
on the overall fitting function, and the goal of optimization is to maximize the function G

max(G) = max
(1
3
Glong +

1
3
Gtors +

1
3
Gflex

)
(2.3)

For each type of vibration, the function can take two forms (G+ or G−), depending on the
adopted optimization goal (existence of a bandgap in a given range or not). The objective
function G takes the form of the G+ function when the expected result of a perfect match is
a full coverage of the given frequency range, which means that the waves can propagate freely.
Otherwise (in a given frequency range wave propagation is not allowed) the objective function
takes the form of the G−. The G+ function (aimed at filling a given band) takes the form of a
percentage coverage of the given range by the available natural frequencies, Eq. (2.4)1. Due to
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naturally occurring bandgap ranges, the form of the G+ function is also dependent on the form
of currently assessed vibration characteristics of a given type. Figure 4 shows the most common
cases of filling the band with natural frequencies of the structure. By modifying the geometric
parameters of the unit cell, it is possible to control both the width and position of the bandgaps.
If the goal is to fill the entire band with natural frequencies of a given type of vibration, the
optimization algorithm can strive to reduce all existing forbidden bands to zero. Hence, the sum
of the widths of all frequencies appears in the objective function. The function G−, Eq. (2.4)2,
whose purpose is to remove the frequency from the band, is determined by width of the existing
bandgap (or not) in the given frequency band

G+ =
∑
di

∆fBG
G− =

( R

∆fBG

)2
(2.4)

where: di – natural frequencies of a given type existing in the considered frequency band, R –
existing initial bandgap width, ∆fBG – bandgap width.

Fig. 4. The width of the existing bandgap R and the width of the natural frequency coverage di within
the optimization goal: (a) the existing bandgap extends beyond the bandgap limit, (b) the existing

bandgap is within the assumed bandgap

After assessing the fit of a given generation, a sorting and selection process takes place.
In the selection process, half of the population with the best fit is kept unchanged, while the
other half is discarded and new individuals are generated in its place by interbreeding the
surviving individuals. For this purpose, pairs of individuals were randomly created and genes
were exchanged using the 2-point method. This method involves random crossover points being
selected, and the genetic information of parents is swapped as per the segments that have been
created. What is important is that in this method the order of genes in the chromosome before
and after the crossing operation is preserved. This ensures that there is no possibility of the
error of replacing the gene representing the integer part of the number with the decimal part
gene.
After replenishing the population with new individuals, a mutation operation was performed,

which concerned only new individuals. Taking into account the 60% probability, it was checked
whether a given individual would undergo mutation. If so, the gene to be changed was selected at
random. The new value of a gene was randomized while maintaining the restrictions for a given
gene type (1-4 for an odd gene and 0000 to 9999 for an even gene). In this way, the new popu-
lation generated was reintroduced to the FEM model, where new frequency characteristics were
generated. The process was carried out until a perfect match was achieved or 120 generations
were exceeded.
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3. Results

As a result of the optimization calculations performed for all assumed cases (Table 1), 7 different
shapes of unit cells were obtained. The calculations were divided into three stages depending
on the optimization goal. In the first stage, the calculations aimed to obtain the shape of the
unit cell for beams in which the wave propagation filtering was assumed for only one form of
vibration. The summary of the results is shown in Fig. 5 (a-c: flexural vibrations, d-f: longitudinal
vibrations, g-i: torsional vibrations). The first column presents the optimized shapes of the
unit cell meeting the optimization condition. The second column shows the resulting frequency
characteristics with the marked location of the band gaps for the three vibration types. Analyzing
the obtained frequency characteristics, one can notice individual frequencies appearing within
the band gaps. These are anti-resonant frequencies, so their occurrence in the assumed frequency
band does not affect the result of the optimization process.

Fig. 5. Results of the optimization process for the first three cases (1st column – the shape of the
optimized unit cell, 2nd column – the location of the band gaps for the three modes of vibration,
3rd column – convergence diagram): (a), (b), (c) – filtration of only flexural vibrations;

(d), (e), (f) – filtration of only longitudinal vibrations; (g), (h), (i) – filtration of only torsional vibrations

The last column of Fig. 5 contains the convergence graphs obtained during the optimization
process. The value of 1 means 100% fulfilment of the objective function. As can be seen, almost



The use of a genetic algorithm in the process of optimizing... 609

full matching was achieved for longitudinal and torsional vibrations (100% and 98.6%, respec-
tively). Only in the case of flexural vibrations, a convergence of 93.33% was achieved. It should
be noted, however, that this is due to the lack of fulfilment of the parallel condition regarding
longitudinal vibrations and the full filling of the band gap with natural frequencies (Fig. 5b).
The condition of the existence of a band gap in the assumed frequency range for the bending
mode of vibrations has been met.

Figure 6 shows the results of the second stage of calculations, in which the cases of attenuation
wave propagation in the beam were considered simultaneously for two selected forms of vibration
(a-c: bending and longitudinal, d-f: longitudinal and torsional, g-i: bending and torsion). Due
to the need to meet the condition of the existence of a bandgap for two types of vibrations
simultaneously, the achieved matching levels for all cases are below 100%. The last case of the
optimization process considered was damping wave propagation simultaneously for all forms of
vibrations in the assumed frequency range.

Fig. 6. Results of the optimization process (1st column – the shape of the unit cell, 2nd column – the
location of the band gaps, 3rd column – convergence diagram): (a), (b), (c) – filtration of flexural and

longitudinal vibrations; (d), (e), (f) – filtration of longitudinal and torsional vibrations;
(g), (h), (i) – filtration of flexural and torsional vibrations
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Fig. 7. Results of the optimization process for filtration all types of vibrations: (a) the shape of the
optimized unit cell, (b) the location of the band gaps for the three modes of vibration, (c) convergence

diagram

The calculation results are shown in Fig. 7. In the case under consideration, despite the need
to simultaneously meet the three bandgap conditions, a matching degree of 96.1% was achieved,
which is a satisfactory result considering the imposed geometric constraints (minimum and
maximum diameter of the unit cell disks).

4. Discussion

The article presents the results of optimization calculations aimed at adjusting geometric param-
eters of an elementary cell of an axisymmetric mechanical periodic structure. The optimization
procedure used by the authors, using a GA and a numerical beam model, made it possible
to obtain a structure with the given dynamic properties of the beam in terms of the position
and width of the common frequency bandgap. Based on the authors’ research described in this
article, the following general conclusions can be drawn:
• The GA optimization procedure used by the authors made it possible to adjust the ge-
ometric parameters within a single cell defining the periodic beam. Thus, the width and
position of the resulting common band gap can be treated aspreconfiguration at the beam
modelling stage, allowing the designer to freely select both the position and width of the
band gap for longitudinal, bending and torsional vibrations within the natural frequency
spectrum of the periodic beam under study. For all cases considered, a level of fit to the
objective function in the range of 93.33%-100% was obtained.
• The approach presented by the authors in this work, along with the optimization procedure,
can be used in the design of with specific dynamic properties, i.e. widths and positions
of the frequency bands in their vibration spectra. Such modelling could complement the
inherent properties of high-damping materials such as PLA by extending the frequency
range of damped vibrations (vibroacoustic isolators) or designing elements that damp only
selected types of vibrations (mechanical filters).
• The main limitation of using the optimization procedures in conjunction with numerical
models based on the classical finite element method is their size and complexity (large
number of degrees of freedom). The use of the TD-SFEM modelling method, the size
of which is tens times smaller than the FEA model, while maintaining the accuracy of
the results, allows faster calculations and more robust results, which allows them to be
combined with various optimization algorithms.

The growing availability of computers with high computing power has created new paths
for the rapid development of optimization methods, including evolutionary methods and ma-
chine learning techniques, which enable their application to larger and more complex problems,
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including modelling nonlinear problems. The use of advanced numerical methods to predict
the physical properties of PS allows one the design and optimization of structures before their
experimental implementation, but also the understanding of relationships between physical pa-
rameters describing mechanical (topology, shape, size of unit cells, mechanical properties of the
material) and their physical properties. The understanding of these relationships is important in
relation to the issue of modelling structures characterized by specific mechanical properties. We
are convinced that the combination of AI technology and numerical modeling issues may allow
us to develop procedures for optimizing mechanical structures to achieve the assumed dynamic
properties, including damping mechanical vibrations. At this point, attention should be paid to
another aspect related to the complex study of PS. There is no doubt that the interest in the
issues of this type of structures is closely related to the possibilities of their production. Taking
into account the fact that the authors plan to conduct experimental verification tests in the
next stage, it was necessary to take into account the limitations resulting primarily from the
assumption that the samples are made using the 3D printing method. The recent advances in
additive manufacturing techniques combined with the topological optimization issues enable the
design of PS with controlled anisotropy. In other words, 3D printing can be used to produce
cellular metamaterials and PS of arbitrary shapes. On the other hand, it should be understood
that, despite undeniable advantages, additive technologies have features that should be taken
into account both at the stage of developing numerical models and in the optimization process,
such as the damping coefficient of the material used, unintended anisotropy and heterogeneity
of the material or the limited size of the printed object (the need to combine larger structures
with separately printed elements, which introduces additional discontinuities that may affect
dynamic properties of the system, in particular wave propagation).

5. Conclusions

This paper presents the results of a study of a 3D axisymmetric periodic beam, which can
be used as a vibroacoustic filter due to its precisely defined dynamic properties. The study
combines evolutionary optimisation methods with numerical modelling. The use of a spectral
finite element method and a GA allowed the behavior of the structure over a wide frequency
spectrum to be investigated with a high degree of accuracy at a low computational cost. The
optimisation process focused on determining the dimensions and shape of the elemental cell
to obtain both the desired width and position of bandgaps present in the frequency spectrum
of the beam, for each type of mechanical vibrations (flexural, longitudinal and torsional). The
results for all combinations of vibration types were analysed and obtained, resulting in 7 passive
mechanical vibration filters allowing the filtering of all or selected types of vibrations in the
assumed frequency band (40-50 kHz). In this aspect, the presented method is closer to the
topological modelling than to a classical optimisation approach. It is worth noting that the
calculations were carried out taking into account the potential technology for making the actual
filters, i.e. 3D printing using the PLA material. This was primarily related to limitations on the
minimum and maximum dimensions of the specimen. The calculations carried out proved that
it is possible to successfully design vibration/vibration isolation elements with precisely tuned
dynamic characteristics. This was achieved by combining the properties of periodic structures,
mechanical properties of the thermoplastic material and methods for optimising the shape of
the elementary cell. At the same time, the challenges and limitations of using such algorithms
in the design and shape optimisation of periodic structures were analysed. In conclusion, it can
be stated that the design and shape optimisation of periodic structures using GA is a promising
research area and has shown great potential in overcoming the limitations of traditional methods
to enable the design of periodic structures with improved performance.
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7. Ji W., Chang J., Xu H.-X., Gao J. R., Gröblacher S. et al., 2023, Recent advances in meta-
surface design and quantum optics applications with machine learning, physics-informed neural
networks, and topology optimization methods, Light: Science and Applications, 12, 1

8. Lee S.H., Park C.M., Seo Y.M., Wang Z.G., Kim C.K., 2010, Composite acoustic medium
with simultaneously negative density and modulus, Physical Review Letters, 104, 5, 054301

9. Liu X., Hu G., Sun C., Huang G., 2011, Wave propagation characterization and design of two-
-dimensional elastic chiral metacomposite, Journal of Sound and Vibration, 330, 11, 2536-2553

10. Sigmund O., 1994, Materials with prescribed constitutive parameters: An inverse homogenization
problem, International Journal of Solids and Structures, 31, 17, 2313-2329

11. Tantikom K., Aizawa T., Mukai T., 2005, Symmetric and asymmetric deformation transition
in the regularly cell-structured materials. Part I: Experimental study, International Journal of
Solids and Structures, 42, 8, 2199-2210

12. Witkowski W., Kuik L., Rucka M., Daszkiewicz K., Andrzejewska A., Luczkiewicz
P., 2021, Medially positioned plate in first metatarsophalangeal joint arthrodesis, PLOS ONE, 16

13. Xia L., Breitkopf P., 2015, Multiscale structural topology optimization with an approximate
constitutive model for local material microstructure, Computer Methods in Applied Mechanics and
Engineering, 286, 147-167

14. Xiao Y., Wen J., Wang G., Wen X., 2013, Theoretical and experimental study of locally
resonant and Bragg band gaps in flexural beams carrying periodic arrays of beam-like resonators,
Journal of Vibration and Acoustics, 135, 4, 041006

15. Yang S., Page J.H., Liu Z., Cowan M.L., Chan C.T., Sheng P., 2004, Focusing of sound in
a 3D phononic crystal, Physical Review Letters, 93, 024301

16. Yu D., Liu Y., Zhao H., Wang G., Qiu J., 2006, Flexural vibration band gaps in Euler-Bernoulli
beams with locally resonant structures with two degrees of freedom, Physical Review B, 73, 064301

17. Yu X., Zhou J., Liang H., Jiang Z., Wu L., 2018, Mechanical metamaterials associated with
stiffness, rigidity and compressibility: A brief review, Progress in Materials Science, 94, 114-173



The use of a genetic algorithm in the process of optimizing... 613

18. Żak A., Krawczuk M., Palacz M., Doliński L., Waszkowiak W., 2017, High frequency
dynamics of an isotropic Timoshenko periodic beam by the use of the time-domain spectral finite
element method, Journal of Sound and Vibration, 409, 318-335

19. Żak A., Krawczuk M., Redlarski G., Doliński L., Koziel S., 2019, A three-dimensional
periodic beam for vibroacoustic isolation purposes,Mechanical Systems and Signal Processing, 130,
524-544

Manuscript received November 5, 2023; accepted for print March 1, 2024





JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

62, 3, pp. 615-629, Warsaw 2024
https://doi.org/10.15632/jtam-pl/190056

MOTION PLANNING FOR TASK-BASED MOTIONS OF MECHANICAL
SYSTEMS BASED ON COMPUTATIONALLY GENERATED REFERENCE

DYNAMICS

Elżbieta Jarzębowska
Warsaw University of Technology, Warsaw, Poland

corresponding author Elżbieta Jarzębowska, e-mail: elajarz@meil.pw.edu.pl

Krzysztof Augustynek, Andrzej Urbaś
University of Bielsko-Biała, Bielsko-Biała, Poland

e-mail: kaugustynek@ubb.edu.pl; aurbas@ubb.edu.pl

The paper presents a development of a complementary motion planning strategy for task-
-based motions for mechanicl systems. The key component of the strategy is a computational
procedure for generation of constrained dynamical models, where constraints can be mate-
rial or task-based ones and specify work regime requirements. The procedure provides the
constrained dynamics, i.e. reference dynamics, whose solutions satisfy all constraints upon
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1. Introduction

1.1. The paper scope and content

The paper presents a development of a complementary motion planning strategy for mechan-
ical systems, e.g. robotic ones, which are dedicated to deliver work and services, and these can be
pre-planned by task based constraints formulated by constraint equations. The key component
of the presented motion planning strategy is a computational based procedure for generation
of constrained system dynamical models (Jarzębowska et al., 2018a). The constraints imposed
upon system models may be holonomic and first order nonholonomic, material or nonmate-
rial, and the latter ones are referred to as programmed. The programmed constraints, which
reflect variety of performance requirements put upon mechanical systems, combined with other
constraints imposed upon them, are merged into one constrained dynamics, referred to as a ref-
erence dynamics, whose solutions satisfy all constraints put upon them. Then, motion subjected
to the desired constraints may be analyzed, refined and planned accordingly. Due to holonomic
and nonholonomic constraints of different natures, which are imposed upon various mechanical
systems, the paper proposes a novel approach to the motion planning for constrained systems,
which is dedicated to task based motions. Also, the approach based upon the reference dynamics
aims to support designing of tracking or stabilizing controllers for programmed motions.

1.2. Motion planning strategies developed for mechanical systems

Motion planning is one of the most significant activities for many mechanical systems like
robotic systems, either stationary or mobile, car-like vehicles, heavy machine equipment like
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cranes and many others. In majority of works, motion planning refers to the planning of motion
between the start and final locations and the satisfy constraints. The constraints are mostly
collision-avoidance ones. Much of this research and satisfy the constraints has been focused
on solving the motion planning problem in a stationary environment where both targets and
obstacles are stationary; see e.g. (La Valle, 2006) and references there. A more complex case is
for mobile robots and car-like vehicles, where nonholonomic constraints have to be taken into
account in the planner as well as overall dynamics. There are many approaches to determine
feasible paths for such systems, see e.g. the review in (Lu et al., 2016). Different approaches for
motion planning for car-like vehicles and mobile robots operating in dynamic environments are
proposed. According to (Chiang et al., 2015), they can be classified as: artificial potential fields-
based approaches, state-time space based approaches, velocity obstacles-based motion planning
approaches, and probabilistic collision checking based approaches. The approaches which are
based on the artificial potential field generate a combined potential field in which the vehicle is
attracted to its target position and is kept away from the obstacles The combined potential field
moves the vehicle in the work space prespecifying both position and full stop after obstacles
velocity (Chiang et al., 2015; Bounini et al., 2017). In this approach, a vehicle is often modelled
as a particle and obstacles are convex shaped. Some of the drawbacks of this approach, listed
the most often, are possibility of falling into local minima and intensive computation which
is required for descriptions of real environment for vehicles. The state-time space approach
is an extension of the configuration space and it consists of notation of the vehicle position
and time (Chiang et al., 2015). In this approach, the vehicle is modelled as a particle and
stationary, and moving obstacles are transformed to static ones. The approaches which are based
on the velocity obstacles concept define the velocity obstacles by computing vehicle velocities
that would cause a collision with the obstacles assuming that they are moving with constant
velocities (Lee et al., 2017). Then, an avoidance maneuver is computed by selecting velocities
that are outside of the velocity obstacles and a derived collision-free trajectory consists of a
series of avoidance maneuvers (Huang et al., 2018). However, these approaches are restricted
to planning decisions to the velocity of the vehicle and they represent each obstacle, including
the vehicle, as a disk. These approaches also require strict determination of the time horizon;
otherwise the vehicle may skip moving through tight spaces, and then it can be difficult to
determine the shortest path. The selection of the proper time horizon is still unresolved. In
(van den Berg and Overmars, 2008), probabilistic approaches are used for computing paths in
the state-time space. These planners incrementally build a tree of explored configurations for
each planning query. Latest research results demonstrate attempts for reducing the complexity
of the planning problem by first constructing a path based on the off-line information of the
environment, and then planning a collision-free trajectory on this path/roadmap that considers
the on-line information (Feyzabadi and Caprin, 2016). There are also approaches which consider
uncertainties or imperfections in environment representation performing probabilistic collision
detection. Other problems related to finding a path for the vehicle which is safe by construction
can be found in, e.g. (Feyzabadi and Caprin, 2016) and references there.

1.3. Methods for dynamics generation for mechanical systems

In our approach to task-based motion planning, the central role plays the constrained dy-
namics developed by a computational procedure, in which all constraints i.e. holonomic and
nonholonomic, material or task-based are merged together. This constrained dynamics, referred
to as reference dynamics, can be developed for both stationary and mobile car-like vehicles or
robots. Obstacles, fixed or moving, can be treated as constraints and their locations should be
specified by the constraints. There are two basic distinctions between the presented computa-
tional procedure for reference dynamics development and other constrained motion equations
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derivation methods, usually based upon the Lagrange approach and its modifications. The first
one is that all constrants upon a system can be considered and merged into one dynamical
model and the second should be: that all constraints upon is that the final equations are in
the reduced state form, i.e. they are free of constraint reaction forces, which are eliminated at
the derivation process. These are essential advantages of our approach, and this computational
procedure serves both reference and control oriented dynamics derivation. It works for rigid and
flexible system models, for open and closed-loop kinematic chains and enables automation of
constrained dynamics generation (Jarzębowska et al., 2018b, 2023). The computational proce-
dure for the reference dynamics development is the one unified method for including any desired
trajectory or velocity functions into system dynamics. This distinguishes our method from others
developed to obtain dynamics of constrained systems, which are based mostly on Newton-Euler
and Lagrange approaches. In many approaches, trajectories are planned separately of the vehicle
model by using constraints for position, velocity and acceleration at each time instant like in
(Macfarlane and Croft, 2003). Some dynamics modeling approaches exploit the Udwadia-Kalaba
derivation method, see, e.g. (Yang et al., 2019; Liu and Liu, 2016) and references there. The so
called Udwadia-Kalaba dynamic equations enable including position and first order constraints
into the system dynamics and determining the constraint reaction forces. These forces, which
ensure that the constraints are satisfied, are referred to as control forces. However, from the con-
trol theory point of view, it may be not very convenient to design a control algorithm realizing
these forces because they needed to be determined via analytical equations directly from the
Udwadia-Kalaba equations and may depend upon higher orders of e.g. velocities. Also, Kane’s
equations can be used to derive dynamic models of robotic systems, see e.g. (Kane and Lewinson,
1983; Sayers, 1990). They eliminate the nonworking constraint reaction forces in an elegant way
but they require a smart choice of generalized speeds, which rely on a modeler experience and
may not be straightforward as inputs for control applications. In the case when one wants to
select velocities as motion parameters, the use of Boltzmann-Hamel equations written in quasi-
velocities can be a good option for dynamics and the use of the Boltzmann-Hamel equations
control algorithm generations, see e.g. (Jarzębowska and Cichowski, 2018). Due to complexity of
mechanical systems, including robotic systems, intensive computation dedicated to their dynam-
ics derivation, solutions and motion analysis is required. For example, in (Khalil et al., 2017),
a recursive approach, based upon Newton-Euler equations, of tree-structure systems with rigid
and flexible links with floating bases based upon the Newton-Euler is proposed. It can be ap-
plied numerically or using symbolic techniques. An algorithm to generate the inverse dynamics
is presented in (Do et al., 2021), and it is based upon the recursive Newton-Euler algorithm, the
chain rule of differentiation and the computer algebra.

1.4. The paper motivation and contribution

Our goals are to develop a computationally based procedure for generation constrained dy-
namical models that would support planning of programmed motions and designing tracking
controllers for executing these motions specified by the programmed constraints. These goals are
motivated by usually used methods of motion planning and controller designs for constrained
dynamical models reported in literature, see e.g. (Dixon et al., 2003) and references there. Usu-
ally, system dynamical models without constraints are generated first and next control goals
like tracking predefined trajectories or other desired motions, are specified. Next, a controller is
designed and quite often, it is dedicated to this dynamics and an associated control goal.
In our approach, the reference dynamics describes the system behavior when the task-based

constraints are on, and it may serve two purposes. The first one is analysis and assessment
of kinematic parameters needed to be reached by the system to follow the desired motions. It
is enabled by solutions of the reference dynamics. If this motion comes from work or service
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requirements put upon an existing system, it can be easily verified whether it is feasible and
realistic to be accomplished by this system. The second purpose is to provide the complementary
motion planner, in which the outputs of the reference dynamics are inputs to the controller. The
tracking or stabilizing control architecture can be designed and it uses motions planned by the
reference dynamics.
The paper is organized as follows. After the introductory Section, Section 2 provides the

details of derivation of the computational procedure of generating constrained system dynamics,
which provides motion planning for system models. In Section 3, it is demonstrated how the
planned motion can be implemented to a control platform architecture for tracking these desired
motions. Section 4 details an example of desired motion of a mechanical system model, e.g. a
three-link manipulator model subjected to task-based constraints. Simulation studies about the
task-based motion planning are detailed in Section 5. We analyse the planned task-based motion
and provide an example of a controller design. Other controllers can be designed in the same
way. The paper closes with conclusions, future research prospects and the list of references.

2. The computational procedure of generating constrained system dynamics for
mechanical system models

The constraints put on a system are referred to as programmed and they can be combined
together with material ones. They are imposed as control goals on system performance or as
service tasks, and they all can be presented in a general form (Jarzębowska, 2012, 2008)

B(t,q, q̇, . . . ,q(p−1))q(p) + s(t,q, q̇, . . . ,q(p−1)) = 0 (2.1)

The constraints can be material for p = 0, 1, or nonmaterial, i.e. programmed for p  1. The
nonmaterial constraints are imposed by a designer or a control engineer to obtain a system
desired performance, e.g. they can be imposed upon acceleration p = 2 or jerk p = 3, as
well as for desired trajectories with p = 1. Constraints form (2.1) is the generalized constraint
formulation and it encompasses the classical analytical constraint concept.
The generalized programmed motion equations (GPME) for rigid body models subjected to

constraints (2.1) have the following form (Jarzebowska, 2008)

M(q)q̈− h(q, q̇) + g(q) = Q(t,q, q̇)
B(t,q, q̇, . . . ,q(p−1))q(p) + s(t,q, q̇, . . . ,q(p−1)) = 0

(2.2)

where: M(q) is the mass matrix, h(q, q̇) is a vector of centrifugal forces, g(q) is a vector of
gravity forces, Q(t,q, q̇) is a vector of external generalized forces which are not controls.
Constrained dynamics model (2.2) is the reference dynamics. The solutions to the reference

dynamics satisfy constraints (2.1) imposed upon the model. Equations (2.2) are free of constraint
reaction forces, which are eliminated in the derivation process. This is the fundamental advantage
of (2.2) which makes them suitable for direct motion analysis, planning task-based motions and
for control applications. More details about derivation and application of the GPME method
are available in (Jarzębowska, 2012). The derivation of GPME (2.2) requires determination of
the system kinetic energy and its derivatives. The derivation algorithm for them is as follows:
Assume that constraint equations in (2.2) may be solved, at least locally, with respect to the
vector q(p)β of dependent coordinates, i.e.

q
(p)
β = g

(p)
β (t, q, q̇, . . . , q

(p)
µ ) (2.3)

and q = (qβ, qµ), qβ ∈ R
k, qµ ∈ R

n−k. Then do the following:
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1. Construct a function Pp such that Pp = (1/p)[T (p)− (p+1)T (p)0 ], where T is kinetic energy
of an unconstrained system, T (p) is its p-th order time derivative, and T (p)0 is defined by
T
(p)
0 =

∑n
σ=1(∂T )/(∂qσ)q

(p)
σ .

2. Construct a function Rp such that Rp = Pp−
∑n
σ=1Qσq

(p)
σ = Rp(t, q, q̇, . . . , q

(p)
µ , q

(p)
β , q(p+1)).

3. Construct a function R∗p, in which q
(p)
β from Rp are replaced by constraints form (2.3)

R∗p = R
∗

p(t, q, q̇, . . . , q
(p)
µ , g

(p)
β (t, q, q̇, . . . , q

(p)
µ ), q

(p+1)) = R∗p(t, q, q̇, . . . , q
(p)
µ , q(p+1))

4. Assuming that components of a vector of external forces satisfy ∂Qσ/∂q
(p)
σ = 0, equations

of the generalized programmed motion equations (GPME) for a system with constraints
(2.3) have the form

∂R∗p

∂q
(p)
µ

∣∣∣∣
µ=k+1,...,n

=
∂Rp

∂q
(p)
µ

+
k∑

β=1

∂Rp

∂q
(p)
β

∂g
(p)
β

∂q
(p)
µ

= 0 (2.4)

Resulting equations (2.4) plus constraints (2.3) are equivalent to (2.2).

This derivation procedure can be nicely automated in Matlab or other software environment
tools, however, when friction, compliance, flexibility or other phenomena are included into the
model, this derivation algorithm may be time consuming. For these reasons, for engineering
applications, a computationally efficient approach to the constrained dynamics derivation is
needed. To develop the automated and computer oriented procedure for generation of constrained
dynamics for rigid body models, reference dynamics (2.2) is rewritten in the form (Jarzębowska
et al., 2018)

M(q)q̈ = h(q, q̇)− g(q) +Q(t,q, q̇)
B(t,q)q̇ = −s(t,q)

(2.5)

where the matrices and vectors are designed as

M(q) =Mi

∣∣∣
i∈iic
+
∑

j∈idc

Mj
∂q̇j
∂q̇i

M =
nl∑

l=1

M(l) M(l) = (m(l)ij )i,j=1,...,ndof

m
(l)
ij = tr (T

(l)
i H

(l)(T(l)j )
T) h(q, q̇) = hi

∣∣∣
i∈iic
+
∑

j∈idc

hj
∂q̇j
∂q̇i

h =
nl∑

l=1

h(l)

h
(l)
i =

n
(l)
dof∑

m=1

n
(l)
dof∑

n=1

tr
(
T(l)mH

(l)(T(l)m,n)
T)q̇(l)m q̇

(l)
n + 2

n
(l)
dof∑

m=1

n
(l)
dof∑

n=1

tr
(
T(l)mH

(l)(T(l)i,n)
T)q̇(l)m q̇

(l)
n

h(l) = (h(l)i )i=1,...,n(l)
dof

g(q) = gi
∣∣∣
i∈iic
+
∑

j∈idc

gj
∂q̇j
∂q̇i

g =
nl∑

l=1

g(l) g(l) = (g(l)i )i=1,...,n(l)
dof

g
(l)
i = m

(l)gJ1T
(l)
i r
(l)

C(l)

Q(t,q, q̇) = Qi
∣∣∣
i∈iic
+

∑

k∈iic∪idc

q̇k
∂Qk
∂q̇i
+
∑

j∈idc

(
Qj +

∑

k∈iic∪idc

q̇k
∂Qk
∂q̇j

)
∂q̇j
∂q̇i

Q =
nl∑

l=1

Q(l) Q(l) = (Q(l)i )i=1,...,n(l)
dof
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andT(l) is a transformation matrix from the local frame of link l to the global reference frame {0}

T
(l)
i =

∂T(l)

∂q
(l)
i

T
(l)
i,j =

∂2T(l)

∂q
(l)
i ∂q

(l)
j

H(l) is a pseudo-inertia matrix, m(l) is mass of the link, r(l)
C(l)
is the position vector of the center

of mass.
In the procedure, it is assumed that constraint Eq. (2.5)2 for p = 0, 1 may be solved, at least

locally, with respect to the vector q̇dc of dependent coordinates

q̇dc = q̇dc(t,q, q̇ic) (2.6)

and q̇ = [q̇Tic , q̇
T
dc
]T, q̇dc ∈ R

ndc , q̇ic ∈ R
ndof−ndc .

This partition to independent and dependent coordinate derivatives is equivalent to selection
of control inputs at the stage of controller design. Comparing (2.5) derivation to the original
GPME derivation reported herein and resulted in (2.4), it can be seen that the computational
based procedure for generation of constrained system dynamical models developed in this paper
is computer oriented ready to automation. In our derivation, which differs from many schemes
based upon the Newton-Euler or Lagrange approaches, we have applied the formalism of joint
coordinates and homogeneous transformation matrices together with the matrix trace concept.
They enable the effective automatic generation of matrices and vectors for the modification of
the GPME algorithm. Also, the selection of independent coordinates which will serve as control
inputs conforms to the proactive approach to dynamics and control design for mechanical system
models (Banaszuk et al., 2007).

3. Planning and tracking task based motions – an advanced control platform
architecture

The reference dynamics, either in general form (2.2) or specialized (2.5) offers advantages from
both constrained dynamics motion analyses, planning, and controller design points of view.
The constrained dynamics, i.e. the reference dynamics, when solved, shows motion patterns
of the planned motion. When they reflect work regime or other engineering related demands,
it is easy to analyze kinematic characteristics of a system under the constraint action and
other accompanying phenomena like vibration. It enables concluding whether the constraints
imposed by a designer or control engineer are realistic for the analyzed system and can be
accomplished. They can also be modified accordingly. With the aid of our reference dynamics,
i.e. the motion planner for constraint driven motion, a controller can be designed based upon
a tracking strategy architecture, presented in Fig. 1. It is dedicated for tracking constrained
motions. The key component of the tracking strategy is the computational based procedure for
generation constrained system dynamics and constrained motion planning (reference dynamics
– motion planning block). Based upon experience with the GPME approach to tracking, various
modeling parameters can be selected and the dynamic control model can be developed using any
available mechanics based method (dynamic control model block) (Jarzębowska, 2008, 2009).
Control laws can be selected from collections of algorithms from linear or nonlinear control
theory. It is reflected by the block of “specialized terms to the control law”. For example, non-
-adaptive or adaptive controllers can be used. Both dynamic models, i.e. the reference and
control, can be derived in a coordinate system convenient for a designer (Jarzębowska, 2009).
To demonstrate the ease of applying motion planning and then tracking with the strategy

architecture presented in Fig. 1, let us adopt feedback linearization to the control dynamics.
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Fig. 1. Tracking strategy architecture

First, generate the reference dynamics (motion planning block), then consider the dynamics
with no constraints on the system model (dynamic control model block), i.e.

τ =M(q)q̈+ b(q, q̇) + g(q) (3.1)

Then, apply feedback linearization which enables replacing the controller vector τ by a virtual
controller vector u as

τ =M(q)u+ b(q, q̇) + g(q) (3.2)

where the vector u = (ui)i=1,...,ndof . For the linearized dynamic control model

q̈ = u (3.3)

the controller u can be selected. For a purpose of illustration, let us pick the PD controller of
the form

ui = ¨̂qi − 2δiėi − δ2i ei (3.4)

where ei = qi − q̂i is the tracking error, q̂i is a value of the i-th coordinate obtained form the
motion planner, and δi is the control gain.
Notice that within this control architecture, control dynamics (3.1) can be transformed to

another control form and another controller can be designed.

4. Example – three-link manipulator task – based motion planning

To demonstrate the process of generation of the reference dynamics, programmed motion plan-
ning, its analyses and the controller design, let us examine an example of a three link manipulator
whose physical model is presented in Fig. 2a. In Fig. 2b, Denavit-Hartenberg parameters to the
manipulator motion description are selected. Motion of the manipulator is described by the
vector of generalized coordinates as

q = (qj)j=1,...,3 = [ψ(1), ψ(2), z(3)]T (4.1)
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Fig. 2. (a) Model of a three-link manipulator. (b) The Denavit-Hartenberg notation

Fig. 3. Assumed programmed constraints

Programmed constraint equations are imposed due to desired motion of the manipulator
end-effector. It is illustrated in Fig. 3. The programmed constraints formulation is as follows

Φ1 ≡ 0 ⇒
( x(0)E
a
(0)
E,a

)2
+
( y(0)E
b
(0)
E,a

)2
− 1 = 0

Φ2 ≡ 0 ⇒ z
(0)
E − z

(0)
E,a = 0

(4.2)

where: x(0)E = J1T
(3)r
(3)
E , y

(0)
E = J2T

(3)r
(3)
E , z

(0)
E = J3T

(3)r
(3)
E , a

(0)
E,a, b

(0)
E,a are half-axes of the

programmed elliptical trajectory, z(0)E,a is the time assumed function.
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It can be seen that this specific kind of the end-effector motion may reflect work regime for
the manipulator. Other constraints can be formulated in the same way. The derivation procedure
requires differentiation of the programmed constraint equations. The derivatives take the form

Φ̇1 ≡ 0 ⇒ uq̇ = 0 Φ̇2 ≡ 0 ⇒ C3q̇ = 0
Φ̈1 ≡ 0 ⇒ uq̈+ v = 0 Φ̈2 ≡ 0 ⇒ C3q̈+ d3 = 0

(4.3)

where

C =



C1
C2
C3


 = (cij)i=1,2,3, j=1,2,3 = J[T

(3)
1 r
(3)
E , . . . ,T

(3)
3 r
(3)
E ]

d = (di)i=1,2,3 = J

(( ndof∑

i=1

ndof∑

j=1

T
(3)
ij q̇iq̇j

)
r
(3)
E

)

u = (uj)j=1,2,3 =
1

a
(0)
E,a)

2
J1T

(3)r
(3)
E C1 +

1

(b(0)E,a)
2
J2T

(3)r
(3)
E C2

v =
1

(a(0)E,a)
2
[(C1q̇)2 + J1T(3)r

(3)
E d1] +

1

(b(0)E,a)
2
[(C2q̇)2 + J2T(3)r

(3)
E d2]

Next, the procedure requires coordinate derivatives partition according to (2.5)1. We need to
select independent, i.e. control inputs, and dependent velocities as follows

iic ∈ {1} → qic = [(ψ(1))]T

idc ∈ {2, 3} → qdc = [(ψ(2), z(3)]T
(4.4)

Relation between dependent and independent velocities can be presented as

q̇dc = −K−1dc Kicq̇ic ⇒
∂q̇dc
∂q̇ic

= −K−1dc Kic (4.5)

where

Kdc =

[
u2 u3
c12 c13

]
Kic =

[
u1
c11

]

Notice, that this partition reflects partition of the coordinates into the control inputs and the
controlled ones. As a consequence, in the adopted manipulator model, it is assumed that the
column is operated by a flexible drive. The driving torque is determined by the following formula

t
(1)
dr = −s

(1)
dr (ψ

(1)
dr − ψ(1))− d

(1)
dr (ψ̇

(1)
dr − ψ̇(1)) (4.6)

where s(1)dr and d
(1)
dr are stiffness and damping coefficients of the flexible drive, respectively.

The displacement of the column ψ(1)dr is a function of time, and it is presented in Fig. 4.
It is assumed that friction is present in manipulator joints. The LuGre friction model

(Armstrong-Hélouvry, 1991) is taken into account to calculate the friction coefficients

µ(i) = σ(i)0 z
(i) + σ(i)1 ż

(i) + σ(i)2 q̇i (4.7)

where σ(i)0 , σ
(i)
1 , σ

(i)
2 are stiffness, damping and viscous damping coefficients of the bristle, re-

spectively, z(i) is the deflection of the bristle.
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Fig. 4. Assumed displacement of the manipulator column

The deflection velocity ż(i) is calculated according to the formula

ż(i) = q̇i −
σ
(i)
0 z
(i)q̇i sgn (q̇i)

µ
(i)
k + (µ

(i)
s − µ(i)k ) exp

(
−
(
q̇i
q̇S,i

)2) (4.8)

where µ(i)s , µ
(i)
k are static and kinetic friction coefficients, respectively, q̇S,i is the Stribeck velocity.

The reference dynamic model of the manipulator is derived based upon modified GPME
(2.4), i.e.




Mi

∣∣∣
i∈iic
+

∑
j∈idc

Mj
∂q̇j
∂q̇i

u
C3


 q̈

=




hi − gi +Qi +
∑

j∈iic∪idc

q̇j
∂Qj
∂q̇i
+

∑
k∈idc

(
hk +Qk − gk +

∑
j∈iic∪idc

q̇j
∂Qj
∂q̇k

)∂q̇k
∂q̇i

−v − 2α1uq̇− β21
[( x(0)E
a
(0)
E,a

)2
+
( y(0)E
b
(0)
E,a

)2
− 1

]

−d3 − 2α2C3q̇− β22(z
(0)
E − z

(0)
E,a)




(4.9)

where αi, βi
∣∣
i=1,2
are coefficients of the Baumgarte numerical solution stabilization method.

5. Numerical studies – simulation results

Manipulator reference dynamic model (4.9) as well as control dynamics (3.2) and (3.3) are
analysed in this Section. Specifically, we demonstrate the manipulator model behaviour when
the programmed constraints are imposed. Parameters of the manipulator model are presented
in Table 1.
Additionally, in the numerical calculations, the following parameters are assumed:

• Flexible drive data: s(1)dr = 104 Nm/rad, d
(1)
dr = 70Nms/rad, ψ

(1)
S = 3600

◦, t(1)S = 5ms;
• PD controller data: δ1 = 40, δ2 = 3, δ3 = 60;
• Runge-Kutta IV-order scheme: h = 10−3 s;
• Baumgarte’s coefficients stabilizing numerical solutions: α = 100, β = 50.

Reference dynamics for four initial positions of link 3 with respect to horizontal x asis are
analyzed, i.e. 45◦, 60◦, 70◦ and 80◦ are calculated using the GMPE algorithm. The reference
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Table 1. Initial manipulator configuration and friction parameters

Parameter Symbol Link 1 Link 2 Link 3

Initial configuration qi
∣∣
t=0

0 270◦ − α 0.5m

Static friction coefficient µ
(i)
s 0.1 0.1 0.1

Kinetic friction coefficient µ
(i)
k 0.2 0.2 0.2

Stiffness coefficient of bristle σ
(i)
0 5.0Nm/rad 5.0Nm/rad 1.0 N/m

Damping coefficient of bristle σ
(i)
1 0.025 Nm/rad 0.025 Nm/rad 0.02Ns/m

Viscous damping coefficient σ
(i)
2 0 0 0

Stribeck velocity q̇S,i 0.175 rad/s 0.175 rad/s 0.001m/s

time courses thus obtained are applied to the PD controller for the trajectory tracking problem.
In numerical simulations, the influence of disturbances of the manipulator initial configuration
on the system response and time courses of controls are analyzed. Figure 5a presents the tra-
jectory of the end-effector E in the x(0)y(0) plane of the reference frame {0} for different initial
configurations. The time course of z(0)E coordinate is shown in Fig. 5b.
It can be seen that the change of the initial configuration of the manipulator has influence

on the position of the effector in the initial moment and on the time after which the given
programmed constraints will be achieved. The proposed control algorithm is also effective in the
case of disturbances of the initial conditions. In Fig. 6, time courses of the joint coordinates are
presented. It can be seen that the motion planner, i.e. the reference motion analysis, enables
verification of the programmed motion planned for variety of constraint options. Also, changes
in the initial configuration do not have a significant effect on motion of links 1 and 3, while the
effect is significantly noticeable in the case of motion of rotary arm 2.
Absolute errors between the reference time courses of displacements and those obtained for

the disturbed system, shown in Fig. 7, are determined as

∆
(α)
j (ti)

∣∣∣
α∈60◦,70◦,80◦

= |q(α)j (ti)− q
(ref )
j (ti)| (5.1)

where q(α)j are values of the generalized coordinates obtained for angle α, q(ref )j are reference
values of generalized coordinates obtained for angle α = 45◦.
The results demonstrate that the greatest absolute errors occur in the case of motion of link 2.

In the case of other links, they are negligible. It can also be noticed that after 2.5 s, motion of
the system is consistent with the assumed constraints. In Fig. 8, time courses of torques and
forces obtained from the PD controller are presented.
It can be seen that the torque acting on link 2 has the greatest values up to 1 s, which is

related to compensation of disturbances caused by the initial conditions. The time courses of
torques and forces have relatively high values, which is caused by the implementation of selected
programmed constraints excusively for illustraiting the purposes.

6. Conclusions

Development of a complementary motion planning strategy for task-based motions and a control
strategy architecture for tracking these motions based upon a computational procedure for gen-
eration of dynamical models with position and first order programmed constraints are presented
in the paper. The procedure which was modified comparing to its generic version developed with
the aid of the analytical dynamics approach, offers efficient generation of constrained dynamical
models which are equivalent to reference dynamic describing motion under the constraints put
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Fig. 5. (a) Trajectory of the end-effector E in the x(0)y(0) plane; (b) time course of z(0)E coordinate

Fig. 6. Time course of joint coordinates

upon the system model. It is not based upon the Newton-Euler or Lagrange approaches but upon
the GPME method. It provides reference dynamical models, which may serve as motion plan-
ners of constrained motions and enable insight into system performance under the constraints.
In the presented procedure, the constraints may be material or nonmaterial, e.g. task-based,
and the final equations of motion are derived in the reduced state form, i.e. constraint reaction
forces are eliminated at the equations derivation process. This is the essential advantage of our
approach comparing to existing dynamical modeling approaches. The effectiveness of this pro-
cedure was demonstrated by simulation studies of constrained motion performance of the three
link manipulator model.
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Fig. 7. Time courses of absolute errors for joint coordinates

Fig. 8. Time courses of driving torques and the force
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We describe a computational platform to predict atherosclerotic plaque onset and growth
in carotids. It integrates in-vivo data, Computational Fluid Dynamics (CFD) simulations
and a model for plaque growth linearly correlating the plaque progression with low values
of time-averaged Wall Shear Stresses (WSS). We show that steady CFD simulations give
the same averaged-WSS values as unsteady simulations. Therefore, the model for plaque
growth can be coupled with steady simulations, reducing the computational costs. Finally,
by comparing the numerical predictions with the in-vivo data, we show that a modification
must be introduced in the plaque growth model to obtain acceptable results.

Keywords: hemodynamic simulations, atherosclerotic plaque, carotid arteries

1. Introduction

Cardiovascular Diseases (CVD) have emerged as a significant concern for global public health
in recent decades due to their high risk, elevated mortality rates, and challenges associated
with the diagnosis (Townsend et al., 2016). Atherosclerotic plaque in the carotid arteries is a
specific CVD condition that causes the narrowing of the vessel lumen, due to the deposition
of substances on the arterial wall. This process obstructs the delivery of blood to downstream
organs (Ross, 1999). Consequently, it is imperative to develop strategies aimed at preventing the
onset of plaque by identifying key factors and providing healthcare professionals with reliable
information (Rafieian-Kopaei et al., 2014). Computational Fluid Dynamics (CFD) simulations,
conducted on both idealized and patient-specific geometries, have become a widely utilized tool
for analyzing blood flow dynamics and hemodynamic parameters that influence plaque growth.
Some of these parameters, such as Wall Shear Stresses (WSS), are challenging to measure di-
rectly in-vivo (Lopes et al., 2020). CFD simulations, however, need proper geometry definition
and boundary conditions. We consider herein the patient-specific geometry and cardiac-cycle
flow-rate waveform from in-vivo data. Moreover, realistic simulations are three-dimensional in
complex geometries and unsteady following the cardiac cycle; therefore, the related computa-
tional costs and times are large. Since the growth of atherosclerotic plaques occurs over times
much larger than the cardiac cycle period, a possible simplification of the steady flow assumption
can be adopted for blood circulation, and the results used to predict plaque growth (Lopes et
al., 2020; Marshall et al., 2004). This may allow for a more computationally efficient analysis,
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allowing one to model the progression of plaque development over an extended period with-
out prohibitive computational costs (Tang et al., 2008; Gessaghi et al., 2011). Finally, CFD
simulations must be coupled with a model predicting the plaque growth.
In this work, we integrate the WSS model by Tang et al. (2008) into CFD simulations of

patient-specific geometries. To the best of our knowledge, this is the first time this model has
been utilized to predict atherosclerotic plaque growth in patient-specific carotid arteries. The
plaque growth model establishes a linear correlation between the thickening of the innermost
intimal layer of the arterial vessel and the time-averaged WSS exerted on the wall. The thickening
of the carotid intimal layer is implemented through morphing (Biancolini et al., 2020; Capellini
et al., 2021). We first investigate whether accurate values of WSS can be provided by steady
simulations, reducing in this way the computational costs. We evaluate then the capability of this
approach in predicting the plaque onset and growth in the considered patient-specific carotid
geometry, and we propose a modified version of the model for plaque growth, aimed at improving
the agreement with clinical data.

2. Materials and methods

The clinical dataset includes in-vivo-measured geometries and flow rates of the diseased right
and left carotid arteries from a 78-year-old male patient (Fig. 1a). The diseased geometry is ob-
tained through segmentation of Computed Tomography (CT) scans. The corresponding healthy
geometries are derived from the diseased ones by applying an idealized endarterectomy (Fig. 1b).
The volumetric flow rates at the inlet Common Carotid Artery (CCA) and the outlets, Inter-
nal Carotid Artery (ICA), and External Carotid Artery (ECA) are obtained by interpolating
4D-flow Magnetic Resonance Imaging (4D-MRI) data (Fig. 2).

Fig. 1. Patient-specific (a) diseased and (b) healthy right and left carotids geometrical models

CFD simulations are carried out for a laminar and incompressible blood flow (ρ =
1050 kg/m3). Blood is considered as a non-Newtonian fluid to capture the shear-thinning effect
near the arterial wall that influences the WSS field in medium-small vessels like carotids; the
Carreau-Yasuda model is adopted (Weddell et al., 2015). We carry out CFD simulations using a
finite-volume commercial code. For simulations involving patient-specific flow-rate waveforms, we
conducted unsteady simulations. Conversely, when employing a time-constant inflow condition,
we conducted steady-state simulations since the flow remains constant over time. In steady-state
simulations, the Navier-Stokes equations are solved in their steady-state formulation, neglecting
time derivatives. Conversely, unsteady simulations solve the Navier-Stokes equations as they are,
considering time-dependent variables. The fluid domain is discretized by using a polyhedric grid
defined after the grid independence study, and the 3D Navier-Stokes equations are discretized
through finite volumes. An implicit unsteady time scheme is applied for unsteady simulations.
In the steady simulations, we impose a constant fully-developed parabolic velocity profile at the
inlet based on the cycle-averaged mean value of the flow rate, as shown in Fig. 2. Furthermore,
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Fig. 2. Patient-specific flow rates: (a) right carotid at CCA and (b) left carotid at CCA

a flow rate split ratio is imposed at the two outlets, ICA : ECA = 0.66 : 0.34 for the right and
ICA : ECA = 0.61 : 0.39 for the left carotid (Marshall et al., 2004) with a reference pressure
equal to 12438.98 Pa.
CFD simulations are coupled with the WSS-based model of plaque growth from Tang et al.

(2008) which computes the plaque growth rate ė as

ė = k1 − k2τ (2.1)

where k1 = 1.85 · 10−2 cm/(3months) and k2 = 1.73 · 10−3 cm/(3months·Pa). Moreover, we have
developed a modified version of the model, the WSSth model, that incorporates a threshold
value τth, which confines the plaque growth to regions with low values of τ , thereby preventing
plaque onset in the straight portions of vessels, which is unrealistic. The threshold value is set
to τth = 0.3 Pa as suggested in Gessaghi et al. (2011). Thus, the updated version of the model
is as follows

ė =

{
k1 − k2τ for τ < τth
0 for τ > τth

(2.2)

3. Results and discussion

In Fig. 3, we compare the results of steady and unsteady simulations. Specifically, Fig. 3a shows
the time-averaged WSS fields τ obtained from patient-specific unsteady simulations. In Fig. 3b,
the WSS field τ for the steady simulation is depicted, and in Fig. 3c, the difference τ − τ is
illustrated. The differences are negligible. Therefore, we can conclude that steady simulations
with the time-averaged patient-specific inflow flow rate give WSS that are identical to time-
averaged WSS obtained in realistic unsteady simulations. Thus, in the following, the plaque
growth will be evaluated on τ with reduced computational costs.
The CFD-predicted values for the plaque onset and early-stage growth are shown in Figs. 4a,c

for the WSS-based model from Tang et al. (2008) and in Figs. 4b,d for the modified version.
The results report the displacement ∆e of the intimal layer thickness over a year.
The original version of the WSS-model from Tang et al. (2008) lacks precision in predict-

ing the onset location, as it suggests the plaque growth throughout, including in the straight
branches of the carotid with high values of τ . Conversely, the modified version of the WSS-model,
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Fig. 3. WSS fields for right and left carotids: (a) τ , (b) τ , and (c) τ − τ

Fig. 4. Displacement fields of the plaque for right and left carotids: (a) WSS model, (b) WSSth model,
(c) WSS model, and (d) WSSth model

incorporating the threshold, better delineates and identifies the onset region. The plaques in-
deed tend to develop near the bifurcation with low values of τ , where the plaques have actually
formed in the patient (refer to Fig. 1a). Regarding the plaque growth, both versions of the
WSS-model provide overestimated predictions for the plaque growth rate ė, and consequently,
for ∆e after one year (in comparison, for instance, with the data from the review paper by Lopes
et al. (2020)). Therefore, while the modified WSS-model effectively identifies the plaque onset,
both are inadequate for precise quantitative predictions of the plaque growth without additional
calibration of the model constants. Therefore, future work could be devoted to (i) calibrating the
constants of the WSS-based model to obtain a more accurate growth rate and (ii) considering
more complete plaque growth models, such as the one proposed in Gessaghi et al. (2011).
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According to the tail grouting of a double shield TBM tunnel in a soft stratum, the spherical
hole model with small and large diffusion radius were established respectively considering
the slurry diffusion and slurry displacement effect in the grouting compaction stage. An-
alytical solutions of the spherical hole expansion stress and displacement field under the
hole expansion-diffusion coupling effect are deduced. The interaction among plastic zone
radius, reaming radius, initial radius of the spherical hole, and the seepage radius were
analyzed. The results show that the larger the seepage pressure of grouting, the smaller
the plastic radius. The larger the reaming radius is, the larger the plastic zone radius is.
When the reaming radius reaches a certain value, the plastic radius tends to be stable,
and the smaller the grouting seepage pressure, the earlier it tends to be stable. The above
conclusions have important guiding significance for optimizing grouting parameters in weak
strata.

Keywords: weak stratum, shielding, grouting, reaming diffusion, coupling mechanical
effect

1. Introduction

The shield construction is widely used in urban rail transit engineering due to its small dis-
turbance to the environment and high speed. However, many urban subway lines pass through
prosperous areas, the underground pipelines are crisscrossed, the ground buildings are complex
and changeable, and the construction environment is extremely harsh. The shield construction
can easily cause uneven subsidence of the stratum, resulting in surface subsidence and building
cracking (Epel et al., 2021; Khetwal et al., 2020; Han et al., 2022). As the main method of
shield backfilling, the grouting can effectively control deformation of the formation and prevent
uneven stress on the segment. However, if the grouting effect is not good, the segment will float,
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be damaged, and the surface will rise or sink. Therefore, revealing the mechanical mechanism of
shield grouting in weak strata is of great significance to reduce the shield disturbance in weak
strata and reduce the surface subsidence and tunnel deformation.

The shield backfill grouting can be divided into four stages: grouting filling, infiltration,
compaction and splitting. Regarding the diffusion effect of grouting, Bezuijen and Talmon (2004)
and Bezuijen et al. (2004) conducted on-site monitoring research and analyzed in detail the slurry
diffusion process and the changes in slurry pressure at different stages. Based on the Navier-
-Stokes equation, Mu et al. (2019) established a water glass slurry diffusion model considering the
coupling between the slurry and fracture. Boschi et al. (2020) studied the interaction between soil
particles and grout during grouting from the perspective of meso-mechanics. Zhou et al. (2021)
established diffusion models for a single-hole and porous grouting based on fractal geometry
and seepage effects. Liu et al. (2021) revealed the fluid motion law of a synchronous grouting
along the unconventional path in the shield tail gap, and obtained the axial and longitudinal
pressure distribution patterns. Li et al. (2020) proposed the SDS numerical simulation method
considering temporal and spatial evolution factors of slurry viscosity, and studied the diffusion
law of water glass slurry in cracks under different dynamic water conditions. Xu et al. (2021)
developed a simulator that could simulate the whole process of grouting reinforcement based on
the numerical manifold method.

In the late stage of grouting diffusion, the slurry around the hole has initially coagulated.
When the grouting pressure continues to increase, the grouting enters the grouting compaction
stage. Squeezing and compacting causes the phenomenon of hole expansion at the orifice. In view
of the grouting reaming effect, Li et al. (2019) established an improved compaction grouting
model considering three-dimensional shear failure to predict the ultimate grouting pressure of
compaction grouting. Shrivastava et al. (2017) considered grouting compaction as an expansion
process of a cylindrical cavity in a finite medium, and provided its analytical solution. Pachen et
al. (2005) studied the mechanism and effectiveness of medium pressure grouting in loose filled
sand through model experiments. El-Kelesh et al. (2012) explored the effects of soil parameters,
soil compression rate, replacement rate, and injection sequence on the grouting effect of grouting
compaction through on-site experiments. Wang et al. (2015) conducted numerical simulations
of radial expansion and uplift caused by grouting compaction in noncohesive soil. Wang and
Zheng (2022) used the pore fluid diffusion/stress coupling analysis method to simulate the
grouting compaction process of two on-site tests, and conducted parameter studies on the uplift
and settlement caused by grouting and tunnel excavation. Wu et al. (2022) considered the
compaction effect of grouting under the condition of soil unloading, and established a compaction
grouting model considering the effect of soil unloading. Nishimura et al. (2011) demonstrated
the importance of stress changes in increasing liquefaction resistance by simulating the grouting
compaction process in a geocentrifuge.

In the grouting diffusion stage, the pore water in the formation has been displaced within a
certain range as the slurry seeps and diffuses into the formation. The formation already contains
slurry at this time, and the influence of slurry diffusion on expansion should not be ignored when
analyzing the grouting compaction. Most of the scholars’ research on the slurry infiltration dif-
fusion and grouting compaction is idealized to separate the grouting stage, but in fact, seepage,
compaction and splitting often occur simultaneously in the grouting process, and various stages
of grouting are mutually coupled. The existing research rarely considers the interaction be-
tween the grouting compaction and grouting diffusion. Therefore, in this paper, considering the
slurry diffusion-compaction coupling effect, analytical formulas of stress field and displacement
fields in the elastic-plastic zone of soil around the hole are derived, and the effects of ground-
water seepage and slurry diffusion radius on the reaming pressure and plastic zone radius are
analyzed.



Coupling effect of hole enlargement and diffusion in the grouting process... 639

2. Grouting diffusion-compact spherical hole model

The mechanical effect of grouting is manifested in two aspects (Vesić et al., 2021): one is the
reaming effect of the grouting hole under the grouting pressure Pk; the other is the diffusion
effect of the grout in the formation under the seepage pressure Pj . Assuming that Pw is the
pore water pressure, the final reaming radius is r0. The slurry diffusion radius is rc, and slurry
seepage field is shown in Fig. 1.

Fig. 1. Seepage field of slurry diffusion

When Pk is small, the soil around the hole has only elastic deformation. When Pk reaches a
certain value, the soil will produce plastic deformation, forming a grouting seepage plastic zone.
If Pk continues to increase, the plastic zone radius will exceed the slurry diffusion radius to form
a plastic zone without grouting seepage. To this end, the analytical model shown in Fig. 2 has
been established. It has been assumed that the in-situ stress is P0, and the plastic zone radius
is rp. When rc < rp, the plastic zone of the surrounding rock is divided into two regions, namely
the grouting seepage plastic zone and the non-grouting seepage plastic zone, which is defined as
a small diffusion radius model. When rc > rp, the plastic zone is the grouting seepage plastic
zone, which can be considered as rc = rp and defined as the large diffusion radius model.

Fig. 2. Coupling model of grouting considering the reaming-diffusion effect: (a) small diffusion radius
model, (b) large diffusion radius model

For convenience in analysis, the following assumptions are made:
(1) The stratum is regarded as isotropic and compressible, the compressibility of the slurry is
ignored, and the influence of self-weight is not considered;
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(2) The slurry diffusion mode is hemispherical diffusion, and the diffusion process follows
Darcy’s law;

(3) The change of formation permeability during the diffusion process and the influence of
slurry diffusion on formation properties are ignored.

3. Analytical solutions of the coupled effect of expansion and diffusion during
grouting

3.1. Basic formula

Stress and strain take pressure as positive and tension as negative, considering the influence
of grouting seepage and pore water pressure. The spherically symmetric equilibrium differential
equation can be uniformly expressed as

dσr
dr
+ 2

σr − σθ
r
+
dPf
dr
= 0 (3.1)

where σr and σθ are stresses in the radial and circumferential directions, and Pf is fluid pressure.
The geometric equation is

εr = −
dur
dr

εθ = −
ur
r

(3.2)

where εr and θ are strains in the radial and circumferential directions, ur is radial displacement.
Using the above equation, the spherically symmetric strain coordination equation can be

obtained
dεθ
dr
+
εθ − εr
r
= 0 (3.3)

Generalized Hooke’s law of spherically symmetric problems is used in the elastic region, i.e.

εr = −
σr − 2νσθ

E
εθ = −

(1− ν)σθ − νσr
E

(3.4)

where E is elastic Young’s modulus, and ν is Poisson’s ratio.
In the spherically symmetric model, the hoop stress is equal everywhere, and the stress state

is the same as that of the pseudo-triaxial test of the rock. Assuming that the formation yielding
behavior satisfies the Mohr-Coulomb criterion, it can be expressed as

σθ =Mσr + σ0 (3.5)

where M = (1 + sin θ)/(1 − sin θ), σ0 = 2c cos θ/(1 − sin θ), θ is the internal friction angle, c is
cohesion.
The dynamic equilibrium is satisfied at the grouting seepage boundary, that is, differential

pressure ∆P = Pgm
∣∣
r=rc
− Pw = 0. The seepage boundary condition is

Pf
∣∣∣
r=r0
= Pj Pf

∣∣∣
r=rc
= Pw Pf

∣∣∣
r=∞
= 0 (3.6)

The stable seepage equation (Vesić, 1972) is

∂2

Pf
∂r2 +

2
r

∂Pf
∂r
= 0 (3.7)

Solving the above equation and using boundary condition Eq. (3.6), we can get

Pf =





r0rc(Pj − Pw)
(rc − r0)r

+
rcPw − r0Pj
rc − r0

for r0 < r < rc

rcPw
r

for r > rc

(3.8)
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3.2. Solution of the spherical hole model with small diffusion radius for grouting

3.2.1. Elastic zone

Let σr = Φ/r, by substituting it into Eq. (3.1), we can obtain σθ = [dΦ/dr + (Φ− k0)/r]/2,
where k is an intermediate constant that can be eliminated later. Substituting Eq. (3.4) into Eq.
(3.3) and substituting σr = Φ/r, σ + θ = [dΦ/dr + (Φ − k0)/r]/2 into the resulting expression,
the control equation of stress definite solution can be obtained as

r2
d2Φ
dr2
+ 2r
dΦ
dr
− 2Φ = 0 (3.9)

Using Eq. (3.9), the general solution of elastic stress can be obtained as

σr = k1
1
r3
+ k2 σθ = −

1
2
k1
r3
+ k2 (3.10)

where k1 and k2 can be determined by the stress boundary conditions.
Assume that the radial stress of the elastic-plastic boundary is Pyg, by using σr

∣∣
r=rp
= Pyg,

σr
∣∣
r→∞
= P0, the stress solutions in the elastic zone are available

σrse = (Pyg − P0)
(rp
r

)3
+ P0 σθse = −

1
2
(Pyg − P0)

(rp
r

)3
+ P0 (3.11)

By substituting Eqs. (3.11) and r = rp into Eq. (3.5), the radial stress of the elastic-plastic
boundary can be obtained as

Pyg =
3MP0 + 2σ0
2 +M

(3.12)

By substituting Eqs. (3.11) into Eq. (3.4) and subtracting the strain generated by the in-situ
stress ε0 = P0(1 − 2ν)/E, and then substituting the resulting expression into Eq. (3.2), the
displacement solution of elastic zone can be obtained

urse = −(εθ − ε0)r =
r

4G
(Pyg − P0)

(rp
r

)3
(3.13)

3.2.2. Plastic zone

(1) Non-grouting seepage plastic zone

By substituting Eq. (3.5) and the second expression of Eq. (3.8) into Eq. (3.1), and using
the boundary condition σr

∣∣
r=rp
= Pyg, the stresses in the non-grouting seepage plastic zone can

be obtained as

σrsp =
(
Pyg −

rcPw
rp(1− 2M)

+
σ0

M − 1
)( r
rp

)2(M−1)
+

rcPw
(1− 2M)r −

σ0
M − 1

σθsp =M
(
Pyg −

rcPw
rp(1− 2M)

+
σ0

M − 1
)( r
rp

)2(M−1)
+

MrcPw
(1− 2M)r −

σ0
M − 1

(3.14)

At the grouting seepage boundary, the radial stress is

σrsp
∣∣∣
r=rc
=
(
Pyg −

rcPw
rp(1− 2M)

+
σ0

M − 1
)( rc
rp

)2(M−1)
+

Pw
1− 2M −

σ0
M − 1 (3.15)

Using the associated flow criteria

dεpij = dλ
∂f

∂σij
(3.16)
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where εpij is the plastic strain tensor, substituting Eq. (3.5) into Eqs. (3.14), we can get

dεpr = dλ
∂f

∂σr
= dλ dεpθ = dλ

∂f

∂σθ
= −Mdλ (3.17)

It can be obtained from the above equation

dεpr
dεpθ
= − 1

M
(3.18)

The strain relationship in the plastic zone is

εr = εer + ε
p
r εθ = ε

e
θ + ε

p
θ (3.19)

Substituting Eqs. (3.18) and (3.18) into Eq. (3.3), one gets

dεpθ
dr
+
(
1 +
1
M

)εpθ
r
+
εeθ − εer
r
+
dεeθ
dr
= 0 (3.20)

Substituting Eqs. (3.14) into Eq. (3.4), the elastic strain in the plastic zone is

εersp =
2νM − 1

E

((
Pyg −

rcPw
rp(1− 2M)

+
σ0

M − 1
)( r
rp

)2(M−1)
+

rcPw
(1− 2M)r

)

+
(1− 2ν)σ0
E(M − 1)

εeθsp =
ν − (1− ν)M

E

((
Pyg −

rcPw
rp(1− 2M)

+
σ0

M − 1
)( r
rp

)2(M−1)
+

rcPw
(1− 2M)r

)

+
(1− 2ν)σ0
E(M − 1)

(3.21)

Substituting Eqs. (3.21) into Eq. (3.20) and using the boundary condition εpθsp
∣∣
r=rp
= 0, the

circumferential plastic strain can be written as

εpθsp = −
M(1 + 2M)(1 −M)(1 − ν)

2M2 −M + 1
(
Pyg −

rcPw
rp(1− 2M)

+
σ0

M − 1
)( r
rp

)2(M−1)

− M(1− 2νM)rcPw
(1− 2M)r +

M(1− 2νM)rcPw
(1− 2M)rp

(rp
r

)1+ 1
M

+
M(1 + 2M)(1 −M)(1 − ν)

2M2 −M + 1
(
Pyg −

rcPw
rp(1− 2M)

+
σ0

M − 1
)(rp

r

)1+ 1
M

(3.22)

Using Eq. (3.22), the plastic strain at the junction of the two plastic regions can be obtained

εpθsp

∣∣∣
r=rc
= −M(1 + 2M)(1 −M)(1 − ν)

2M2 −M + 1
(
Pyg −

rcPw
rp(1− 2M)

+
σ0

M − 1
)( rc
rp

)2(M−1)

− M(1− 2νM)Pw
1− 2M +

M(1− 2νM)Pw
1− 2M

(rp
rc

) 1
M

+
M(1 + 2M)(1 −M)(1 − ν)

2M2 −M + 1
(
Pyg −

rcPw
rp(1− 2M)

+
σ0

M − 1
)(rp
rc

)1+ 1
M

(3.23)

Similar to Eq. (3.13), combining Eqs. (3.2), (3.19), (3.21) and (3.22), the displacement solution
of non-grouting seepage plastic zone can be obtained

ursp = −(εθ − ε0)r (3.24)
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(2) Grouting seepage plastic zone

By substituting Eq. (3.5) and the first expression of Eq. (3.8) into Eq. (3.1) and using
boundary condition Eq. (3.15), the stresses in the grouting seepage plastic zone can be obtained
as

σrsg =
(
Pyg −

rcPw
rp(1− 2M)

+
σ0

M − 1
)( r
rp

)2(M−1)

+
( Pw
1− 2M −

r0(Pj − Pw)
(1− 2M)(rc − r0)

)( r
rc

)2(M−1)
+

r0rc(Pj − Pw)
(rc − r0)(1− 2M)r

− σ0
M − 1

σθsg =M
(
Pyg −

rcPw
rp(1− 2M)

+
σ0

M − 1
)( r
rp

)2(M−1)

+M
( Pw
1− 2M −

r0(Pj − Pw)
(1− 2M)(rc − r0)

)( r
rc

)2(M−1)
+

Mr0rc(Pj − Pw)
(rc − r0)(1− 2M)r

− σ0
M − 1

(3.25)

Substituting Eqs. (3.25) into Eq. (2.4), the elastic strain in the plastic zone is obtained as

εersg =
2νM − 1

E

((
Pyg −

rcPw
rp(1− 2M)

+
σ0

M − 1
)( r
rp

)2(M−1)
+

r0rc(Pj − Pw)
(rc − r0)(1− 2M)r

+
( Pw
1− 2M −

r0(Pj − Pw)
(1− 2M)(rc − r0)

)( r
rc

)2(M−1)
)
+
(1− 2ν)σ0
E(M − 1)

εeθsg =
ν − (1− ν)M

E

((
Pyg −

rcPw
rp(1− 2M)

+
σ0

M − 1
)( r
rp

)2(M−1)
+

r0rc(Pj − Pw)
(rc − r0)(1− 2M)r

+
( Pw
1− 2M −

r0(Pj − Pw)
(1− 2M)(rc − r0)

)( r
rc

)2(M−1)
)
+
(1− 2ν)σ0
E(M − 1)

(3.26)

Substituting Eq. (3.26) into Eq. (3.20) and using the boundary condition εpθsg
∣∣
r=rc
= εpθsp

∣∣
r=rc
,

i.e. Eq. (3.23), the circumferential plastic strain can be written as

εpθsg =
M(1 + 2M)(1−M)(1 − ν)

2M2 −M + 1

[(
Pyg −

rcPw
rp(1− 2M)

+
σ0

M − 1
)((rp

r

)1+ 1
M −

( r
rp

)2(M−1)
)

+
( Pw
1− 2M −

r0(Pj − Pw)
(1− 2M)(rc − r0)

)((rc
r

)1+ 1
M −

( r
rc

)2(M−1)
)]

− M(1− 2νM)r0rc(Pj − Pw)
(rc − r0)(1− 2M)r

+
M(1− 2νM)
1− 2M

(
Pw
(rp
rc

) 1
M − Pw +

r0(Pj − Pw)
(rc − r0)

)(rc
r

)1+ 1
M

(3.27)

Similar to Eq. (3.13), using Eqs. (3.2), (3.19), (3.26) and (3.27), the relative displacement can
be obtained as

ursg = −(εθ − ε0)r (3.28)
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When the injected stratum is sandy soil or a soft stratum with similar physical properties
to sandy soil, the diffusion radius considering the displacement effect can be calculated by the
following equation (Ye et al., 2022)

rc = r0 + r′c = 3
tK(Pk − Pw)

φ[(µg − µw)r′c + µwlw]
(3.29)

where r′c is diffusion radius under displacement, µg, µw are slurry viscosity and groundwater
viscosity, K is permeability, φ is soil porosity, Pw is groundwater pressure at lw, t is grouting
time, r0 is reaming radius.

3.3. Grouting compaction-solution of the spherical hole model with a large diffusion radius

At this time, there is only a grouting seepage plastic zone in the plastic zone of the surround-
ing rock. It can be considered that rc = rp, then the stress boundary condition is

σr
∣∣∣
r=r0
= Pk (3.30)

Similar to the above derivation, the stress solution in the plastic zone can be obtained

σrg =
(
Pk −

r0rc(Pj − Pw)
r0(rc − r0)(1− 2M)

+
σ0

M − 1
)( r
r0

)2(M−1)
+

r0rc(Pj − Pw)
(rc − r0)(1− 2M)r

− σ0
M − 1

σθlg =M
(
Pk −

r0rc(Pj − Pw)
r0(rc − r0)(1− 2M)

+
σ0

M − 1
)( r
r0

)2(M−1)
+

Mr0rc(Pj − Pwr)
(rc − r0)(1− 2M)r

− σ0
M − 1
(3.31)

And the plastic zone strain solution can be expressed as

εerlg =
2νM − 1

E

((
Pk −

rc(Pj − Pw)
(rc − r0)(1− 2M)

+
σ0

M − 1
)( r
r0

)2(M−1)

+
r0rc(Pj − Pw)

(rc − r0)(1− 2M)r

)
+
(1− 2ν)σ0
E(M − 1)

εeθlg =
ν − (1− ν)M

E

((
Pk −

rc(Pj − Pw)
(rc − r0)(1− 2M)

+
σ0

M − 1
)( r
r0

)2(M−1)

+
r0rc(Pj − Pw)

(rc − r0)(1− 2M)r

)
+
(1− 2ν)σ0
E(M − 1)

εpθlg = −
M(1 + 2M)(1 −M)(1− ν)

2M2 −M + 1
(
Pk −

rc(Pj − Pw)
(rc − r0)(1 − 2M)

+
σ0

M − 1
)( r
r0

)2(M−1)

− M(1− 2νM)r0rc(Pj − Pw)
(rc − r0)(1− 2M)r

+
M(1− 2νM)r0(Pj − Pw)
(rc − r0)(1− 2M)

(rc
r

)1+ 1
M

+
M(1 + 2M)(1 −M)(1 − ν)

2M2 −M + 1
(
Pk −
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(3.32)

Similar to Eq. (3.13), using Eqs. (3.2), (3.19) and (3.32), the displacement solution can be
obtained

urlg = −(εθ − ε0)r (3.33)
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4. Model discussion

4.1. Large diffusion radius model

Taking the physical and mechanical parameters of the formation as shown in Table 1, the
relationship between the reaming radius and the plastic zone radius is analyzed.

Table 1. Physical and mechanical parameters of strata

Elastic Young’s Diffusion Poro- Poisson’s Initial Internal Cohe- Initial
modulus radius sity ratio geostress friction sion grouting
E [MPa] rc [m] K µ P0 [kPa] angle θ [◦] c [kPa] radius rk [m]

26 1.33 0.3 0.3 100 25 20 0.1

Figure 3 shows the relationship between the reaming radius and the plastic zone radius
obtained by using the model in this paper when Pj is 0 kPa, 30 kPa and 50 kPa. The calculation
results of the model have a similar change trend to the results of Mei et al. (2017), but the
upward trend of the results in this paper is relatively slow and the value is small. This is because
the results of Mei et al. (2017) only consider the effect of the lower grout seepage on the plastic
zone of the surrounding rock. In fact, in the grouting diffusion stage, the grout has penetrated
and diffused into the formation, which has a strengthening effect on the formation, which reduces
the plastic zone of the surrounding rock. The larger Pj is, the smaller the plastic radius is, and
the slurry has a certain improvement on the surrounding rock during the diffusion stage.

Fig. 3. Comparison of the theoretical calculation of seepage diffusion in grouting with Mei et al. (2017)

Figure 4a shows the relationship between the reaming pressure and the reaming radius. It
can be seen that the reaming pressure increases rapidly in the range of the reaming radius of
0m-1m, and the slurry diffusion has a certain influence on the reaming pressure. When Pj is
0 kPa, 30 kPa and 50 kPa, respectively, the reaming pressure is stable at 4.38MPa, 4.22MPa and
4.1MPa. Figure 4b shows the effect of the reaming radius r0 on rp/r0. The plastic zone radius
increases with an increase in reaming radius. It increases rapidly at the beginning of reaming,
then the growth trend is slow, and finally reaches a steady state. rp/r0 finally stabilized between
15 and 17, while increasing Pj would make the ratio decrease.
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Fig. 4. (a) Expansion pressure curve and (b) influence of reaming on the ratio of plastic zone radius

Fig. 5. Stress distribution curve along the radial direction without considering the displacement effect:
(a) circumferential stress, (b) radial stress

Figure 5 shows the stress evolution law under different grouting infiltration pressures in the
hole when the reaming radius r0 = 0.12m. The larger the Pj , the smaller the plastic zone.
When the Pj increases from 0 to 75 kPa, the radius of the plastic zone decreases from 0.48m to
0.143m. This is because after the slurry penetrates and diffuses, it has a certain reinforcement
effect on the soil, so that the plastic zone of the surrounding rock is reduced to a certain extent
in the compaction stage. Compared with the literature (Mei et al., 2017), it is found that the
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two change trends are consistent, but after considering the grouting diffusion stage, the stress in
the plastic zone of the surrounding rock decreases compared with the stage without considering
the slurry diffusion, and the stress reaches the minimum value at the radius of the plastic zone.
Therefore, the slurry diffusion has some influence on the grouting compaction stage.

4.2. Small diffusion radius model

If the displacement effect is not considered, the diffusion radius is only related to the perme-
ability. If the displacement effect is considered, there are many factors affecting the permeability
radius, and the grouting pressure will also affect the permeability radius. In the following analy-
sis, the displacement effect is considered, and the calculation parameters at lw = 5m are selected,
as shown in Table 2, and the formation-related parameters are shown in Table 1. Using the for-
mula in Section 3, it can be obtained that when Pj = 0kPa, rc = 5.45m; when Pj = 30 kPa,
rc = 5.66m; when Pj = 50 kPa, rc = 5.66m.

Table 2. Grouting calculation parameters considering displacement effect

Water Poro Water Grouting Slurry Permeability Initial Grouting
pressure sity viscosity time viscosity coefficient grouting time
Pw [MPa] φ µw [Pa·s] t [s] µg [Pa·s] m [cm/s] radius rk [m] [min]

0.05 0.3 0.00101 3000 0.0047 0.03 0.1 50

Figure 6 shows the effect of the reaming radius on plastic radius under the displacement
effect. The grouting plastic zone is still nonlinear, and the non-grouting plastic zone is greatly
affected by the grouting pressure. The greater the grouting pressure, the greater the penetration
radius. With an increase in the reaming radius, the ratio of the plastic zone radius to the reaming
radius finally approaches a constant, and this constant gradually decreases with an increase in
the grouting pressure. This is because when the grouting pressure is constant, with an increase
in the grouting osmotic pressure, the volume of the grout entering the soil increases, and the
disturbed zone of the surrounding rock continuously expands, resulting in an increase in the
radius of the plastic zone. When the reaming radius reaches a certain value, the plastic radius
tends to be stable, and the smaller Pj is, the sooner it tends to be stable, which is relatively
consistent with the actual situation of grouting.

Fig. 6. Effect of grounting diffusion on plastic radius under the displacement effect
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Comparing Figs. 4b and 6, it can be seen that when the displacement effect is not considered,
the grouting pressure has little effect on the radius of the plastic zone and cannot play a decisive
role. When the displacement effect of groundwater and grout is considered, the reaming radius
and the plastic zone radius in the non-grouting plastic zone show a nonlinear relationship. With
a gradual increase of the reaming radius, the radius of the plastic zone shows a trend of rapid
growth at first, and then a slow growth. At the same time, with an increase in the grouting
pressure, the radius of plastic zone does not have a large gap, so the grouting pressure does not
play a decisive role in the change of the radius of the plastic zone.

5. Conclusion

Considering the slurry diffusion and slurry displacement effect in the grouting compaction stage,
a diffusion-compaction model of shield backfill grouting was established. The stress and displace-
ment fields of spherical hole expansion problem considering the coupling effect of reaming and
diffusion in grouting process were established. The main conclusions are as follows:

• When the displacement effect of groundwater and grouting slurry is considered, the sur-
rounding rock stress is the same as when only the slurry diffusion is considered, but the
displacement of the plastic zone is significantly reduced, and the stress has a minimum
point, which corresponds to the radius of the plastic zone.
• The grouting pressure and reaming radius have influence on the radius of plastic zone
during the seepage and diffusion of slurry. The larger Pj is, the smaller the plastic radius
is, and the larger the cavity expansion radius is, the larger the radius of plastic zone is.
When the cavity expansion radius reaches a certain value, the plastic radius tends to be
stable, and the smaller Pj is, the sooner it tends to be stable, which is relatively consistent
with the actual situation of shield backfill grouting.
• The groundwater flow is more complex. In order to facilitate the analysis, this paper
simplifies the groundwater to laminar flow and does not consider turbulence. Therefore,
further research on this issue should be conducted in the future.
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